2015届高考数学一轮复习单元检测:集合 (苏教版必修1)
最新整理第1章集合1章集合单元检测练习苏教版必修1.doc

必修1第1章集合单元检测1. 设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M ∩N)∪(M∩P)等于 ( )A. {1,4}B. {1,7}C. {4,7}D. {1,4,7}2.已知方程x 2-px+15=0与x 2-5x+q=0的解集分别为A 与B ,A ∩B={3},则p+q 的值是( )A. 14B.11C.7D. 23.集合A={y|y=-x 2+4,x ∈N ,y ∈N}的真子集的个数为 ( )A. 9B.8C. 7D. 64.已知M={y|y=x 2-1,x ∈R},P={x|x=|a|-1,a ∈R},则集合M 与P 的关系是 ( )A. P ∈MB.M=PC. M PD.P M 5.设A={x|x=4k+1,k ∈Z},则-1______, -7__________.6.设A={x|x 2-x=0},B={x|x 2-|x|=0},则A 、B 之间的关系为___________________.7.A={x|x=2k ,k ∈Z} ,B={x|x=4k+2,k ∈Z},则A ∩B=________________.8.已知集合M={(x,y)|x+y=a},N={(x,y)|x-y=b},若M ∩N={(3,-1)},那么a=_______,b=__________.9.已知集合P={1,a b,b},集合B={0,a+b ,b 2},且P=B ,求集合P . 10.设集合A={1,2,a},B={1,a 2-a},若A ∪B= A ,求实数的值.11.设集合A={-1,2,x 2-x+1 }, B={2y ,-4,x+4},且A ∩B={-1,7},求x ,y 的值.12.设A={x|x 2+4x=0},B={x|x 2+2(a+1) x+a 2-1=0},(1)若A ∩B=B ,求a 的值;(2)若A ∪B=B ,求a 的值.13.(20xx 天津高考模拟题)已知集合A={0,2,3},B={x|x=a ·b ,a ,b ∈A},则B 的子集个数是 ( )A .4B .8C .16D .1514.已知全集为U ,A ,B 是U 的两个非空子集,若B ⊆U C A ,则必有 ( )A .U A CB ⊆ B .A B ≠∅C .U U C A C B =D .A B =15.已知集合M={x|x=3n ,n ∈Z},N={x|x=3n+1,n ∈Z},P={x|x=3n-1,n ∈Z},且a ∈M ,b ∈N ,c ∈P ,记d=a+b-c则 ( )A .()d M P ∈B .d M ∈C .d N ∈D .d P ∈16.已知集合=0},B={(x,y)|x 2+y 2=1},则A ∩B 中元素个数是( )A .1B .2C .3D .417.(考试热点)若集合A={x|kx 2+4x+4=0,x ∈R}中只有一个元素,则实数k 的值为______________________18.数集M={x|x=k+14,k ∈Z},N={x|x= ⊂ ≠ ⊂ ≠1,24k k N -∈},则它们之间的关系是 ______________________19.集合A 、B 各有12个元素,A ∩B 中有4个元素,则A ∪B 中的元素个数是_________________________20.(20xx 上海春招)已知集合A={x||x|≤2,x ∈R},B={x|x ≥a},且A B ⊆,则实数a 的取值范围是_____________21.设全集U={2,3,a 2+2a-3},A={|2a-1|,2},U C A ={5},求实数a 的值.22.已知集合A={x|x 2+(b+2)x+b+1=0}={a},求集合B={x|x 2+ax+b=0}的真子集.23.设集合A={x|a ≤x ≤a+3},B={x|x<-1,或x>5},分别求下列条件下实数a 的值.(1)A ∩B=∅(2)A B ≠∅24.已知A={a 1,a 2,a 3 ,a 4},B={22221234,,,a a a a },其中a 1<a 2<a 3<a 4 ,a 1,a 2,a 3 ,a 4∈N ,若A ∩B={a 1,a 4} ,a 1+a 4=10,且A ∪B 所有元素和为124,求集合A 和B .。
苏教版必修1高考题单元试卷:第1章+集合(01)

苏教版必修1高考题单元试卷:第1章集合(01)一、选择题(共24小题)1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3 C.5 D.72.设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}3.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.64.集合{1,2,3}的子集共有()A.7个 B.8个 C.6个 D.5个5.已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,2}D.{﹣1,0,1}6.已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B7.已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A8.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1) D.(﹣∞,1]9.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3} 10.设集合M={x|﹣1<x<2},集合N={x|1<x<3},则M∪N=()A.{x|﹣1<x<3}B.{x|﹣1<x<2}C.{x|1<x<3}D.{x|1<x<2} 11.已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2) D.(2,3)12.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()13.若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3} 14.已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)15.已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}16.设集合M={x|x2+2x=0,x∈R},N={x|x2﹣2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2}17.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1 B.3 C.5 D.918.已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3 C.1或D.1或319.设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣220.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.3021.设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)22.若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A.4 B.2 C.0 D.0或423.设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90 C.120 D.13024.已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=()二、填空题(共5小题)25.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.26.集合{﹣1,0,1}共有个子集.27.已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.28.若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.29.已知集合{a,b,c}={0,1,2},且下列三个关系:①•a≠2;②‚b=2;③ƒc ≠0有且只有一个正确,则100a+10b+c等于.三、解答题(共1小题)30.对正整数n,记I n={1,2,3…,n},P n={|m∈I n,k∈I n}.(1)求集合P7中元素的个数;(2)若P n的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并集.苏教版必修1高考题单元试卷:第1章集合(01)参考答案与试题解析一、选择题(共24小题)1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3 C.5 D.7【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}【分析】解出集合N中二次不等式,再求交集.【解答】解:集合M={x|0≤x<2},N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选:B.【点评】本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.3.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4 C.5 D.6【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选:B.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力.4.集合{1,2,3}的子集共有()A.7个 B.8个 C.6个 D.5个【分析】集合{1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.【解答】解:集合{1,2,3}的子集有:∅,{1},{2},{3},{1,2}…{1,2,3}共8个.故选:B.【点评】本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.5.已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.6.已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.7.已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A【分析】直接利用集合的运算法则求解即可.【解答】解:集合A={1,2,3},B={2,3},可得A≠B,A∩B={2,3},B A,所以D正确.故选:D.【点评】本题考查集合的基本运算,基本知识的考查.8.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1) D.(﹣∞,1]【分析】求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.【解答】解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.【点评】本题考查了并集及其运算,考查了对数不等式的解法,是基础题.9.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}【分析】求解不等式得出集合A={x|﹣1<x<2},根据集合的并集可求解答案.【解答】解:∵集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},∴集合A={x|﹣1<x<2},∵A∪B={x|﹣1<x<3},故选:A.【点评】本题考查了二次不等式的求解,集合的运算,属于容易题.10.设集合M={x|﹣1<x<2},集合N={x|1<x<3},则M∪N=()A.{x|﹣1<x<3}B.{x|﹣1<x<2}C.{x|1<x<3}D.{x|1<x<2}【分析】根据并集的定义解答即可.【解答】解:根据并集的定义知:M∪N={x|﹣1<x<3},故选:A.【点评】本题考查了并集运算,熟练掌握并集的定义是解题的关键.11.已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2) D.(2,3)【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.12.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【分析】根据集合的基本运算进行求解.【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.【点评】本题主要考查集合的基本运算,比较基础.13.若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.【点评】本题考查集合的交集的运算法则,考查计算能力.14.已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.15.已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.16.设集合M={x|x2+2x=0,x∈R},N={x|x2﹣2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2}【分析】根据题意,分析可得,M={0,﹣2},N={0,2},进而求其并集可得答案.【解答】解:分析可得,M为方程x2+2x=0的解集,则M={x|x2+2x=0}={0,﹣2},N为方程x2﹣2x=0的解集,则N={x|x2﹣2x=0}={0,2},故集合M∪N={0,﹣2,2},故选:D.【点评】本题考查集合的并集运算,首先分析集合的元素,可得集合的意义,再求集合的并集.17.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1 B.3 C.5 D.9【分析】依题意,可求得集合B={﹣2,﹣1,0,1,2},从而可得答案.【解答】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选:C.【点评】本题考查集合中元素个数的最值,理解题意是关键,考查分析运算能力,属于中档题.18.已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3 C.1或D.1或3【分析】由题设条件中本题可先由条件A∪B=A得出B⊆A,由此判断出参数m 可能的取值,再进行验证即可得出答案选出正确选项.【解答】解:由题意A∪B=A,即B⊆A,又,B={1,m},∴m=3或m=,解得m=3或m=0及m=1,验证知,m=1不满足集合的互异性,故m=0或m=3即为所求,故选:B.【点评】本题考查集合中参数取值问题,解题的关键是将条件A∪B=A转化为B ⊆A,再由集合的包含关系得出参数所可能的取值.19.设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b 的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选:C.【点评】本题考查集合元素的特征与集合相等的含义,注意从特殊元素下手,有利于找到解题切入点.20.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30【分析】由题意可得,A={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2)(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)},根据定义可求【解答】解:解法一:∵A={(x,y)|x2+y2≤1,x,y∈Z}={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2)(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)}∵A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},∴A⊕B={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2),(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2),(﹣2,3),(﹣2,﹣3),(0,﹣3),(2,﹣3),(﹣1,3),(﹣1,﹣3),(1,3),(2,3),(0,3),(3,﹣1),(3,0)(3,1),(3,2),(3,﹣2)(﹣3,2)(﹣3,1),(1,﹣3),(﹣3,﹣1),(﹣3,0),(﹣3,﹣2)}共45个元素;解法二:因为集合A={(x,y)|x2+y2≤1,x,y∈Z},所以集合A中有5个元素,即图中圆中的整点,B={(x,y)||x|≤2,|y|≤2,x,y∈Z},中有5×5=25个元素,即图中正方形ABCD中的整点,A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B}的元素可看作正方形A1B1C1D1中的整点(除去四个顶点),即7×7﹣4=45个.故选:C.【点评】本题以新定义为载体,主要考查了集合的基本定义及运算,解题中需要取得重复的元素.21.设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)【分析】当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.【解答】解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选:B.【点评】此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.22.若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A.4 B.2 C.0 D.0或4【分析】当a为零时,方程不成立,不符合题意,当a不等于零时,方程是一元二次方程只需判别式为零即可.【解答】解:当a=0时,方程为1=0不成立,不满足条件当a≠0时,△=a2﹣4a=0,解得a=4故选:A.【点评】本题主要考查了元素与集合关系的判定,以及根的个数与判别式的关系,属于基础题.23.设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90 C.120 D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论x i所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|x i|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①x i中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②x i中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③x i中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.故选:D.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.24.已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=()A.2 B.1 C.0 D.﹣1【分析】根据集合相等的条件,得到元素关系,即可得到结论.【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.由②得,若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,即(a﹣b)(a+b)=﹣(a ﹣b),∵互异的复数a,b,∴a﹣b≠0,即a+b=﹣1,故选:D.【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.二、填空题(共5小题)25.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.【分析】求出A∪B,再明确元素个数【解答】解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5【点评】题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题26.集合{﹣1,0,1}共有8个子集.【分析】集合P={1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.【解答】解:因为集合{﹣1,0,1},所以集合{﹣1,0,1}的子集有:{﹣1},{0},{1},{﹣1,0},{﹣1,1},{0,1},{﹣1,0,1},∅,共8个.故答案为:8.【点评】本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.27.已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=﹣1.【分析】根据集合相等的条件,得到元素关系,即可得到结论.【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.28.若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是6.【分析】利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.【解答】解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.【点评】本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.29.已知集合{a,b,c}={0,1,2},且下列三个关系:①•a≠2;②‚b=2;③ƒc ≠0有且只有一个正确,则100a+10b+c等于201.【分析】根据集合相等的条件,列出a、b、c所有的取值情况,再判断是否符合条件,求出a、b、c的值后代入式子求值.【解答】解:由{a,b,c}={0,1,2}得,a、b、c的取值有以下情况:当a=0时,b=1、c=2或b=2、c=1,此时不满足题意;当a=1时,b=0、c=2或b=2、c=0,此时不满足题意;当a=2时,b=1、c=0,此时不满足题意;当a=2时,b=0、c=1,此时满足题意;综上得,a=2、b=0、c=1,代入100a+10b+c=201,故答案为:201.【点评】本题考查了集合相等的条件的应用,以及分类讨论思想,注意列举时按一定的顺序列举,做到不重不漏.三、解答题(共1小题)30.对正整数n,记I n={1,2,3…,n},P n={|m∈I n,k∈I n}.(1)求集合P7中元素的个数;(2)若P n的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并集.【分析】(1)对于集合P7 ,有n=7.当k=4时,根据P n中有3个数与I n={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,P n不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.【解答】解:(1)对于集合P7 ,有n=7.当k=1时,m=1,2,3…,7,P n={1,2,3…,7},7个数,当k=2时,m=1,2,3…,7,P n对应有7个数,当k=3时,m=1,2,3…,7,P n对应有7个数,当k=4时,P n={|m∈I n,k∈I n}=P n={,1,,2,,3,}中有3个数(1,2,3)与k=1时P n中的数重复,当k=5时,m=1,2,3…,7,P n对应有7个数,当k=6时,m=1,2,3…,7,P n对应有7个数,当k=7时,m=1,2,3…,7,P n对应有7个数,由此求得集合P7中元素的个数为7×7﹣3=46.(2)先证当n≥15时,P n不能分成两个不相交的稀疏集的并集.假设当n≥15时,P n可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A ∪B=P n⊇I n .不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都是稀疏集,且A1∪B1=I14.当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集的并:A2={,,,},B2={,,}.当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,…,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}.最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9 }中的数的分母都是无理数,它与P n中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A ∪B=P14.综上可得,n的最大值为14.【点评】本题主要考查新定义,集合间的包含关系,体现了分类讨论的数学思想,属于中档题.。
2015届高考数学(理)一轮复习单元卷:集合(苏教版)

集 合第Ⅰ组:全员必做题1.(2013·苏州暑假调查)已知集合U ={0,1,2,3,4},M ={0,4},N ={2,4},则∁U (M ∪N )=________.2.设全集U ={x ∈N *|x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于________.3.(2013·新课标卷Ⅰ改编)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则A ∪B ________.4.(2013·南通一模)集合A ={-1,0,1},B ={y |y =e x ,x ∈A },则A ∩B =________.5.(2014·无锡期末)已知集合A ={-1,2,2m -1},B ={2,m 2},若B ⊆A ,则实数m =________.6.已知M ={a ||a |≥2},A ={a |(a -2)(a 2-3)=0,a ∈M },则集合A 的子集共有________个.7.(2014·江西七校联考)若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的所有实数a 的取值范围为________.8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =________.9.已知全集U ={-2,-1,0,1,2},集合A =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2n -1,x ,n ∈Z ,则∁U A =________. 10.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________.11.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.12.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.则S 4的所有奇子集的容量之和为________. 第Ⅱ组:重点选做题1.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,求实数a 的取值范围.2.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧ log 12(x +2)>-3x 2≤2x +15,B ={x |m +1≤x ≤2m -1}. (1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围.答 案第Ⅰ组:全员必做题1.解析:由题意得M ∪N ={0,2,4},所以∁U (M ∪N )={1,3}.答案:{1,3}2.解析:由题意易得U ={1,2,3,4,5},A ∪B ={1,3,5},所以∁U (A ∪B )={2,4}.答案:{2,4}3.解析:集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R .答案:R4.解析:∵B 中x ∈A ,∴B =⎩⎨⎧⎭⎬⎫1e ,1,e , ∴A ∩B ={1}.答案:{1}5.解析:因为B ⊆A ,且m 2≠-1,所以m 2=2m -1,即m =1.答案:16.解析:|a |≥2⇒a ≥2或a ≤-2.又a ∈M ,(a -2)(a 2-3)=0⇒a =2或a =±3(舍),即A 中只有一个元素2,故A 的子集只有2个.答案:27.解析:依题意,P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧ 2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围是(6,9].答案:(6,9]8.解析:由log 2x <1,得0<x <2,所以P ={x |0<x <2};由|x -2|<1,得1<x <3,所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.答案:(0,1]9.解析:因为A =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2n -1,x ,n ∈Z , 当n =0时,x =-2;n =1时不合题意;n =2时,x =2;n =3时,x =1;n ≥4时,x ∉Z ;n =-1时,x =-1;n ≤-2时,x ∉Z .故A ={-2,2,1,-1},又U ={-2,-1,0,1,2},所以∁U A ={0}.答案:{0}10.解析:∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1.答案:(-∞,1]11.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12. 答案:0,1,-1212.解析:∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案:7第Ⅱ组:重点选做题1.解:A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧ 4-4a -1≤0,9-6a -1>0,所以⎩⎨⎧ a ≥34,a <43,即34≤a <43. 故实数a 的取值范围为34,432.解:(1)解不等式log 12(x +2)>-3得: -2<x <6.①解不等式x 2≤2x +15得:-3≤x ≤5.②由①②求交集得-2<x ≤5, 即集合A =(-2,5].(2)当B =∅时,m +1>2m -1, 解得m <2;当B ≠∅时,由⎩⎪⎨⎪⎧ m +1≤2m -1,m +1>-2,2m -1≤5解得2≤m ≤3,故实数m 的取值范围为(-∞,3].。
高中数学(苏教版必修一)配套单元检测:第一章 集 合 模块综合检测A -含答案

模块综合检测(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合{2x ,x +y}={7,4},则整数x =______,y =________.2.已知f(12x -1)=2x +3,f(m)=6,则m =_______________________. 3.函数y =x -1+lg (2-x)的定义域是________.4.函数f(x)=x 3+x 的图象关于________对称.5.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x +y)=f(x)f(y)”的是______.(填序号)①幂函数;②对数函数;③指数函数;④一次函数.6.若0<m<n ,则下列结论不正确的是________.(填序号)①2m >2n ;②(12)m <(12)n ;③log 2m>log 2n ;④12log m>12log n. 7.已知a =0.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是________.8.用列举法表示集合:M ={m|10m +1∈Z ,m ∈Z }=________. 9.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为________.10.函数y =|lg(x +1)|的图象是________.(填序号)11.若函数f (x )=lg(10x+1)+ax 是偶函数,g (x )=4x -b 2x 是奇函数,则a +b =________. 12.已知f (x 5)=lg x ,则f (2)=________.13.函数y =f (x )是定义域为R 的奇函数,当x <0时,f (x )=x 3+2x -1,则x >0时函数的解析式f (x )=________.14.幂函数f(x)的图象过点(3,427),则f(x)的解析式是________.二、解答题(本大题共6小题,共90分)15.(14分)(1)计算:12729⎛⎫⎪⎝⎭+(lg 5)0+132764-⎛⎫⎪⎝⎭;(2)解方程:log3(6x-9)=3.16.(14分)某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售价每涨1元,销售量就减少1个,为了获得最大利润,求此商品的最佳售价应为多少?17.(14分)已知函数f(x)=-3x2+2x-m+1.(1)当m为何值时,函数有两个零点、一个零点、无零点;(2)若函数恰有一个零点在原点处,求m的值.18.(16分)已知集合M 是满足下列性质的函数f (x )的全体:在定义域D 内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.(1)函数f (x )=1x是否属于集合M ?说明理由; (2)若函数f (x )=kx +b 属于集合M ,试求实数k 和b 满足的约束条件.19.(16分)已知奇函数f (x )是定义域[-2,2]上的减函数,若f (2a +1)+f (4a -3)>0,求实数a 的取值范围.20.(16分)已知函数f (x )=⎩⎨⎧ x -2x (x >12)x 2+2x +a -1 (x ≤12).(1)若a =1,求函数f (x )的零点;(2)若函数f (x )在[-1,+∞)上为增函数,求a 的取值范围.模块综合检测(A)1.2 5解析 由集合相等的定义知,⎩⎪⎨⎪⎧ 2x =7x +y =4或⎩⎪⎨⎪⎧2x =4x +y =7, 解得⎩⎨⎧ x =72y =12或⎩⎪⎨⎪⎧x =2y =5,又x ,y 是整数,所以x =2,y =5. 2.-14 解析 令12x -1=t ,则x =2t +2, 所以f(t)=2×(2t +2)+3=4t +7.令4m +7=6,得m =-14. 3.[1,2)解析 由题意得:⎩⎪⎨⎪⎧x -1≥02-x>0,解得1≤x<2. 4.原点解析 ∵f(x)=x 3+x 是奇函数,∴图象关于坐标原点对称.5.③解析 本题考查幂的运算性质.f(x)f(y)=a x a y =a x +y =f(x +y). 6.①②③解析 由指数函数与对数函数的单调性知只有④正确.7.b>c>a解析 因为a =0.3=0.30.5<0.30.2=c<0.30=1,而b =20.3>20=1,所以b>c>a.8.{-11,-6,-3,-2,0,1,4,9}解析 由10m +1∈Z ,且m ∈Z ,知m +1是10的约数,故|m +1|=1,2,5,10,从而m 的值为-11,-6,-3,-2,0,1,4,9.9.2解析 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.10.①解析 将y =lg x 的图象向左平移一个单位,然后把x 轴下方的部分关于x 轴对称到上方,就得到y =|lg(x +1)|的图象.11.12解析 ∵f (x )是偶函数,∴f (-x )=f (x ),即lg(10-x+1)-ax =lg 1+10x10x -ax =lg(10x +1)-(a +1)x =lg(10x +1)+ax ,∴a =-(a +1),∴a =-12,又g (x )是奇函数, ∴g (-x )=-g (x ),即2-x -b 2-x =-2x +b 2x ,∴b =1,∴a +b =12. 12.15lg 2 解析 令x 5=t ,则x =15t .∴f (t )=15lg t ,∴f (2)=15lg 2. 13.x 3-2-x +1 解析 ∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-[(-x )3+2-x -1]=x 3-2-x +1. 14.f (x )=34x解析 设f (x )=x n ,则有3n =427,即3n =343,∴n =34, 即f (x )=34x . 15.解 (1)原式=12259⎛⎫⎪⎝⎭+(lg 5)0+13334-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=53+1+43=4. (2)由方程log 3(6x -9)=3得6x -9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解.16.解 设最佳售价为(50+x )元,最大利润为y 元,y =(50+x )(50-x )-(50-x )×40=-x 2+40x +500.当x =20时,y 取得最大值,所以应定价为70元.故此商品的最佳售价应为70元.17.解 (1)函数有两个零点,则对应方程-3x 2+2x -m +1=0有两个根,易知Δ>0,即Δ=4+12(1-m )>0,可解得m <43;Δ=0,可解得m =43;Δ<0,可解得m >43. 故m <43时,函数有两个零点;m =43时,函数有一个零点; m >43时,函数无零点. (2)因为0是对应方程的根,有1-m =0,∴m =1.18.解 (1)D =(-∞,0)∪(0,+∞),若f (x )=1x ∈M ,则存在非零实数x 0,使得1x 0+1=1x 0+1,即x 20+x 0+1=0, 因为此方程无实数解,所以函数f (x )=1x∉M . (2)D =R ,由f (x )=kx +b ∈M ,存在实数x 0,使得 k (x 0+1)+b =kx 0+b +k +b ,解得b =0,所以,实数k 和b 的约束条件是k ∈R ,b =0.19.解 由f (2a +1)+f (4a -3)>0得f (2a +1)>-f (4a -3), 又f (x )为奇函数,得-f (4a -3)=f (3-4a ),∴f (2a +1)>f (3-4a ),又f (x )是定义域[-2,2]上的减函数,∴2≥3-4a >2a +1≥-2,即⎩⎪⎨⎪⎧ 2≥3-4a 3-4a >2a +12a +1≥-2,∴⎩⎪⎨⎪⎧ a ≥14a <13a ≥-32,∴实数a 的取值范围为[14,13). 20.解 (1)当a =1时,由x -2x=0,x 2+2x =0, 得零点为2,0,-2.(2)显然,函数g (x )=x -2x 在[12,+∞)上递增, 且g (12)=-72; 函数h (x )=x 2+2x +a -1在[-1,12]上也递增, 且h (12)=a +14. 故若函数f (x )在[-1,+∞)上为增函数,则a +14≤-72,∴a ≤-154. 故a 的取值范围为(-∞,-154].。
苏教版必修1高考题单元试卷:第1章+集合(02)

苏教版必修1高考题单元试卷:第1章集合(02)一、选择题(共28小题)1.设集合A={1,2,3},集合B={﹣2,2},则A∩B=()A.∅B.{2}C.{﹣2,2}D.{﹣2,1,2,3}2.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}3.设集合S={x|x2+2x=0,x∈R},T={x|x2﹣2x=0,x∈R},则S∩T=()A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2}4.已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}5.若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}6.已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}7.已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}8.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}9.已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}10.设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.11.已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}12.若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}13.若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅14.已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)15.已知集合A={1,2,3},B={1,3},则A∩B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}16.已知集合P={x|x2﹣2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4) B.(2,3]C.(﹣1,2)D.(﹣1,3]17.若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0}B.{1}C.{0,1,2}D.{0,1}18.设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(﹣∞,5]B.[2,+∞)C.(2,5) D.[2,5]19.已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)20.已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2} 21.设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4) C.[﹣1,0)D.(﹣1,0]22.若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}23.设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2) C.[1,2) D.(1,4)24.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.(0,1) C.(0,1]D.[0,1)25.已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2} B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}26.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1) C.(0,1]D.(0,1)27.设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)28.已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2) B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]二、填空题(共2小题)29.已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.30.已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=.苏教版必修1高考题单元试卷:第1章集合(02)参考答案与试题解析一、选择题(共28小题)1.设集合A={1,2,3},集合B={﹣2,2},则A∩B=()A.∅B.{2}C.{﹣2,2}D.{﹣2,1,2,3}【分析】找出A与B的公共元素即可求出交集.【解答】解:∵集合A={1,2,3},集合B={﹣2,2},∴A∩B={2}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}【分析】直接利用交集运算求得答案.【解答】解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.【点评】本题考查交集及其运算,是基础的计算题.3.设集合S={x|x2+2x=0,x∈R},T={x|x2﹣2x=0,x∈R},则S∩T=()A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2}【分析】根据题意,分析可得,S、T分别表示二次方程的解集,化简S、T,进而求其交集可得答案.【解答】解:分析可得,S为方程x2+2x=0的解集,则S={x|x2+2x=0}={0,﹣2},T为方程x2﹣2x=0的解集,则T={x|x2﹣2x=0}={0,2},故集合S∩T={0},故选:A.【点评】本题考查集合的交集运算,首先分析集合的元素,可得集合的意义,再求集合的交集.4.已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】求出B中绝对值不等式的解集,确定出B,找出A与B的公共元素即可求出交集.【解答】解:由B中的不等式|x|<2,解得:﹣2<x<2,即B=(﹣2,2),∵A={0,1,2,3,4},∴A∩B={0,1}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}【分析】直接利用交集的运算得答案.【解答】解:∵A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.【点评】本题考查交集及其运算,是基础题.6.已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.8.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.9.已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.10.设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选:D.【点评】本题考查一次不等式的解集及集合的交集问题,较简单.11.已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.12.若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.【点评】考查列举法表示集合,交集的概念及运算.13.若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅【分析】求出两个集合,然后求解交集即可.【解答】解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.故选:D.【点评】本题考查集合的基本运算,交集的求法,考查计算能力.14.已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】求出集合B,然后求解集合的交集.【解答】解:B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},A={x|2<x<4},∴A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.15.已知集合A={1,2,3},B={1,3},则A∩B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}【分析】直接利用集合的交集的求法求解即可.【解答】解:集合A={1,2,3},B={1,3},则A∩B={1,3}.故选:C.【点评】本题考查交集的求法,考查计算能力.16.已知集合P={x|x2﹣2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4) B.(2,3]C.(﹣1,2)D.(﹣1,3]【分析】求出集合P,然后求解交集即可.【解答】解:集合P={x|x2﹣2x≥3}={x|x≤﹣1或x≥3},Q={x|2<x<4},则P∩Q={x|3≤x<4}=[3,4).故选:A.【点评】本题考查二次不等式的解法,集合的交集的求法,考查计算能力.17.若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0}B.{1}C.{0,1,2}D.{0,1}【分析】直接利用交集及其运算得答案.【解答】解:由M={x|﹣2≤x<2},N={0,1,2},得M∩N={x|﹣2≤x<2}∩{0,1,2}={0,1}.故选:D.【点评】本题考查了交集及其运算,是基础题.18.设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(﹣∞,5]B.[2,+∞)C.(2,5) D.[2,5]【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合S={x|x≥2,T={x|x≤5},∴S∩T={x|2≤x≤5},故选:D.【点评】本题主要考查集合的基本运算,比较基础.19.已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)【分析】根据集合的基本运算即可得到结论.【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.【点评】本题主要考查集合的基本运算,比较基础.20.已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}【分析】由题意,可先化简集合A,再求两集合的交集.【解答】解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,故A∩B={﹣1,0,1,2}故选:D.【点评】本题考查求交,掌握理解交的运算的意义是解答的关键.21.设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4) C.[﹣1,0)D.(﹣1,0]【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.22.若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}【分析】由于两集合已是最简,直接求它们的交集即可选出正确答案【解答】解:∵P={x|2≤x<4},Q={x|x≥3},∴P∩Q={x|3≤x<4}.故选:A.【点评】本题考查交集的运算,理解好交集的定义是解题的关键23.设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2) C.[1,2) D.(1,4)【分析】分别解出集合A和B,再根据交集的定义计算即可.【解答】解:A={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x<2}.故选:C.【点评】本题是简单的计算题,一般都是在高考的第一题出现,答题时要注意到端点是否取得到,计算也是高考中的考查点,学生在平时要加强这方面的练习,考试时做到细致悉心,一般可以顺利解决问题.24.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.(0,1) C.(0,1]D.[0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:D.【点评】本题考查交的运算,理解好交的定义是解答的关键.25.已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2} B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.26.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1) C.(0,1]D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.27.设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)【分析】求出集合A,B的元素,利用集合的基本运算即可得到结论.【解答】解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C.【点评】本题主要考查集合的基本运算,利用条件求出集合A,B是解决本题的关键.28.已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2) B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.二、填空题(共2小题)29.已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} .【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.30.已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B={3,5,13} .【分析】根据题意,分析集合A、B的公共元素,由交集的意义即可得答案.【解答】解:根据题意,集合A={3,4,5,12,13},B={2,3,5,8,13},A、B公共元素为3、5、13,则A∩B={3,5,13},故答案为:{3,5,13}.【点评】本题考查集合交集的运算,注意写出集合的形式.。
苏教版必修1高考题单元试卷:第1章+集合(03)

苏教版必修1高考题单元试卷:第1章集合(03)一、选择题(共26小题)1.已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁∪A=()A.{2}B.{3,4}C.{1,4,5}D.{2,3,4,5}2.若全集M={1,2,3,4,5},N={2,4},则∁M N=()A.∅B.{1,3,5}C.{2,4}D.{1,2,3,4,5}3.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}4.已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}5.设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2}B.{2}C.{﹣2,2}D.∅6.已知集合M={x|x<3},N={x|log2x>1},则M∩N=()A.∅B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}7.已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2} C.{﹣1,0,2,3} D.{0,1,2,3} 8.设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅9.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则∁U (S∪T)等于()A.∅B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}10.设全集U={x∈N+|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}11.已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]12.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}13.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}14.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}15.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x 是菱形},则()A.A⊆B B.C⊆B C.D⊆C D.A⊆D16.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}17.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4}18.设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]19.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}20.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]21.若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.1622.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1)C.(﹣3,﹣1]D.(﹣3,3)23.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16} D.{1,2}24.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}25.已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.﹣2i B.2i C.﹣4i D.4i26.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1) B.(0,2]C.(1,2) D.(1,2]二、填空题(共4小题)27.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=.28.设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.29.设全集U=R.若集合A={1,2,3,4},B={x|2≤x<3},则A∩(∁U B)=.30.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=.苏教版必修1高考题单元试卷:第1章集合(03)参考答案与试题解析一、选择题(共26小题)1.已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁∪A=()A.{2}B.{3,4}C.{1,4,5}D.{2,3,4,5}【分析】根据全集U和集合A先求出集合A的补集,然后求出集合A的补集与集合B的交集即可【解答】解:全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则C U A={3,4,5},又因为B={2,3,4},则(C U A)∩B={3,4}.故选:B.【点评】此题考查了补集及交集的运算,是一道基础题,学生在求补集时应注意全集的范围.2.若全集M={1,2,3,4,5},N={2,4},则∁M N=()A.∅B.{1,3,5}C.{2,4}D.{1,2,3,4,5}【分析】根据已知中全集M={1,2,3,4,5},N={2,4},结合补集的运算方法代入即可得到C U N的结果.【解答】解:∵全集M={1,2,3,4,5},N={2,4},∴C U N={1,3,5}故选:B.【点评】本题考查的知识点是补集及其运算,属于简单题,熟练掌握集合运算方法是解答的关键.3.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}【分析】根据全集U以及A,求出A的补集即可.【解答】解:∵全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},∴∁U A={2,4,7}.故选:C.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.4.已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}【分析】找出集合M与N的公共元素,即可求出两集合的交集.【解答】解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2}B.{2}C.{﹣2,2}D.∅【分析】分别求出两集合中方程的解,确定出A与B,找出A与B的公共元素即可求出交集.【解答】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.6.已知集合M={x|x<3},N={x|log2x>1},则M∩N=()A.∅B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}【分析】解出集合N,结合数轴求交集.【解答】解:N={x|log2x>1}={x|x>2},用数轴表示可得答案D故选:D.【点评】考查知识点有对数函数的单调性,集合的交集,本题比较容易7.已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=()A.{0,1,2}B.{﹣1,0,1,2} C.{﹣1,0,2,3} D.{0,1,2,3}【分析】求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集.【解答】解:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【分析】由题意,直接根据补集的定义求出∁U A,即可选出正确选项【解答】解:因为U={1,2,3,4,5,},集合A={1,2}所以∁U A={3,4,5}故选:B.【点评】本题考查补集的运算,理解补集的定义是解题的关键9.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则∁U (S∪T)等于()A.∅B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}【分析】先求出S∪T,接着是求补集的问题.【解答】解:∵S∪T={1,3,5,6},∴C U(S∪T)={2,4,7,8}.故选:B.【点评】本题属于数集为平台,求集合的并集补集的基础题,也是高考常会考的题型.10.设全集U={x∈N+|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}|x<6},可得U={1,2,3,4,5},然后根据集合混合【分析】由全集U={x∈N+运算的法则即可求解.【解答】解:∵A={1,3},B={3,5},∴A∪B={1,3,5},|x<6}={1,2,3,4,5},∵U={x∈N+∴∁U(A∪B)={2,4},故选:C.【点评】本题考查了集合的基本运算,属于基础知识,注意细心运算.11.已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]【分析】求出P中不等式的解集确定出P,求出P补集与Q的交集即可.【解答】解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.【点评】此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.12.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可;【解答】解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁U B={2,5,8},则A∩∁U B={2,5}.故选:A.【点评】此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.13.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}【分析】求出集合B的补集,然后求解交集即可.【解答】解:全集U={1,2,3,4,5,6},集合B={1,3,4,6},∁U B={2,5},又集合A={2,3,5},则集合A∩∁U B={2,5}.故选:B.【点评】本题考查集合的交、并、补的混合运算,基本知识的考查.14.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}【分析】进行补集、交集的运算即可.【解答】解:∁R B={1,5,6};∴A∩(∁R B)={1,2}∩{1,5,6}={1}.故选:B.【点评】考查全集、补集,及交集的概念,以及补集、交集的运算,列举法表示集合.15.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x 是菱形},则()A.A⊆B B.C⊆B C.D⊆C D.A⊆D【分析】直接利用四边形的关系,判断选项即可.【解答】解:因为菱形是平行四边形的特殊情形,所以D⊂A,矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,正方形是矩形,所以C⊆B.故选:B.【点评】本题考查集合的基本运算,几何图形之间的关系,基础题.16.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}【分析】先求集合M∪N,后求它的补集即可,注意全集的范围.【解答】解:∵M={1,3,5,7},N={5,6,7},∴M∪N={1,3,5,6,7},∵U={1,2,3,4,5,6,7,8},∴∁U(M∪N)={2,4,8}故选:C.【点评】本题考查集合运算能力,本题是比较常规的集合题,属于基础题.17.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.18.设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]【分析】找出两集合解集的公共部分,即可求出交集.【解答】解:∵集合S={x|x>﹣2}=(﹣2,+∞),T={x|﹣4≤x≤1}=[﹣4,1],∴S∩T=(﹣2,1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.19.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【分析】先求A∪B,再根据补集的定义求C U(A∪B).【解答】解:A∪B={x|x≥1或x≤0},∴C U(A∪B)={x|0<x<1},故选:D.【点评】本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法.20.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选:D.【点评】本题主要考查了绝对值不等式,以及交集及其运算,同时考查了运算求解的能力,属于基础题.21.若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.16【分析】找出A与B的公共元素求出交集,找出交集的子集个数即可.【解答】解:∵A={1,2,3},B={1,3,4},∴A∩B={1,3},则A∩B的子集个数为22=4.故选:C.【点评】此题考查了交集及其运算,以及子集,熟练掌握交集的定义是解本题的关键.22.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1)C.(﹣3,﹣1]D.(﹣3,3)【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁B).R【解答】解:∵集合A={x|x2﹣9<0}={x|﹣3<x<3},B={x|﹣1<x≤5},∴∁B={x|x≤﹣1,或x>5},R则A∩(∁R B)={x|﹣3<x≤﹣1},故选:C.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.23.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16} D.{1,2}【分析】由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.24.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁U A.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.25.已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.﹣2i B.2i C.﹣4i D.4i【分析】根据两集合的交集中的元素为4,得到zi=4,即可求出z的值.【解答】解:根据题意得:zi=4,解得:z=﹣4i.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.26.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1) B.(0,2]C.(1,2) D.(1,2]【分析】求出集合A中其他不等式的解集,确定出A,找出A与B的公共部分即可求出交集.【解答】解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].故选:D.【点评】此题考查了交集及其运算,以及其他不等式的解法,熟练掌握交集的定义是解本题的关键.二、填空题(共4小题)27.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)={1,2,3} .【分析】首先求出集合B的补集,然后再与集合A取并集.【解答】解:集合U={1,2,3,4},A={1,3},B={1,3,4},所以∁U B={2},所以A∪(∁U B)={1,2,3}.故答案为:{1,2,3}.【点评】本题考查了集合的交集、补集、并集的运算;根据定义解答,属于基础题.28.设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ={1,4} .【分析】本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.【解答】解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁U B)={x|x>3或x<2},∴A∩(∁U B)={1,4},故答案为:{1,4}.【点评】本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.29.设全集U=R.若集合A={1,2,3,4},B={x|2≤x<3},则A∩(∁U B)={1,3,4} .【分析】本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.【解答】解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x<3},∴(∁U B)={x|x≥3或x<2},∴A∩(∁U B)={1,3,4},故答案为:{1,3,4}.【点评】本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.30.设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B={7,9} .【分析】由条件利用补集的定义求得∁U A,再根据两个集合的交集的定义求得(∁A)∩B.U【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.。
高中数学(苏教版必修一)配套单元检测第一章 集 合 章末检测B Word版含答案

第章集合()(时间:分钟满分:分)一、填空题(本大题共小题,每小题分,共分).下列各组对象中能构成集合的是.(填序号)①北京尼赏文化传播有限公司的全体员工;②年全国经济百强县;③年全国“五一”劳动奖章获得者;④美国的篮球明星..设全集=,集合={≤},={<-或>},那么如图所示的阴影部分所表示的集合为..设全集=,集合={-<},={>},则集合∩∁=..已知()、()为实数函数,且={()=},={()=},则方程[()]+[()]=的解集是.(用、表示)..设集合={-≤≤},={-≤≤+},且⊇,则实数的取值范围为..定义两个数集,之间的距离是-(其中∈,∈).若={=-,∈},={=,∈},则数集,之间的距离为..已知集合={-+-,+-},若∈,则满足条件的实数组成的集合为..若={-≤≤},={-≤≤+},⊆,则实数的取值范围为..若集合、、满足∩=,∪=,则与之间的关系是..设、为两个非空实数集合,定义集合运算:*={=(+),∈,∈},若={},={},则*中元素之和为..集合由正整数的平方组成,即={,…},若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的.对下列运算封闭的是.①加法②减法③乘法④除法.设全集={(,),∈},集合={(,)=},={(,)≠+},则∁(∪)=..若集合={≥},={<}满足∪=,∩=∅,则实数=..设集合={+-=},={+=},若,则实数的不同取值个数为个.三、解答题(本大题共小题,共分).(分)已知全集={},集合={-+=,∈},求的值及∁..(分)已知全集=,集合={≤},={<},求∪,(∁)∩,(∁)∪(∁).。
苏教版高中数学必修一集合配套作业(含单元检测)答案

高中数学学习材料(灿若寒星精心整理制作)第1课时集合(1)1.C 2.D 3.A 4.C 5.C 6.P∈L(A,B)7.①④⑤8.{}4,2,0,4-9.解:① 2,3,5,7,11② 0,1③ -2,0,2④(0,1),(1,0),(2,1),(3,4),(4,9)10.解:△=b2-4ac当△<0,即b2<4ac时,解集为空集;当△=0,即b2=4ac时,解集含一个元素;当△>0,即b2>4ac时,解集含两个元素。
11.解:若x=0,则xy=0,这与集合的互异性矛盾,∴ x≠0若x≠0,xy=0,则y=0,则第二个集合出现两个0元素,这与集合的互异性也矛盾,∴xy≠0-=0,则x=y,由两个集合是同一个集合可知xy=|x|,即x2=|x|,得到x=1若x y或-1,但x=1时,y=1,也与集合的互异性也矛盾,所以x=y=-1 ∴实数x,y的值是确定。
第2课集合(2)1.D 2.C 3.A 4.B 5.B6.{1,2,3,4}7.解:①{x|x=2k+1,k∈N}②{(x,y)|x<0,y<0}③{周长为10cm的三角形}④∅8.解:分两种情况讨论:①22a d aq a d aq+=⎧⎨+=⎩⇒ a+aq 2-2aq=0, ∵ a ≠0, ∴ q 2-2q+1=0,即q=1,但q=1时,N 中的三个元素均相等,此时无解. ②2220,2a d aq aq aq a a d aq⎧+=⇒--=⎨+=⎩∵ a ≠0, ∴ 2q 2-q-1=0 又q ≠1,∴ 12q =-, ∴ 当M=N 时,12q =- 9.解: ∵ 5∈A ∴ a 2+2a-3=5即a=2或a=-4当a=2时,A={2,3,5},B={2,5},与题意矛盾;当a=-4时,A={2,3,5},B={2,1},满足题意, ∴ a=-410.证明:∵ x 1∈A ,x 2∈A∴设x 1=a 1+b 12,x 2=a 2+b 22∴x 1x 2=( a 1+b 12)( a 2+b 22)=(a 1a 2++2b 1b 2)+(a 1b 2+a 2b 1)2∈A∴ x 1x 2∈A11.答:(1)是互不相同的集合.(2)①{x|y=x 2+3x-2}=R ,②{y| y=x 2+3x-2}={y|y ≥1}③{(x,y)| y=x 2++3x-2}={点P 是抛物线y=x 2+3x-2上的点}第3课 集合(3)1.A 2.D 3.D 4.A 5.C 6.M = P7.B A8.A B9.解:(1)由题意知:x 2-5x+9=3,解得x=2或x=3.(2)∵2∈B ,B A ,⊂ ≠ ⊂ ≠ ⊂ ≠∴222359x a x ax x⎧=++⎪⎨=-+⎪⎩即x=2,a=23-或73,4x a==-(3)∵ B = C,∴22(1)331x a xx a x a⎧++-=⎪⎨++=⎪⎩即x=-1,a=-6或x=3,a=-2.10.略解x=211.解:P={x|x2+x-6=0}={-3,2}①当m=0时,M=∅②当m≠0时,M={x|x=1 m }∵M是P的真子集∴1m=-3或1m=2即m=13-或m=12综上所述,m=0或m=13-或m=1212.D ,C第4课集合(4)1.A 2.B 3.C 4.C 5.D 6.C 7.③8.a=1或2 9.解:由A∩B={2},得2∈A,2∈B.又由()UC A B={4,6,8},知{2,4,6,8}⊆B,且4∉∈A,6∉A,8∉A.再由()()U UC A C B={1,9},得1∉A,9∉A,1∉B,9∉B.这样对于U在1到9这9个数字中,就剩3,5,7这3个数字,由反证法可得出3,5,7都不是集合B的元素,且都为A的元素.所以A={2,3,5,7},B={2,4,6,8}.10.解:①∵A∩B=A∴A⊆B∴a≥3②∵A∩B=B∴B⊆A ∴a≤3③ R C A ={x|x ≥3}R C B ={x|x ≥a}∵R C A 是R C B 的真子集∴ a<311.解:∵B ∩C ⊆A ⇔B A C A ⊆⎧⎨⊆⎩当B ⊆A 时,x 2-ax+a-1=0,(x-1)(x-a+1)=0,要么有两个相等的根为1,要么一根为1,另一根为2∴a=2或a=3当C ⊆A 时,由于x 2-mx+2=0没有x=0的根,故C={x| x 2-mx+2=0}.①C=∅,⊿=m 2-8<0, 即2222m -<<;②C={1},或C={2}时,m ∈∅;③C={1,2}时,m=3.这样,a=2或a=3;m=3,或2222m -<<第5课 集合(5)1.C 2.D 3.A ,C 4.D 5.A 6.C 7.D8.a ≥3,a <3,a ≤-49.解:∵A={-3,2},B=(-3,3),C={1}∴A ∩B={2}∴(A ∩B)∪C={1,2}10.解: A={-2,1}∵A ∪B=A ,∴B ⊆A={-2,1}.若 m=0,则方程 mx+1=0无解,∴B=∅满足B ⊆A ,∴m=0符合要求;若 m ≠0,则方程 mx+1=0的解为1x m =-, ∴B={1m -}.由题意知: 1m-∈{-2,1}.∴m=0符合要求;∴1m-=-2或1m-=1,∴m=12或m=-1,故所求m的集合为{-1,0,12 }.11.解:分别化简集合A、B得A={1,2},B={1,a-1},∵B⊄A∴a-1≠1且a-1≠2所以a-1≠2,3.第1章集合单元检测1.D 2.A 3.C 4.B 5.∉,∈6.A B 7.B 8.2,49.∵P=B,即{1,ab,b}={0,a+b,b2}注意到b≠0,∴a=0 ,从而b和b2中有一个为1,由集合中的元素的互异性知b≠1,∴b2=-1,从而b=-1,∴P={-1,0,1}.10.略解a=-1或a=0.11.解:∵A∩B={-1,7}∴7∈A,即有x2-x+1=7,解得:x=-2或x=3当x=-2时,x+4=2∈B,与2∈A∩B矛盾;当x=3时,x+4=7,这时2y=-1即y=1 2 -∴x=3,y=1 2 -12.解:A={0,-4}(1)∵A∩B=B ∴B A⊆B=∅或{0}或{-4}或{0,-4}以下对B的四种情况分别讨论综合得如下结论:a≤-1,或a=1(2) ∵A∪B=B ∴A B⊆∵A={0,-4},而B中最多有两个元素,∴ A =B即a=113.C 14.A 15.D 16.C 17.0或1 18.M N 19.20 20.x≤-2⊂≠21.解:∵UC A={5},∴5∈U,5A∉∴a2+2a-3=5,解得a=2或a=-4当a=2 时,|2a-1|=3≠5当a=-4是时,|2a-1|=9 ≠5,但9U∉,∴a=222.解:由A={a},故A中的方程有一个根a,∴⊿=(b+2)2-4(b+1)=0即b=0∴a=-1∴B={x|x2-x=0}={0,1}从而B的真子集为{0},{1},∅23.略解(1)-1≤a≤2(2)a<-1或a>224.解:由a1<a2<a3<a4,A∩B={a1,a4},可知a1=21a,∴a1=1∵a1+a4=10,∴a4=9 ,若229a=,a2=3,则有(1+3+ a3 +9)+(23a+81)=124 解得a3 =5,(a3 =-6舍去)∴A={1,3,5,9},B={1,9,25,81}.若239a=,a3=3,此时只能有a2=2,则A∪B中所有元素和为:1+2+3+4+9+81≠124,∴不合题意.于是,A={1,3,5,9},B={1,9,25,81}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015届高考数学一轮复习单元检测:集合
(测试时间:120分钟 评价分值:150分)
一、选择题(每题5分,共40分)
1.(2014·哈尔滨四校统考)已知集合A ={1,2,3,4},B ={(x ,y )|x ∈A ,y ∈A ,xy ∈A },则B 的所有真子集的个数为( )
A .512
B .256
C .255
D .254
解析:由题意知当x =1时,y 可取1,2,3,4;当x =2时,y 可取1,2;当x =3时,y 可取1;当x =4时,y 可取1.综上,B 中所含元素共有8个,所以其真子集有28-1=255个.
答案:C
2.设全集U ={x ∈N *|x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )=( )
A .{1,4}
B .{1,5}
C .{2,4}
D .{2,5}
解析:∵U ={1,2,3,4,5,},A ∪B ={1,3,5},
∴∁U (A ∪B )={2,4}.
答案:C
3.若集合A ={x |kx 2+4x +4=0,x ∈R}中只有一个元素,则实数k 的值为( )
A .1
B .0
C .0或1
D .以上答案都不对
解析:分情况k =0和k ≠0.
答案:C
4.已知集合A ={(x ,y )|x +y =3},B ={(x ,y )|x -y =1},则A ∩B 等于( )
A .{(1,2)}
B .(2,1)
C .{(2,1)}
D .∅
解析:A ∩B 是点集,即满足⎩⎪⎨⎪⎧ x +y =3,x -y =1的解.
答案:C
5.若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( )
A .M ∪N
B .M ∩N
C .(∁U M )∪(∁U N )
D .(∁U M )∩(∁U N )
答案:D
6.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )
A .{a |3<a ≤4}
B .{a |3≤a ≤4}
C .{a |3<a <4}
D .∅
解析:⎩⎪⎨⎪⎧ a -1≤3,
5≤a +2⇒3≤a ≤4.
答案:B
7.已知全集U =R ,集合A ={x |x >1或x <-2},B ={x |-1≤x ≤0},则A ∪∁U B 等于( )
A .{x |x <-1或x >0}
B .{x |x <-1或x >1}
C .{x |x <-2或x >1}
D .{x |x <-2或x ≥0}
解析:∁U B ={x |x <-1或x >0},
∴A ∪∁U B ={x |x <-1或x >0}.
答案:A
8.(2014·惠州模拟)已知R 是实数集,M =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫2x <1,N ={y |y =x -1},则N ∩(∁
R M )=( )
A. (1,2)
B. [0,2]
C. ∅
D. [1,2] 解析:因为M =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫2x <1={x |x >2或x <0},∁R M =[0,2],N ={y |y =x -1}=[0,+
∞),故N ∩(∁R M )=[0,2].
答案:B
二、填空题(每题5分,共30分)
9.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合{x |x ∈A ,且x ∉A ∩B }=________. 解析:A ={x |-4<x <4},B ={x |x >3或x <1},A ∩B ={x |3<x <4或-4<x <1}, ∴{x |x ∈A 且x ∉A ∩B }={x |1≤x ≤3}.
答案:{x |1≤x ≤3}
10.设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =________.
答案:{1,3,5}
11.设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是________.
解析:A 的子集共有26=64个,而{1,2,3}的子集共23=8个,这8个均不满足S ∩B ≠∅的条件,所以满足条件的S 共有64-8=56个.
答案:56个
12.已知集合A ={(x ,y )|ax -y 2+b =0},B ={(x ,y )|x 2-ay +b =0},且(1,2)∈A ∩B ,则a =________,b =__________.
解析:∵(1,2)∈A ∩B .
∴⎩⎪⎨⎪⎧ a -4+b =0,1-2a +b =0⇒a =53,b =73
. 答案:53 73
13.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k 2+14,k ∈Z ,N =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪ x =k 4+12,k ∈Z ,则M 与N 的关系是________.
解析:任取x ∈M ,则x =k 2+14=2k +14=2k -14+12∈N ,而12∈N ,而12
∉M ,∴M N . 答案:M N
14.某中小城市1 000户居民中,有彩电的有819户,有空调的有682户,彩电和空调二者都有的有535户,则彩电和空调至少有一种的有________户.
解析:如图,有彩电无空调的有819-535=284户;有空调无彩电的有682-535=147户,因此二者至少有一种的有284+147+535=966户.
答案:966
三、解答题(共80分)
15.(12分)A ={x |x 2
-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .
解析:∵A ∪B =A ,∴B ⊆A ,
当B =∅时,即a =0时,显然满足条件.
当B ≠∅时,则B =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x =2a ,A ={1,2},
∴2a =1或2a
=2,从而a =1或a =2, 故集合C ={0,1,2}.
16.(12分)已知集合A ={x |1≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R.
(1)求A ∪B ,(∁R A )∩B ;
解析:(1)A ∪B ={x |1≤x <10},
(∁R A )∩B ={x |x <1或x ≥7}∩{x |2<x <10}
={x |7≤x <10}.
(2)如果A ∩C ≠∅,求a 的取值范围.
解析:(2)当a >1时,满足A ∩C ≠∅.
因此a 的取值范围是(1,+∞).
17.(14分)已知集合A ={x |x <-1或x ≥1},非空集合B ={x |(x -a -1)(x -2a )<0}.若B ⊆A ,求实数a 的取值范围.
解析:B ≠∅,且B ⊆A ,∴⎩⎪⎨⎪⎧ a +1<2a ,2a ≤-1或a +1≥1
或⎩⎪⎨⎪⎧ a +1>2a ,a +1≤-1或2a ≥1.
解得a >1或a ≤-2或12
≤a <1. ∴a 的取值范围是⎩⎨⎧⎭
⎬⎫a >1或a ≤-2或12≤a <1.
18.(14分)已知A ={x |a -4<x <a +4},B ={x |x <-1或x >5}.
(1)若a =1,求A ∩B ;
解析:(1)当a =1时,A ={x |-3<x <5}.B ={x |x <-1或x >5}.
∴A ∩B ={x |-3<x <-1}.
(2)若A ∪B =R ,求实数a 的取值范围.
解析:(2)∵A ={x |a -4<x <a +4}.B ={x |x <-1或x >5},又A ∪B =R , ∴⎩⎪⎨⎪⎧ a -4<-1,a +4>5⇒1<a <3.
∴所求实数a 的取值范围是(1,3).
19.(14分)已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x -8=0},求a取何值时,A∩B≠∅与A∩C=∅同时成立.
解析:∵B={2,3},C={2,-4},
由A∩B≠∅且A∩C=∅知,3是方程x2-ax+a2-19=0的解,
∴a2-3a-10=0,解得a=-2或a=5,
当a=-2时,A={3,-5},适合A∩B≠∅与A∩C=∅同时成立,
当a=5时,A={2,3},A∩C={2}≠∅,故舍去.
所求a的值为-2.
20.(14分)已知两个正整数集合A={a1,a2,a3,a4},B={a21,a22,a23,a24}满足:
(1)A∩B={a1,a4};
(2)a1+a4=10;
(3)a1<a2<a3<a4;
(4)A与B的所有元素之和为124.
求a1,a2,a3,a4.
解析:∵a1,a2,a3,a4∈N*,∴a21≥a1,由A∩B={a1,a4},必有a21=a1,即a1=1,而由a1+a4=10得a4=9,此时B={1,a22,a23,81},由A∩B={1,9}可知a22=9或a23=9,可得a2=3或a3=3.
(1)若a2=3,则3<a3<9,由所有元素之和为124可得a3=4.
(2)若a3=3,则a2=2,此时所有元素之和为110≠124,不合题意.
综上,即得a1=1,a2=3,a3=4,a4=9.。