光电效应反应式

合集下载

光电效应方程

光电效应方程

光电效应方程<p>光电效应方程是物理学界一个重要的概念,它说明了光在物体表面的作用。

1887年,爱因斯坦做出了一项重要的发现,对物理学的发展产生了深远的影响。

他的研究发现,任何表面都可以吸收光,激发出一些电子,从而产生一种带有正负电荷的电界,称为光电效应。

</p><p>爱因斯坦的发现引起了物理学家们的极大兴趣,特别是关于光电效应方程的研究。

1920年,英国物理学家沃森和英国物理学家佩克尔在《英国数学期刊》上发表了他们提出的光电效应方程。

沃森和佩克尔提出的方程式是:(E)=(K)×(F)×(I),其中E是光电效应的电势,K是一个系数,F是表面积,I是光照度。

沃森和佩克尔的研究加深了人们对光电效应的理解,并为其他物理学家做出了重要贡献。

</p><p>当前,光电效应方程得到了更广泛的应用,它被广泛应用于材料物理学、化学物理学、小分子复合物理学、光催化反应等研究领域。

在材料物理学中,研究人员可以利用光电效应方程来计算材料表面的光学性能,如反射率、吸收率等,并根据测量的结果来对材料进行深入的研究。

同样,在化学物理学方面,光电效应方程可以用来研究分子间的相互作用,从而更深入地探索化学反应的本质。

</p><p>此外,光电效应方程在光催化反应的研究中也发挥着重要作用,已经有一些研究表明,光电效应方程不仅可以定量描述光催化反应,而且还可以用来优化反应条件,有助于提高反应效率。

</p><p>因此,光电效应方程是一个重要的物理学概念,它已经被广泛应用于材料物理学、化学物理学、小分子复合物理学、光催化反应等研究领域,给物理学研究带来了深远的影响。

基于这些发现,未来肯定会有更多的研究人员对光电效应方程进行深入的研究,以进一步深入地理解光电效应的本质,并从中挖掘出新的应用。

光电效应理论及应用

光电效应理论及应用

光电效应理论及应用光电效应是一种光与物质交互作用的现象,在物理学、化学、材料学、能源等领域有着广泛的应用。

本文将介绍光电效应的基本理论,探讨其应用在各个领域中的意义和作用。

一、光电效应基本理论光电效应是指当光线射到某些金属表面时,会将一部分电子从金属中解离出来。

这些电子可以被称为光电子。

光电子的种类和数量与金属、光线的性质有关。

光电效应的基本原理可以简化为下面两个步骤:1. 光线与金属相互作用,将其能量传递给金属表面。

2. 光能将激发或启动金属表面电子的动能,从而使之能脱离金属表面成为自由电子。

根据这个原理,可以得出光电效应的基本公式 E=hv-φ0,其中E为光电子的最大动能,h为普朗克常数,v为光子的频率,φ0为金属表面的逸出功。

利用这个公式,可以测量光线的频率,或者测定不同金属表面的逸出功。

二、光电效应在能源领域中的应用1. 光伏发电光伏发电是利用材料的光电效应转化太阳能为电能的技术。

通过将材料暴露在光源下,光子将射入材料中并将激发电子。

当这些激发的电子与孔子相遇,便会产生电流。

通过将大量这样的组件串联在一起,就会产生足够的电能。

目前太阳能板是光伏发电的一个应用例子。

2. 光化学反应通过光化学反应,可以利用光能来激发物质在反应中的化学转化。

这种转化可以通过光电效应的基本原理来实现。

利用光能,可以将金属表面的电子激发成为活动态电子,从而在化学反应中发挥能量贡献。

例如,在有机合成、制造新型催化剂、节能降耗等领域中都有着广泛的应用。

三、光电效应在生物、医学领域中的应用1. 光动力疗法光动力疗法是利用光能产生的光反应来杀死病原体的一种疗法。

利用光能对生物真菌、肿瘤细胞等进行照射,使这些细胞被杀死,以消除于大致治愈体内的病原体。

该技术的主要优点是其与射频预期比较简单安全,并且不会对健康的细胞造成太大的破坏。

2. 光遗传学光遗传学是利用光反应控制基因表达的一种技术。

通过针对特定的基因进行设计,使特定的基因表达受到光线的控制。

光电效应复习

光电效应复习

原子不同能量状态跟电子沿不同轨道 玻尔 轨道假说 绕核运动相对应。因定态不连续,所 模型 以电子可能轨道分布也是不连续的。
原子从一种定态跃迁到另一定态时, 跃迁假说 要辐射(或吸收)一定频率的光子, 光子能量等于两定态的能量差。 放出光子
h Em En
低能级
高能级
吸收能量
三、玻尔理论对氢光谱的解释
t T
Байду номын сангаас
原子核人工转变
卢瑟福发现质子:用 粒子轰出氮原子产生氧的同位素,方程: 14 N十4 He=17 0+1 H 7 2 8 1 这是第一次实现原子核的人工转变:用 粒子、质子、 中子甚 至光子去轰击原子核都可实现原子核的转变,通过这种方式可以研究 原子核的结构,发现和制造新元素。
放射性同位素:有些元素的同位素具有放射性 1934年约里奥一居里夫妇发现经过 粒子轰击的铝片中会有放射性 30 P,即: 15 4 He+27 Al=30 P+1 n 30 P=30 Si+0 e 2 13 15 0 15 14 1 30 自然界里没有天然的 15P,它是通过核反应生成的人工放射性同位素。 人工放射性的优点:半衰期短,容易控制。
Ek h W0
(1)存在饱和电流
阳 极 A 阴 K 极
(2)存在遏止电压和截止频率
W0 c h
G
V
h W0 Uc e
(3)具有瞬时性
光电效应方程的图像: 外加电压和光电流的关系(同种金属)
I
黄光(强)
蓝光
黄光(弱)
U c1 Uc2
O
U
光子数影响饱和电流 光的频率影响遏止电压
210 84
Po Pb He

爱因斯坦光电效应方程组

爱因斯坦光电效应方程组

爱因斯坦光电效应方程组
爱因斯坦光电效应方程是用来描述光电效应过程中光电子动能与其相关物理量之间关系的公式。

具体来说,它有三个重要的公式:
1. 光子能量公式:E=hv,其中E表示光子能量,h表示普朗克常量,v表示入射光频率。

这个公式表明每一份光子能量跟它的频率成正比。

2. 爱因斯坦光电效应方程:Ek=hv-Wo,其中Ek表示动能最大的光电子所具有的能量,h表示普朗克常量,v表示入射光的频率,W0表示逸出功。

这个方程求的是动能最大的光电子所具有的能量,用入射光子能量减去逸出功等于光电子出来的正能量。

3. 截止电压公式:Ek=eUc,其中Ek表示光电子出来的动能,e表示电子的电荷量,Uc表示截止的电压。

这个公式是通过实验得到的,当外电路电压调到一定值的时候电子就进不了电路中,此时电子走到负极所做的功刚好就等于电子出来的动能。

以上信息仅供参考,建议查阅关于光电效应的书籍或咨询物理学专业人士以获取更准确的信息。

大学物理化学公式总结

大学物理化学公式总结

大学物理化学公式总结大学物理化学是自然科学中的重要分支,主要研究物质的结构、性质和变化规律。

在物理化学的学习中,公式是不可或缺的工具,能够帮助我们更好地理解和计算各种物理和化学现象。

下面我将总结一些常见的物理化学公式。

一、热力学1. 熵变公式:ΔS = S_final - S_initial2. 焓变公式:ΔH = H_final - H_initial3. 内能变化公式:ΔU = Q + W4. 等温过程熵变:ΔS = nRln(V_final/V_initial)5. 等温过程内能变化:ΔU = 0二、量子力学1. 德布罗意波长:λ = h/(mv)2. 薛定谔方程:Ĥψ = Eψ3. 单电子波函数:ψ = ψ(r,t)4. 束缚能级:E = -13.6eV/n^25. 能态数:N = 2n^2三、热力学平衡1. 平衡常数表达式:K = ([C]^c[D]^d) / ([A]^a[B]^b)2. 平衡常数和自由能变化的关系:ΔG = -RTlnK3. 反应速率表达式:v = k[A]^a[B]^b4. 阿累尼乌斯方程:ln(k2/k1) = (Ea/R)(1/T1 - 1/T2)四、电化学1. 法拉第定律:i = nFv2. 电解质浓度与导电率的关系:κ = λC3. 电解质浓度与摩尔导电率的关系:κ = λC4. 电解质摩尔导电率与离子浓度的关系:λ = κ/C五、化学动力学1. 反应速率表达式:v = k[A]^a[B]^b2. 速率常数和反应物浓度的关系:k = Ae^(-Ea/RT)3. 反应活化能:Ea = RT(ln(k/T) - ln(A))4. 反应级数:n = d(log[A])/dt = d(log[B])/dt = ...六、光化学1. 光电效应能量关系:E = hf = h(c/λ)2. 跃迁能级差:ΔE = E_final - E_initial3. 确定量子数:nλ = 2πr4. 单色光弹性散射能量变化:ΔE = 2(E_final - E_initial)以上只是其中一部分常见的物理化学公式,这些公式在研究和解决物理化学问题时起到了重要的作用,帮助我们理解和预测各种现象。

深刻理解光电效应

深刻理解光电效应

第七章:光电效应属于爱因斯坦的桂冠今天这一章我们来讲讲光电效应。

光电效应是指光束照射在金属表面会使其发射出电子的物理效应。

发射出来的电子称为“光电子”。

要发生光电效应,光的频率必须超过金属的特征频率。

1887年,德国物理学者海因里希·赫兹发现,紫外线照射到金属电极上,可以帮助产生电火花。

1905年,阿尔伯特·爱因斯坦发表论文《关于光产生和转变的一个启发性观点》,给出了光电效应实验数据的理论解释。

爱因斯坦主张,光的能量并非均匀分布,而是负载于离散的光量子(光子),而这光子的能量和其所组成的光的频率有关。

这个突破性的理论不但能够解释光电效应,也推动了量子力学的诞生。

由于“他对理论物理学的成就,特别是光电效应定律的发现”,爱因斯坦获1921年诺贝尔物理学奖。

光照射到金属上,引起物质的电性质发生变化。

这类光变致电的现象被人们统称为光电效应。

光电效应分为光电子发射、光电导效应和阻挡层光电效应,又称光生伏特效应。

前一种现象发生在物体表面,又称外光电效应。

后两种现象发生在物体内部,称为内光电效应。

光束里的光子所拥有的能量与光的频率成正比。

假若金属里的电子吸收了一个光子的能量,而这能量大于或等于某个与金属相关的能量阈值(称为这种金属的逸出功),则此电子因为拥有了足够的能量,会从金属中逃逸出来,成为光电子;若能量不足,则电子会释出能量,能量重新成为光子离开,电子能量恢复到吸收之前,无法逃逸离开金属。

增加光束的辐照度(光束的强度)会增加光束里光子的密度,在同一段时间内激发更多的电子,但不会使得每一个受激发的电子因吸收更多的光子而获得更多的能量。

换言之,光电子的能量与辐照度无关,只与光子的能量、频率有关。

逸出功 W 是从金属表面发射出一个光电子所需要的最小能量。

如果转换到频率的角度来看,光子的频率必须大于金属特征的极限频率,才能给予电子足够的能量克服逸出功。

逸出功与极限频率 v0之间的关系为:W=h*v0。

2023新教材高考物理二轮专题复习专题:光电效应能级跃迁原子核

2023新教材高考物理二轮专题复习专题:光电效应能级跃迁原子核

专题十五光电效应能级跃迁原子核高频考点·能力突破考点一光电效应规律的应用1.光电效应两条对应关系(1)光子频率高→光子能量大→光电子的最大初动能大;(2)光照强度大(同种频率的光)→光子数目多→发射光电子多→光电流大.2.定量分析时应抓住三个关系式例1 [2022·河北卷]如图是密立根于1916年发表的钠金属光电效应的遏止电压U c与入射光频率ν的实验曲线,该实验直接证明了爱因斯坦光电效应方程,并且第一次利用光电效应实验测定了普朗克常量h.由图像可知( )A.钠的逸出功为hνcB.钠的截止频率为8.5×1014HzC.图中直线的斜率为普朗克常量hD.遏止电压U c与入射光频率ν成正比[解题心得]预测1 [2022·全国冲刺卷]胶片电影利用光电管把“声音的照片”还原成声音,原理如图所示,在电影放映机中用频率为ν、强度不变的一极窄光束照射声音轨道,由于影片上各处的声音轨道宽窄不同,在影片移动的过程中,通过声音轨道后的光强随之变化,射向光电管后,在电路中产生变化的电流,经放大电路放大后,通过喇叭就可以把声音放出来.则( )A.只减小光的频率,一定可以还原出声音B.只增大光的强度,一定可以还原出声音C.a端为电源正极D.a端为电源负极预测 2 [2022·湖南押题卷]某同学欲探测某种环境下是否有频率高于7.73×1014 Hz 的电磁波辐射,利用光电效应现象自制了一个探测器,如图所示.当环境中含有高于此频率的电磁波时灵敏电流表有示数.下表给出了几种金属的极限频率.则( )A.发生光电效应的金属板应该选用金属钙B.如果发生光电效应的金属板选择金属钠,则电流表有示数时,环境中一定含有频率高于7.73×1014 Hz的电磁波C.要想提高仪器的灵敏度,电流表选灵敏一些的,两板间距选适当大一些的D.如果在两板间加上“左正右负”的电压,效果会更好预测3 [2022·湖南押题卷](多选)用如图所示的装置研究光电效应现象,光电管阴极K与滑动变阻器的中心抽头c相连,光电管阳极与滑动变阻器的滑片P相连,初始时滑片P 与抽头c正对,电压表的示数为0(电压表0刻线在表盘中央).在移动滑片P的过程中,光电流I随电压表示数U变化的图像如图所示,已知入射光的光子能量为1.6 eV.下列说法正确的是( )A.当滑片P与c正对时,电路中有光电流B.当U=-0.6 V时,滑片P位于a、c之间C.阴极材料的逸出功为1.0 eVD.当U=0.8 V时,到达阳极的光电子的最大动能为2.4 eV考点二玻尔理论和能级跃迁1.玻尔理论的三条假设2.解决氢原子能级跃迁问题的三点技巧(1)原子跃迁时,所吸收或辐射的光子能量只能等于两能级的能量差.(2)原子电离时,所吸收的能量可以大于或等于某一能级能量的绝对值,剩余能量为自由电子的动能.(3)一个氢原子跃迁发出的可能光谱线条数最多为(n-1),而一群氢原子跃迁发出的可能光谱线条数可用N=C n2=n(n−1)求解.2例2 [2022·浙江6月]如图为氢原子的能级图.大量氢原子处于n=3的激发态,在向低能级跃迁时放出光子,用这些光子照射逸出功为2.29 eV的金属钠.下列说法正确的是( )A.逸出光电子的最大初动能为10.80 eVB.n=3跃迁到n=1放出的光子动量最大C.有3种频率的光子能使金属钠产生光电效应D.用0.85 eV的光子照射,氢原子跃迁到n=4激发态[解题心得]例4 [2022·东北三省四市联考]氦离子(He+)和氢原子一样.原子核外只有一个电子,因此它们有着相似的能级图,如图所示为氢原子和氦离子的能级图.一群处于量子数n=4的激发态的氦离子,能够自发地跃迁到较低的能量状态,并向外辐射光子.已知金属钨的逸出功为4.54 eV.则向外辐射多种频率的光子中( )A.最多有3种频率的光子B.能使金属钨发生光电效应的有3种频率的光子C.能够使处于基态的氢原子电离的有3种频率的光子D.能够使处于基态的氢原子跃迁的有4种频率的光子例5 [2022·山东押题卷]为了更形象地描述氢原子能级和氢原子轨道的关系,作出如图所示的能级轨道图,处于n=4能级的氢原子向n=2能级跃迁时辐射出可见光a,处于n =3能级的氢原子向n=2能级跃迁时辐射出可见光b,则以下说法正确的是( )A.a光照射逸出功为2.14 eV的金属时,光电子的最大初动能为0.41 eVB.a光的波长比b光的波长长C.辐射出b光时,电子的动能和电势能都会变大D.一个处于n=4能级的氢原子自发跃迁可释放6种频率的光考点三衰变、核反应与核能的计算1.核衰变问题(1)核衰变规律:m=(12)tt1/2m0,N=(12)tt1/2N0.(2)α衰变和β衰变次数的确定方法①方法一:由于β衰变不改变质量数,故可以先由质量数改变确定α衰变的次数,再根据电荷数守恒确定β衰变的次数.②方法二:设α衰变次数为x ,β衰变次数为y ,根据质量数和电荷数守恒列方程组求解.2.核能的计算方法(1)根据爱因斯坦质能方程,用核反应亏损的质量乘真空中光速c 的平方,即ΔE =Δmc 2(J).(2)根据1 u(原子质量单位)相当于931.5 MeV 的能量,用核反应的质量亏损的原子质量单位数乘931.5 MeV ,即ΔE =Δm ×931.5 (MeV).3.常见的核反应 (1)衰变 (2)重核裂变 (3)轻核聚变 (4)人工转变例3 [2022·全国甲卷]两种放射性元素的半衰期分别为t 0和2t 0,在t =0时刻这两种元素的原子核总数为N ,在t =2t 0时刻,尚未衰变的原子核总数为N3,则在t =4t 0时刻,尚未衰变的原子核总数为( )A .N12B .N9C .N8D .N6[解题心得]预测6 [2022·历城二中测评]2021年12月30日,中国“人造太阳”——全超导托卡马克核聚变实验装置(EAST)再次创造新的世界纪录,实现1 056秒的长脉冲高参数等离子体运行.大科学工程“人造太阳”通过核反应释放的能量用来发电,其主要的核反应过程可表示为( )A.t 12+12H―→23He +01tB . 714t +24He―→ 817t +11tC . 92235t +01n―→ 56141tt +3692tt +301tD . 92235U―→ 90234Th +24tt预测7 [2022·辽宁卷]2022年1月,中国锦屏深地实验室发表了首个核天体物理研究实验成果.表明我国核天体物理研究已经跻身国际先进行列.实验中所用核反应方程为Mg 2312―→A t 2613,已知X 、Mg 1223、Al 1326的质量分别为m 1、m 2、m 3,真空中的光速为c ,该反应中释放的能量为E .下列说法正确的是( )A .X 为氘核H 12B .X 为氚核H 13C .E =(m 1+m 2+m 3)c 2D .E =(m 1+m 2-m 3)c 2预测8 (多选)2021年9月,在甘肃省武威市全球首台钍基熔盐核反应堆进行试运行放电,也标志着我国成为世界上第一个对第四代核电技术进行商业化试验运营的国家.反应堆工作原理如图所示,钍232(Th 23290)吸收一个中子后会变成钍233,钍233 不稳定,会变成易裂变核素铀233(U 23392).下列说法正确的是( )A .钍233变成铀233的核反应方程式是:t 90232t―→tt 91233+t −10,tt 91233―→U 92233+t −10B .中间产生的新核镤233(tt 91233)从高能级向低能级跃迁时,会伴随γ辐射C .新核铀233(U 92233)的结合能小于钍233(t 90232t )D .核反应堆是通过核裂变把核能直接转化为电能发电预测9 [2022·辽宁押题卷]碳14是宇宙射线撞击空气中的氮14原子所产生,具有放射性,碳14原子发生β衰变转变为氮14.生物存活期间需要呼吸,其体内的碳14含量大致不变;生物停止呼吸后,体内的碳14开始减少.可以根据死亡生物体内残余碳14含量来推断它的死亡时间.碳14各个半衰期所剩原子比例如图所示,某古木样品中14C 的比例正好是现代植物所制样品的三分之一.下列说法正确的是( )A .碳14的衰变方程式为C 614―→N 714+t −10B .该古木的年代距今大于11 460年C .14C 和14N 中含有的中子个数相等D .如果古木处于高温、高压下测量结果可能有较大误差素养培优·情境命题 与近代物理相关的生活、科技问题与近代物理相关的科技问题相对较多,与我们生活接近的有:放射治疗、辐照保鲜、烟雾报警器等,与生产科技有关的有:射线测厚装置、示踪原子、光伏发电、核电站等.要解决科技发展问题必须要了解科技问题背后的原理.放射治疗、辐照保鲜、射线测厚装置、示踪原子等是利用了放射性同位素的射线,烟雾报警器、光伏发电利用了光电效应,核电站利用了核裂变.情境1 [2022·浙江6卷](多选)秦山核电站生产C 614的核反应方程为N 714+t 01―→C 614+X ,其产物C 614的衰变方程为C 614―→t 714+t −10.下列说法正确的是( )A .X 是H 11B .C 614可以用作示踪原子 C .t −10来自原子核外D .经过一个半衰期,10个C 614将剩下5个[解题心得]情境2 (多选)2021年4月13日日本政府宣布将向太平洋倾倒逾125万吨福岛核电站内储存的核废水,消息一出举世哗然.福岛核电站的裂变材料是铀235,核废水含有大量的氚以及钡141、氪92、锶90、钴60、碘129、钉106等放射性核素.由于含氚的水和普通的水具有相同的化学性质,物理性质也相近,因而现有的废水处理技术很难去除,铀235的半衰期大约为12.5年.针对这一事件,下列同学的观点正确的是( )A .为了保护海洋环境,日本政府应在12.5年后再排放经过处理的核废水B .比较铀235、钡141、氪92、锶90的原子核,铀235的平均核子质量最大C .比较铀235、钡141、氪92、锶90的原子核,铀235的比结合能最大D .核反应方程:t 92235+t 01―→tt 56141+tt 3692+3X 中的X 是中子n 01[解题心得]情境3 (多选)红外测温具有响应时间快、非接触、安全准确的优点,在新冠疫情防控中发挥了重要作用.红外测温仪捕捉被测物体电磁辐射中的红外线部分,将其转变成电信号.图甲为红外线光谱的三个区域,图乙为氢原子能级示意图.已知普朗克常量h =6.63×10-34J·s,光在真空中的速度c =3.0×108m/s ,下列说法正确的是( )A .红外线光子能量的最大值约为1.64 eVB .氢原子从n =3能级向n =2能级跃迁时释放出的光子能被红外测温仪捕捉C.大量氢原子从n=4能级向低能级跃迁时,红外测温仪可捕捉到2种频率的红外线D.大量处于n=2激发态的氢原子吸收能量为2.86 eV的光子后,辐射出的光子可能被红外测温仪捕捉[解题心得]情境4 [2022·山东青岛二模](多选)如图为某同学设计的一个光电烟雾探测器,光源S发出一束波长为0.8 μm的红外线,当有烟雾进入探测器时,来自S的红外线会被烟雾散射进入光电管C,当红外线射到光电管中的金属表面时发生光电效应,当光电流大于8×10-9A时,便会触发报警系统.已知元电荷e=1.6×10-19C,光在真空中的传播速度为3×108 m/s.下列说法正确的是( )A.光电流的大小与光照强度无关B.若光源发出的是可见光,则该装置将会失去报警功能C.该金属的极限频率小于3.75×1014 HzD.若射向光电管C的光子中有10%会产生光电子,当报警器报警时,每秒射向该金属表面的光子数最少为5×1011个[解题心得]专题十五 光电效应 能级跃迁 原子核高频考点·能力突破考点一例1 解析:根据遏止电压与最大初动能的关系有eU c =E kmax ,根据爱因斯坦光电效应方程有E kmax =hν-W 0,结合图像可知,当U c 为0时,解得W 0=hνc ,A 正确;钠的截止频率为νc ,根据图像可知,截止频率约为5.5×1014Hz ,B 错误;结合遏止电压与光电效应方程可解得U c =h e ν-W 0e ,对比遏止电压U c 与入射光频率ν的实验曲线可知,图中直线的斜率表示h e ,C 错误;根据遏止电压与入射光的频率关系式可知,遏止电压U c 与入射光频率ν成线性关系,不是成正比,D 错误.答案:A预测1 解析:只增大光的频率,肯定有光电子从光电管的阴极到达阳极,从而使电路导通,一定可以还原出声音,反之则不一定发生光电效应现象使电路导通,故A 、B 错误;光照射部分为阴极材料,光电子到达另一侧,在电场力作用下到达电源正极,故a 端为电源正极,故C 正确,D 错误.答案:C预测2 解析:根据题表数据可知金属钙的极限频率为7.73×1014Hz ,只有当环境中有高于7.73×1014 Hz 的电磁波辐射时,才能使光电子从钙板中逸出,从而使灵敏电流表有示数,所以发生光电效应的金属板应该选用金属钙,故A 正确;根据题表数据可知金属钠的极限频率为5.53×1014 Hz ,如果发生光电效应的金属板选择金属钠,则电流表有示数时,环境中一定含有频率高于5.53×1014 Hz 的电磁波,不一定含有频率高于7.73×1014 Hz 的电磁波,故B 错误;要想提高仪器的灵敏度,电流表选灵敏一些的,且为了能够使光电子能够更易到达阳极,两板间距应选适当小一些的,故C 错误;如果在两板间加上“左负右正”的电压,光电子受到向右的电场力,更易到达阳极,效果会更好,故D 错误.答案:A预测3 解析:当滑片P 与c 正对时,光电管两端无电压,由题中右图可以看出光电流不为零,故A 正确;由图可知,当U =-0.6 V 时,光电流为0即为遏止电压,即光电管两端接反向电压,则阴极电势应更高,滑片P位于b、c之间,故B错误;由光电效应方程有E k=hν-W0,由图可知,当U=0.6 V时,光电流为0即为遏止电压,则有-0.6 eV=0-E k 联立解得W0=1.0 eV,故C正确;光电子逸出时的最大初动能为E k0=hν-W0=0.6 eV,当U=0.8 V时由动能定理得eU=E k-E k0,得E k=eU+E k0=(0.8+0.6)eV=1.4 eV,故D错误.答案:AC考点二例2 解析:氢原子从n=3能级跃迁到n=1能级时释放的光子能量最大,频率也最大,能量为E1=(-1.51 eV)-(-13.6 eV)=12.09 eV,照射逸出功为2.29 eV的金属钠,光电子的最大初动能为E km=E1-W=9.8 eV,频率大的光子波长小,根据p=h可知频率大的光子λ动量大,A错误,B正确;氢原子从n=3能级跃迁到n=2能级时释放的光子能量为E2=(-1.51 eV)-(-3.4 eV)=1.89 eV<W,该光子不能使金属钠发生光电效应,可知有2种频率的光子能使金属钠产生光电效应,C错误;-1.51 eV+0.85 eV=-0.66 eV,可知氢原子不能吸收该光子从n=3能级跃迁到n=4能级,D错误.答案:B预测4 解析:一群氦离子从n=4能级向低能级跃迁时可以辐射出6种频率的光子,A 选项错误;其中只有从n=4能级向n=3能级跃迁时所辐射出的光子能量小于4.54 eV,不能使金属钨发生光电效应,故共有5种频率的光子能使金属钨发生光电效应,故B选项错误;因为要使处于基态的氢原子发生电离,所需要的光子能量只要达到13.6 eV就可以,根据辐射光子能量等于氦离子能级跃迁前后两能级的能量差可得,有3种频率的光子能使处于基态的氢原子电离,故C选项正确;氦离子只有从n=4能级向n=2能级跃迁时辐射出的光子能量,等于氢原子n=1能级与n=2能级之间的能量差,可使处于基态的氢原子跃迁,故D 选项错误.答案:C预测5 解析:a光的光子能量E a=E4-E2=2.55 eV,b光的光子能量E b=E3-E2=1.89 ,可知λb>λa,B错误;a光照射逸出功W0=2.14 eV的金属时,由于E a>W0 eV,根据E=h cλ能发生光电效应,光电子的最大初动能E k=E a-W0=0.41 eV,A正确;辐射出b光时,电子做圆周运动的半径减小,动能增加,电场力做正功,电势能减小,C错误;一个处于n=4能级的氢原子自发跃迁时,释放出不同频率光的种类最多的情况为n=4→n=3→n=2→n=1,即最多能释放3种频率的光,D错误.考点三例3 解析:设两种放射性元素的原子核原来总数分别为N 1和N 2,则N =N 1+N 2,因为N 余=(12)t T ·N 原,所以t =2t 0时刻,N 3=N 1(12)2+N 2(12)1,联立解得N 1=23N ,N 2=13N ,故t =4t 0时刻,N 1(12)4+N 2(12)2=N 8,C 项正确. 答案:C预测 6 解析:根据题意,实验装置为核聚变装置,核反应方程H 12+H 12―→23 He+01n ,属于核聚变,故A 正确;核反应方程t 714+H 24e―→ 817O +H 11,属于原子核的人工转变,故B 错误;核反应方程t 92235+t 01―→ 56141tt +3692 tt +301n ,属于裂变,故C 错误;核反应方程U 92235―→tt 90234+He 24,属于衰变,故D 错误.答案:A预测7 解析:根据核反应遵循的质量数守恒和电荷数守恒可知,X 的质量数为3,电荷数为1,为氚核H 13,A 错误,B 正确;因该反应为人工转变,反应前两种粒子都有动能(总动能设为E k1),反应后的生成物也有动能E k2,根据质能方程可知,由于质量亏损反应放出的能量为ΔE =Δmc 2=(m 1+m 2-m 3)c 2,则反应释放的能量为E =E k1+ΔE -E k2=E k1-E k2+(m 1+m 2-m 3)c 2,C 、D 错误.答案:B预测8 解析:根据核反应的电荷数和质量数守恒可知,钍233变成铀233的核反应方程式是tt 90232―→t 91233t +−10t ,tt 91233―→ 92233t +t −10,选项A 正确;中间产生的新核镤233( 91233Pa)从高能级向低能级跃迁时,放出能量,会伴随γ辐射,选项B 正确;整个过程中释放能量,则生成的新核铀233( 92233U)更加稳定,则新核铀233( 92233U)的结合能大于钍233(Th 90232),选项C 错误;在核电站的核反应堆内部,核燃料具有的核能通过核裂变反应转化为内能,然后通过发电机转化为电能,故D 错误.答案:AB预测9 解析:根据质量数守恒和电荷数守恒,又因为碳14发生β衰变,所以衰变方程为t 614―→t 714+t -10,故A 正确;根据图像可知,剩余三分之一,时间应该大于5 730年小于11 460年,故B 错误;由元素序数知碳14中子数为8,氮14中子数为7,故C 错误;半衰期与温度、压强无关,故D 错误.素养培优·情境命题情境1 解析:根据核反应方程遵循质量数守恒和电荷数守恒,可知X 为质子 H 11,A 正确;由于t 614具有放射性,且C 是构成生物体的主要元素之一,所以t 614可以用作示踪原子,B 正确;β衰变放出的电子t -10来自原子核,C 错误;由于半衰期是大量原子核衰变的统计规律,对少量原子核不适用,所以经过一个半衰期,10个t 614不一定剩下5个,D 错误.答案:AB情境2 解析:为了保护海洋环境,日本政府在12.5年后还是不能排放经过处理的核废水,因为经过一个半衰期只是有半数发生衰变,还有半数的没有衰变,所以废水还是具有放射性的,所以不能排放,则A 错误;比较铀235、钡141、氪92、锶90的原子核,铀235的平均核子质量最大,所以B 正确;比较铀235、钡141、氪92、锶90的原子核,铀235的比结合能最小,因为比结合能越大原子越稳定,所以C 错误;根据核反应过程中,遵循电荷数,质量数守恒定律,所以核反应方程t 92235+t 01―→ 56141tt + Kr 3692+3X 中的X 是中子n 01,则D 正确.答案:BD情境3 解析:红外线最短波长和最长波长分别为λmin =0.76 μm,λmax =1 000 μm,根据光子能量E =hν=h c λ,代入数据可得光子最大和最小能量分别为E max =1.64 eV ,E min =1.24×10-3eV ,A 正确;氢原子从n =3能级向n =2能级跃迁时释放出的光子能量E =-1.51-(-3.4)=1.89 eV>E max ,因此不会被红外测温仪捕捉到,B 错误;大量氢原子从n =4能级向低能级跃迁时,放出的能量为E 43=-0.85-(-1.51)=0.66 eV ,E 32=-1.51-(3.4)=1.89 eV ,只有从n =4向n =3轨道跃迁时放出的光子能量在红外区,因此红外测温仪可捕捉到1种频率的红外线,C 错误;大量处于n =2激发态的氢原子吸收能量为2.86 eV 的光子后跃迁到n =5的能级,再从该能级向回跃迁时,放出的能量有E 54=-0.54-(-0.85)=0.31 eV ,E 43=-0.85-(-1.51)=0.66 eV ,因此,辐射出的光子可能被红外测温仪捕捉,D 正确.答案:AD情境4 解析:在达到饱和电流之前,光照强度越大,光电流越大,光电流的大小与光照强度有关,故A 错误;根据报警器的工作原理,可见光的光子能量大于红外线的光子能量,所以若光源发出的是可见光,则该装置不会失去报警功能,故B 错误;根据波长与频率的关系式有c =λν,代入数据,可得ν=3.75×1014 Hz ,根据光电效应原理,可知该金属的极限频率小于3.75×1014 Hz ,故C 正确;当光电流等于8×10-9 A 时,每秒产生的光电子的数目为N =8×10−91.60×10−19个=5×1010个,若射向光电管C 的光子中有10%会产生光电子,故每秒射向金属表面的光子数最少为5×101010%个=5×1011个,故D 正确. 答案:CD。

光电效应相关公式

光电效应相关公式

光电效应相关公式好嘞,以下是为您生成的关于“光电效应相关公式”的文章:咱先来说说光电效应,这可是物理学中一个相当有趣的现象。

光电效应,简单来讲,就是当光照射到金属表面时,金属中的电子会吸收光子的能量,然后“嗖”地一下飞出来。

这就引出了一系列跟它有关的公式。

咱先看看最基础的,爱因斯坦光电效应方程:$E_{k} = h\nu -W_{0}$ 。

这里的 $E_{k}$ 表示光电子的最大初动能,$h$ 是普朗克常量,$\nu$ 是入射光的频率,$W_{0}$ 则是金属的逸出功。

就好比有一天,我在实验室里做光电效应的实验。

我把一束特定频率的光打到金属板上,然后瞪大眼睛盯着检测仪器,心里一直在嘀咕:“到底啥时候能看到电子飞出来啊?”等了一会儿,仪器上终于有了反应,那一刻的兴奋劲儿,就像自己发现了新大陆。

逸出功这个概念也很关键。

不同的金属,逸出功是不一样的。

就好像不同的人,有的胆子大,有的胆子小。

金属要让电子跑出来,就得克服这个“胆小”的劲儿,也就是逸出功。

光电流强度公式:$I = neSv$ ,其中 $n$ 表示单位体积内的自由电子数,$e$ 是电子电荷量,$S$ 是导体横截面积,$v$ 是自由电子定向移动的平均速率。

想象一下,电子们就像一群调皮的小孩子,在金属里到处乱跑。

光一来,它们就有了方向,一股脑地朝着一个方向冲,形成了电流。

频率和波长的关系:$\lambda = \frac{c}{\nu}$ ,其中 $\lambda$ 是波长,$c$ 是真空中的光速。

这就好比在一条长长的跑道上,光以固定的速度奔跑,频率决定了它“步子”的大小,波长则是它“一步”的长度。

还有遏止电压和最大初动能的关系:$eU_{c} = E_{k}$ ,这里的$U_{c}$ 就是遏止电压。

做实验的时候,通过调节电压,观察电流的变化,就能找到这个遏止电压。

那感觉就像是在和这些看不见的电子“斗智斗勇”,试图抓住它们的小辫子。

光电效应的这些公式,虽然看起来有点复杂,但只要咱们把它们和实际的现象联系起来,理解起来就容易多啦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应反应式
光电效应是指当金属或其他物质表面受到光照射时,会产生电子的放出,这些电子的速度非常高,可以达到每秒数千米的速度。

这种现象是由于光的能量被物质吸收,导致物质中的电子获得了足够的能量,从而能够克服物质表面的束缚,逃离物质表面。

光电效应的反应式可以表示为:
$hv=W+Ek$
其中,$hv$表示光的能量,$W$表示物质表面的束缚能,$Ek$表示电子逃离物质表面后的动能。

在这个反应式中,光的能量$hv$必须大于物质表面的束缚能$W$,才能使电子获得足够的能量逃离物质表面。

当电子逃离物质表面后,它们会具有一定的动能$Ek$,这个动能的大小取决于光的能量和物质表面的束缚能之差。

光电效应的发现对于物理学的发展产生了重要的影响,它不仅解释了光的粒子性,也为量子力学的发展提供了重要的实验基础。

同时,光电效应也在实际应用中得到了广泛的应用,例如在光电子学、太阳能电池、光敏传感器等领域。

相关文档
最新文档