成都七中2017届一诊模拟考试数学试卷(理科)
2017成都一诊

2017成都一诊篇一:成都七中2017届一诊模拟考试数学试卷(理科)成都七中2017届一诊模拟考试数学试卷(理科)考试时间:120分钟总分:150分命题人:刘在廷审题人:张世永一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案凃在答题卷上.) 1.设全集为R,集合A?{x|x2?9?0},B?{x|?1?x?5},则A?CRB?()A(?3,0)B(?3,?1]C(?3,?1)D(?3,3) 2.设i为虚数单位,复数i(1?i)的虚部为() A?1 B1 C?i Di????????????3.已知点O、A、B不在同一条直线上,点P为该平面上一点,且2OP?2OA+BA,则()A.点P不在直线AB上B.点P在线段AB上C.点P在线段AB的延长线上D.点P在线段AB的反向延长线上 4.我校教育处连续30天对同学们的着装进行检查,着装不合格的人数为如图所示的茎叶图,则中位数,众数,极差分别是()A 44,45,56B 44,43,57C 44,43,56D 45,43,57 5.在三角形ABC中,sinA?A45,cosB?,则cosC?() 51333636333或 B C D 以上都不对 656565656.如图所示的程序框图输出的S是126,则条件①可以为()A n≤5Bn≤6Cn≤7 Dn≤87.住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图。
为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一个被选为组长的概率为() A 1111110B C D24221218.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A2?42??x?y?1?0?x?y?2?0?,又 9. 如果实数x,y满足关系?x?0???y?02x?y?7?c恒成立,则c的取值范围为()x?3AB???,3?C?3,???D?2,3?gx)?(fx)?ax与x轴有三个不同的交10.已知函数f(x)?|lnx|,若在区间[,3]内,曲线(13点,则实数a的取值范围是 ( ) A[ln31ln3111,) B[,) C(0,) D(0,) 3e32ee2etanx的最小正周期为n,则m?n的2?2tan2x11.函数y?cosx?sin2x的最小值为m,函数y?值为()??A???C??? 22x2y2c12.已知椭圆2?2?1(a?b?0,c?e?),其左、右焦点分别为F1,F2,关abaa2a2于椭圆有以下四种说法:(1)设A为椭圆上任一点,其到直线l1:x??的距,l2:x?cc|AF1||AF2|离分别为d2,d1,则;(2)设A为椭圆上任一点,AF1,AF2分别与椭圆交于?d1d2|AF1||AF2|2(1?e2)(当且仅当点A在椭圆的顶点取等);(3)设A为??B,C两点,则2|F1B||F2C|1?e椭圆上且不在坐标轴上的任一点,过A的椭圆切线为l,M为线段F1F2上一点,且|AF1||F1M|,则直线AM?l;(4)面积为2ab的椭圆内接四边形仅有1个。
四川省成都市2017级高中毕业班第一次诊断性检测理数试题

成都市2017级高中毕业班第一次诊断性检测(数学理科)本试卷分选择题和非选择题两部分,第1卷(选择题)1至2页,第11卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项:1,答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2,答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3,答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4,所有题目必须在答题卡上作答,在试题卷上答题无效。
5,考试结束后,只将答题卡交回。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.若复数1z 与23z i =--(i 为虚数单位)在复平面内对应的点关于实轴对称,则1z = (A )i --3 (B )i +-3 (C )i +3 (D )i -32.已知集合{}m A ,0,1-=,{}2,1=B ,若{}2,1,0,1-=B A Y ,则实数m 的值为 (A )1-或0 (B )0或1 (C )1-或2 (D )1或23.若)2cos(5sin θπθ-=,则=θ2tan(A )35-(B )35 (C )25- (D )254.某校随机抽取100名同学进行“垃圾分类"的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70), [70,80),[80,90),[90,100],得到如图所示的频率分布直方 图,则这100名同学的得分的中位数为 (A )5.72 (B )75 (C )5.77(D )805.设等差数列{}n a 的前n 项和为n S ,且353a a =,则=59S S (A )59 (B )95 (C )35 (D )5276.已知βα,是空间中两个不同的平面,n m ,是空间中两条不同的直线,则下列说法正确的是 (A )若α//m ,β//n ,且βα//,则n m // (B )若α//m ,β//n ,且βα⊥,则n m // (C )若α⊥m ,β//n ,且βα//,则n m ⊥ (D )若α⊥m ,β//n ,且βα⊥,则n m ⊥ 7.62)1)(2(xx x -+的展开式的常数项为 (A )25(B )25- (C )5 (D )5- 8.将函数)64sin(π-=x y 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移6π个单位长度,得到函数)(x f 的图象,则函数)(x f 的解析式为 (A ))62sin()(π+=x x f (B ))32sin()(π-=x x f(C ))68sin()(π+=x x f (D) )38sin()(π-=x x f9.已知抛物线x y 42=的焦点为F ,N M ,是抛物线上两个不同的点若5||||=+NF MF ,则线段MN 的中点到y 轴的距离为(A )3 (B )23 (C )5 (D )2510.已知212=a ,313=b ,23ln=c ,则 (A )c b a >> (B )b c a >> (C )c a b >>(D )a c b >>11.已知定义在R 上的数)(x f 满足)2()2(x f x f +=-,当2≤x 时()(1)1xf x x e =--.若关于x 的方程012)(=+-+-e k kx x f 有三个不相等的实数根,则实数k 的取值范围是(A )),2()0,2(+∞-Y (B )(2,0)(0,2)-U (C )),()0,(+∞-e e Y (D )),0()0,(e e Y -12.如图,在边长为2的正方形321P P AP 中,线段BC 的端点C B ,分别在边21P P 、32P P 上滑动,且x C P B P ==22,现将B AP 1∆,C AP 3∆分别沿AB ,AC 折起使点31,P P 重合,重合后记为点P ,得到三被锥ABC P -.现有以下结论: ①⊥AP 平面PBC ;②当C B ,分别为21P P 、32P P 的中点时,三棱锥ABC P -的外接球的表面积为π6; ③x 的取值范围为)224,0(-; ④三棱锥ABC P -体积的最大值为31. 则正确的结论的个数为(A )1 (B )2 (C )3 (D )4二、填空题(本大题共4小题,每小题5分,共20分)13.已知实数y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤-+002204y y x y x ,则y x z 2+=的最大值为_______.14.设正项等比数列{}n a 满足814=a ,3632=+a a ,则=n a _______.15.已知平面向量a ,b 满足2||=a ,3||=b ,且)(b a b -⊥,则向量a 与b 的夹角的大小为_______.16.已知直线kx y =与双曲线)0,0(1:2222>>=-b a by a x C 相交于不同的两点B A ,,F 为双曲线C 的左焦点,且满足||3||BF AF =,||OA b =(O 为坐标原点),则双曲线C 的离心率为_______.三、解答题(共70分。
2020届四川省成都市七中2017级高三上学期一诊模拟考试数学(理)试卷及解析

2020届四川省成都市七中2017级高三上学期一诊模拟考试数学(理)试卷★祝考试顺利★(解析版)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(,)z a bi a b R =+∈的虚部记作Im()z b =,则3Im 1i i +⎛⎫= ⎪+⎝⎭( )A. -1B. 0C. 1D. 2【答案】A【解析】 直接由复数代数形式的乘除运算化简31ii ++,再根据题目中定义的复数的虚部,可得答案.【详解】解:3(3)(1)4221(1)(1)2i i i ii i i i ++--===-++-,又复数(,)z a bi a b R =+∈的虚部记作()Im z b =,3()11iIm i +∴=-+.故选:A .2.执行如图所示的程序框图,输出的s 值为( )A . 3B. 6-C. 10D. 15- 【答案】C【解析】程序框图的作用是计算22221234-+-+,故可得正确结果.【详解】根据程序框图可知2222123410S =-+-+=,故选C.3.关于函数()tan f x x =的性质,下列叙述不正确的是( )A. ()f x 的最小正周期为2π B. ()f x 是偶函数C. ()f x 的图象关于直线()2k x k Z π=∈对称D. ()f x 在每一个区间(,)()2k k k Z πππ+∈内单调递增 【答案】A试题分析:因为1()tan()()22tan f x x f x xππ+=+=≠,所以A 错;()tan()tan ()f x x x f x -=-==,所以函数()f x 是偶函数,B 正确;由()tan f x x =的图象可知,C 、D 均正确;故选A.4.已知0,0a b >>,则“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的( )A. 充分不必要条件B. 必要不充分条件。
【成都一诊】四川省成都市2017届高三一诊考试试卷 数学(理) PDF版含答案

高三数学(理科)一诊测试参考答案第1㊀页(共4页)成都市2014级高中毕业班第一次诊断性检测数学参考答案及评分标准(理科)第Ⅰ卷(选择题,共60分)一㊁选择题:(每小题5分,共60分)1.B ;2.A ;3.B ;4.C ;5.B ;6.C ;7.B ;8.D ;9.C ;10.A ;11.A ;12.D.第Ⅱ卷(非选择题,共90分)二㊁填空题:(每小题5分,共20分)13.-2;㊀14.92;㊀15.-32;㊀16.3.三㊁解答题:(共70分)17.解:(I )ȵa 1=-2,ʑa 1+4=2. 1分ȵa n +1=2a n +4,ʑa n +1+4=2a n +8=2(a n+4).3分ʑa n +1+4a n +4=2.4分ʑ{a n +4}是以2为首项,2为公比的等比数列.5分(I I)由(I ),可知a n +4=2n .㊀ʑa n =2n -4. 7分当n =1时,a 1=-2<0,ʑS 1=|a 1|=2;8分当n ȡ2时,a n ȡ0.ʑS n =-a 1+a 2+ +a n 9分=2+(22-4)+ +(2n -4)=2+22+ +2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2. 11分又当n =1时,上式也满足.ʑ当n ɪN ∗时,S n =2n +1-4n +2. 12分18.解:(I )由题意,可知10x +0.012ˑ10+0.056ˑ10+0.018ˑ10+0.010ˑ10=1.ʑx =0.004. 2分ʑ甲学校的合格率为1-10ˑ0.004=0.96.3分而乙学校的合格率为1-250=0.96. 4分ʑ甲㊁乙两校的合格率均为96%. 5分(I I )样本中甲校C 等级的学生人数为0.012ˑ10ˑ50=6. 6分而乙校C 等级的学生人数为4.ʑ随机抽取3人中,甲校学生人数X的可能取值为0,1,2,3.7分ʑP (X =0)=C 34C 310=130,P (X =1)=C 16C 24C 310=310,P(X =2)=C 26C 14C 310=12,P (X =3)=C 36C 310=16.ʑX 的分布列为X 0123P130310121611分㊀㊀数学期望E X =1ˑ310+2ˑ12+3ˑ16=95. 12分高三数学(理科)一诊测试参考答案第2㊀页(共4页)19.解:(I )由题意,可知P E ,P F ,P D 三条直线两两垂直. 1分ʑP D ʅ平面P E F . 3分在图1中,ȵE ,F 分别是A B ,B C 的中点,ʑE F ʊA C .ʑG B =2G H .又ȵG 为B D 的中点,ʑD G =2G H .在图2中,ȵP R R H =B R R H =2,且D G G H =2,ʑ在әP DH 中,G R ʊP D . 5分ʑG R ʅ平面P E F . 6分(I I )由题意,分别以P F ,P E ,P D 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系P x y z .设P D =4,则P (0,0,0),F (2,0,0),E (0,2,0),D (0,0,4).ʑH (1,1,0). 7分ȵP R R H =λ,ʑP R ң=λ1+λPH ң.㊀ʑR (λ1+λ,λ1+λ,0).ʑR F ң=(2-λ1+λ,-λ1+λ,0)=(2+λ1+λ,-λ1+λ,0). 8分又ȵE F ң=(2,-2,0),D E ң=(0,2,-4),设平面D E F 的一个法向量为m =(x ,y ,z ).由E F ң m =0D E ң m =0{⇒2x -2y =02y -4z =0{.取z =1,则m =(2,2,1). 9分ȵ直线F R 与平面D E F 所成角的正弦值为225,ʑc o s <m ,R F ң>=m R F ң|m ||R F ң|=41+λ3(2+λ1+λ)2+(-λ1+λ)2=223λ2+2λ+2=225. 11分ʑ9λ2+18λ-7=0.㊀解得λ=13或λ=-73(不合题意,舍去)故存在正实数λ=13,使得直线F R 与平面D E F 所成角的正弦值为225. 12分20.解:(I )由题意,知F (1,0),E (5,0),M (3,0).设A (x 1,y 1),B (x 2,y 2). 1分ȵ直线l 1的倾斜角为π4,ʑk =1.ʑ直线l 1的方程为y =x -1,即x =y +1. 2分代入椭圆方程,可得9y 2+8y -16=0. 3分ʑy 1+y 2=-89,y 1y 2=-169. 4分ʑS әA B M =12 |F M | |y 1-y 2|=(y 1+y 2)2-4y 1y 2=(-89)2+4ˑ169=8109. 6分(I )设直线l 1的方程为y =k (x -1).代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 8分高三数学(理科)一诊测试参考答案第3㊀页(共4页)则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2. 9分ȵ直线B N ʅl 于点N ,ʑN (5,y 2).ʑk A M =-y 13-x 1,k MN =y 22.而y 2(3-x 1)-2(-y1)=k (x 2-1)(3-x 1)+2k (x 1-1)=-k x 1x 2-3(x 1+x 2)+5[]=-k (5k 2-204+5k 2-3ˑ10k 24+5k 2+5)=0. 11分ʑk A M =k MN .㊀故A ,M ,N 三点共线. 12分21.解:(I )ȵg (x )=(x +1)l n (x +1)+(1-a )x +2-a (x >0),ʑg ᶄ(x )=l n (x +1)+2-a .1分ʑ当2-a ȡ0,即a ɤ2时,g ᶄ(x )>0对x ɪ(0,+ɕ)恒成立.此时,g (x )的单调递增区间为(0,+ɕ),无单调递减区间. 2分当2-a <0即a >2时,由g ᶄ(x )>0,得x >e a -2-1;由g ᶄ(x )<0,得0<x <e a -2-1.此时,g (x )的单调递减区间为(0,e a -2-1),单调递增区间为(e a -2-1,+ɕ). 3分综上所述,当a ɤ2时,g (x )的单调递增区间为(0,+ɕ),无单调递减区间;当a >2时,g (x )的单调递减区间为(0,e a -2-1),单调递增区间为(e a -2-1,+ɕ). 4分(I I )由f (x )<0,得(x +1)a >x l n (x +1)+12x +2.当x ȡ0时,上式等价于a >x l n (x+1)+12x +2x +1.5分令h (x )=x l n (x +1)+12x +2x +1,x ȡ0.据题意,存在x ȡ0,使f (x )<0成立,则只需a >h(x )m i n .6分ȵh ᶄ(x )=[l n (x +1)+x x +1+12](x +1)-[x l n (x +1)+12x +2](x +1)2=l n (x +1)+x -32(x +1)2, 7分又令u (x )=l n (x +1)+x -32,显然u (x )在[0,+ɕ)上单调递增.而u (0)=-32<0,u (1)=l n 2-12>0.ʑ存在x 0ɪ(0,1),使u (x 0)=0,即l n (x 0+1)=32-x 0.9分又当x 0ɪ[0,x 0)时,h ᶄ(x )<0,h (x )单调递减;㊀当x ɪ(x 0,+ɕ)时,h ᶄ(x )>0,h (x )单调递增.ʑ当x =x 0时,h (x )有极小值(也是最小值).ʑh (x )m i n =h (x 0)=x 0l n (x 0+1)+12x 0+2x 0+1=x 0(32-x 0)+12x0+2x 0+1高三数学(理科)一诊测试参考答案第4㊀页(共4页)=-x 20+2x 0+2x 0+1=-(x 0+1)-1x 0+1+4. 10分ȵx 0ɪ(0,1),即x 0+1ɪ(1,2),ʑ(x 0+1)+1x 0+1ɪ(2,52).ʑh (x 0)ɪ(32,2). 11分又ȵa >h (x 0),且a ɪZ ,ʑa 的最小值为2. 12分22.解:(Ⅰ)ȵ直线l 的参数方程为x =1+t c o s αy =t s i n α{(t 为参数),ʑ直线l 的普通方程为y =t a n α x -1().2分由ρc o s 2θ-4s i n θ=0得ρ2c o s 2θ-4ρs i n θ=0,即x 2-4y =0.ʑ曲线C 的直角坐标方程为x 2=4y .4分(Ⅱ)ȵ点M 的极坐标为(1,π2),ʑ点M 的直角坐标为(0,1).5分ʑt a n α=-1,直线l 的倾斜角α=3π4.ʑ直线l 的参数方程为x =1-22t y =22t ìîíïïïï(t 为参数).7分代入x 2=4y ,得t 2-62t +2=0. 8分设A ,B 两点对应的参数为t 1,t 2.ȵQ 为线段A B 的中点,ʑ点Q 对应的参数值为t 1+t 22=622=32.又点P(1,0),则|P Q |=|t 1+t 22|=32.10分23.解:(Ⅰ)当-1ɤx <3时,f (x )=4;当x ȡ3时,f (x )=2x -2.1分ʑ不等式f x ()ɤ6等价于-1ɤx <34ɤ6{,或x ȡ32x -2ɤ6{.2分ʑ-1ɤx <3,或3ɤx ɤ4.ʑ-1ɤx ɤ4.3分ʑ原不等式的解集为{x |-1ɤx ɤ4}.4分(Ⅱ)由(Ⅰ),得f (x )=4,㊀-1ɤx <32x -2,x ȡ3{.可知f (x )的最小值为4.ʑn =4. 6分ʑ据题意,知8a b =a +2b ,变形得1b +2a =8.7分ȵa >0,b >0,ʑ2a +b =18(2a +b )(1b +2a )=18(5+2a b +2b a )ȡ18(5+22a b 2b a )=98. 9分当且仅当2a b =2b a ,即a =b =38时,取等号.ʑ2a +b 的最小值为98. 10分。
17届高三理科数学一诊模拟考试试卷答案

则面 DMF 的法向量: m ( x
4 3 , 3,
3x )
3
同理可知:面 CDM 的法向量 n (3, 0 , 4 )
由 | c o s m , n | 2 ,则 x 1 3 9 3 或 x 3
5
43
经检验, x 不合题意
3 时二面角 F D M C 的余弦值为 2
1 a
1
3
1 q
3
即数列 a n 是首项为 1 公比为 1 的等比数列
3
3
a
1 (
)n
n
3
(2)由已知可得: f ( a ) n n
则: b
n (n 1) 1 2 3 … … -n
n
2
故: 1
1 2(
1
)
bn
n n 1
Tn
2
(1
成都七中 2017 届一诊模拟考试数学试卷(理科)(参考答案)
一.选择题 1-5:BADBC 6-10:BCDCA 11-12:BA
二、填空题
13. 1120 ; 三.解答题
14. 3 3 ;
28
15. 4
16. 0 或-2
17. 解:(1)∵{ a } 为等比数列,设公比为 q n
1
又a4
81
∴a 1
(2)由(1)知,当 a 1 时, G ( x ) s in (1 x ) ln x 在 ( 0 , 1) 单调增
∴ s in (1 x ) ln x G (1) 0
∴ s in (1 x ) ln 1 ( 0 x 1)
x
∴ sin
2017成都一诊理科数学试题及答案

2017成都一诊理科数学试题及答案成都市2014级高中毕业班第一次诊断性检测数学(理和本试卷分选择&和菲选择题两部分.第I 卷(选择&)】至2页,第n 卷(菲选择題)2至 4页?共4页?満分150分?考试时间120分钟.注童事项:1. 答題前.务必将自己的堆名、为締号填耳在答題卡規定的位霍上.2. 答选择题时,必须使用2BW 笔将答題卡上对应題目的答案标号涂黑?如需改动?用幡皮擦據干净后?再选涂人它咨案标号.3. 答菲选择题时?必须使用0.S 毫米凤色签字笔?将答冬书写在答題卡規定的位實上.4. 所祈題目必须在答題卡上作养?在试題卷上答題无效.5. 考试结束后?只称答縣卡交回.第I 卷(透择題?共60分)离三故乍(理科r ?一途■考试is 購1頁(共4 K )一■选择議:本大II 共12小H.Q 小JH 5分?共60分.左毎小H 给出的四个选项中?只有一0是符合麵目要求的.(1) 设集合 U = R ? A = {H |F —工一2>0} ?则 C (/A - (A) C-oo t -l )(J (2> + oo ) (B) [一 1>2J(C) (-oo t -l]U [2.+ 8〉(2) 命IT 若a >b ?则a+c>6+c”的否命題是(A) 若 a Mb ,则 + c(B) 若 a+c W6+c ?則 a (C) 若 a+t>6+c ?则 a >6 〈D)若 a > b ■则 + r (3) 执行如田所示的程序|g 图,如果输出的结果为0?那么输入的工为 (A 冷(B)-l 或 1 (C)l(D) (- 1.2)(D)-l⑷巳知双曲线音-沪心 >。
』>。
)的左■右离点分别为戸,片,双曲线上一点P 满足FF,丄工轴?若 |F|F ;|=12?|PF ;| = 5 ?则谏取曲线的离心串为(A)n ⑻夢 4(D)3(5)巳知a为第二◎限角sin2a 芫?则cosa — sina的(ft为7 7 1(A) 5 ⑻ 一丁<="" p="">(6) (x4-l),(x-2)的展开式中F的累數为CA)25 (B)5 (0-15 <d)-20< p="">(7) 如阳,网格址上小正方形的边长为1,91实线逊出的丑某四綾惟的三视图,则该四棱锥的外接球的表面积为(A) 136K(B) 34K(C) 25n (D) 18x⑻将Sft/(x)=sin2x +V3cos2x图象上所有点的横坐标伸长刊廉*的2ffi(纵坐标不变》,再将图欽上所有点向右平移y个小位长度?初到函敷^(x)的用◎,則&(工)图农的一条对称轴方程是(AI MQ —*CBI H** (C) x(D) x ■* y(9)在玄三棱柱ABC-A|B|Ci中?平面a与校AB .AC.AG ?4B|分别交于点E.F.G, H?且直线Mi JI平面a.布下列三个金題:①四边形EFGH超平行四边形;② 平面a 〃平而BCC.B.'③平面a丄平面BCFE?其中正确的命題有(A)Q②⑻②③(C》①③(D)(D②③仆0)巳知A,B是BSOd+b?4上的曲个动点,|AB|-2,(X:-jOA-yOB .若M超线段AB的中点■则0C?0M的值为(A)3 (B) 273 (02 <d)-3< p="">“1〉巳知函数/(r)是定义在R上的個函数?且/(-x-1) - /(x-l> ?当X C [— 1,0]时JT*.则关于X的方I COSJTX在[―y 上的所有实数堺之和为(A>-7 (B)-6 (0-3 (D)-l(12)巳知曲线G2?“0>0">0)在点M(\2)处的切线与曲线Ci^-c^ - 1也相切?则t\ny~的值为(A) 4e?(B)8e (02 (D)8第II卷《菲选择题.共90分》二、填空題:本大18共4小18?毎小題5分,共20分.(13)若其中 a € R,i为虚数单位)的曲部为一 1 ?则a- _________________________ ?1 +1(14)K^m北朝时代的数学家祖丽提岀体枳的计算顶理(祖期原理)厂耳好既同?则枳不容异”■势”即是舄广矿是曲枳?怠思是;如果曲等髙的几何体在同高处飲得两几何体的住而积恒彎?那么这两个几何体的体积相靠?类比祖阳原理?如图所示?在平面点角坐标禹三敗学(理科》?一诊??考试題訥2 4 JT)系中?图1泉一个形状不观則的对闭图形?图2是一个上底为1的梯形?且当实数f敢[0.3]上的任住值时? 直线y-f被图1和图2所皱得的两线段长始终相尊? 则图1的面积为______________________ ?2 JT + y — 4 < 0y ?1(15)若实ttx.y tM足约束条件^r-2y-2<0 ?则 =-x - 1 > 0 ”的最小值为__________ ?(⑹已知AABC中.ACM'BCY?AABC的面积为睜.若线段/M的延长线上存在点 D ?使ZBDC-7?-则CD = ___________?4三■解笞题:本大题共6小JH ■共70分.解苦R巧出文字说明■证明过程或演尊步*L (17〉(本小聽摘分12分〉已知效列(aj 満足at =-2.a.fI =2a.+4.(1>证阴数列S.+4}是等比数列$(□>求数列{\a.\}的前力項和S…“8)(本小題満分12分〉某知2016年离中数学学业水平测试的原始成绩采用百分朋?发布底塡便用零级制.各等级划分标准为*5 分及以上?记为A等,分数在[70.85〉内?记为B等『分數在:60.70)内?记为C^,6 0分以下?记为D尊?同时认定A .B.C为合格£>为不合格?已知甲?乙対所学校学生的顶始成绩均分布在〔50. 100]内?为了比较两校学生的成绩?分别抽肢50名学生的原始成绩作为样本进行统比按照[50.60〉■ [60.70)■[70.80〉■ [80.90). [90 JOO] 的分组作出甲较的样本檢率分布直方图如图1所示?乙牧的样本中寺级为C.U的所冇数据的茎叶WJUffl 2所示.(I)求阳中龙的值?并根扳样本救据比较甲乙两校的合〈0)在选取的样本中?从甲?乙两牧C等级的学生中圈机抽取3名学生进行调研?用X农示所抽取的3名学生中甲校的学生人数?求随机变■ X的分布列和数学期垫.CWX*小題港分12分〉iflffl】?在正方形ABCD中?点E.F分别足AB.BC的中点?BD与EF交于点H.G为BD中UD点?点R在线段BH上?且—=AQ >0).?将ffl2ffll 阳2岛三科)?一诊■考试聽第3页(箕4△AED心CFSEF分别沿DE.DF.EF折起?使点A.C 1K合于点该点记为P). 如图2所示.(I)若A-2^i£,GR 丄平面PEF i< n)是否存在正实数A ?使御克线FR与平面DEF所成角的正戎值为够?若存在. 求出入的tfb若不存在?请说明理由.(20〉(本小越體分12分)已知柄圆£+ ?■】的右焦点为F?设£(线/:x?5与工轴的交点为E ?过点F且斜睾为A的直线人与楠関交于A.P阿点?M为线段£F的中点.(I)若直线/>的倾斜角为于?求AABM的而枳S的值;(0)过点B作直线BN丄/于点N ?证明:A.M.N三点共线.(21〉(本小題肚分12分》巳知函数/Ct) ■工ln(T + 1)+(*—门工+2-a?a € R?(I )当x >OH4.求函ttg(-r)-/U)4-ln(jr + 1)+-jx 的瞅调区间:(D)当a W Z时?若存在工—0?使不等式/(zXO 立?求a的尺小(ft.请考生在M(22) J23)H中任选一越作答?如果多做?则按所借的计分.(22)(本小题満分10分)选修4一4,坐标系与豔效方程在平面直角坐标系MOy中?傾斜角为aS工芳)的直级/的蛊数方程为Z ly?fsin<r< p="">(e为.以型标风点为做点?以工紬的正半紬为桜軸?漣立极坐标糜?曲线C的谡坚标方程是pcos2G — "in。
成都市2 0 1 7级高中毕业班第一次诊断性检测2017级高三一诊理数答案

的
斜
率k
y1 -y2 = 2-x2
.
������ ������5 分 ������ ������6 分
数学(理科)“一诊”考试题参考答案 第 3 页(共4页)
∴直线 BD
的
方
程
为y
-y1
y1 -y2 = 2-x2
(x
-2).
令y =0,得x
x2y1 -2y2 = y1 -y2
my1y2 +y1 -2y2
������ ������4 分
∴原不等式的解集为
{x|x
2 ≤-3
或x
≥ 0}
.
������ ������5 分
(Ⅱ)∵f(x)=|x -3|,
∴ |x
+
3 2 |-f(x )=|x
+
3 2 |-|x
-3| ≤ | (x
+
3 2)-
(x
-3)|=
9 2
,
当且仅当
(x
+
3 2)(x
-3)≥ 0 且 |x
22.解:(Ⅰ)由题,知点 Q 的轨迹是以(2,0)为圆心,2为半径的圆.
∴曲线 C2 的方程为(x-2)2+y2=4. ∵ρ2 =x2 +y2,x =ρcosθ ,y =ρsinθ , ∴曲线 C1 的极坐标方程为ρ =4sinθ , 曲线 C2 的极坐标方程为ρ =4cosθ . (Ⅱ)在极坐标系中,设点 A,B 的极径分别为ρ1,ρ2.
������ ������2 分
又∵AP ⊥ 平面PBC ,BC ⊂ 平面PBC ,
∴ BC ⊥ AP������
������ ������4 分
∵ AP ∩AE= A ,AP,AE ⊂ 平面PAE ,
成都七中2017届高三一诊模拟理科数学

成都七中2017届一诊模拟考数学(理科)一.选择题1.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则=⋂B C A R ( ) A (3,0)- B (3,1]-- C (3,1)-- D (3,3)-2.设i 为虚数单位,复数(1)i i +的虚部为( )A 1-B 1C i -D i3. 已知点O A B 、、不在同一条直线上,点P 为该平面上一点,且22+OP OA BA =,则( )A .点P 不在直线AB 上 B .点P 在线段AB 上C .点P 在线段AB 的延长线上D .点P 在线段AB 的反向延长线上 4.我校教育处连续30天对同学们的着装进行检查,着装不合格的人数为如图所示的茎叶图,则中位数,众数,极差分别是( )A 44,45,56B 44,43,57C 44,43,56D 45,43,575. 在三角形ABC 中,45sin ,cos 513A B ==,则cos C =( ) A 3365或6365 B 6365 C 3365D 以上都不对 6. 如图所示的程序框图输出的S 是126,则条件①可以为( )A n ≤5B n ≤6C n ≤7D n ≤87. 住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图。
为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一个被选为组长的概率为( )A 1142B 12C 1121D 10218.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A 2+B 5C 4+D 2+9. 如果实数,x y 满足关系1020,00x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩又273x y c x +-≤-恒成立,则c 的取值范围为( )A 9[,3]5B (],3-∞C [)3,+∞D (]2,310. 已知函数()|ln |f x x =,若在区间1[,3]3内,曲线g x f x ax =-()()与x 轴有三个不同的交点,则实数a 的取值范围是 ( )A ln 31[,)3e B ln 31[,)32e C 1(0,)e D 1(0,)2e11. 函数x x y 2sin cos ⋅=的最小值为m ,函数2tan 22tan xy x=-的最小正周期为n ,则m n +的值为( )A 2π-B π-C 2πD π+ 12.已知椭圆22221(0,)x y c a b c e a b a+=>>==,其左、右焦点分别为12,F F ,关于椭圆有以下四种说法:(1)设A 为椭圆上任一点,其到直线2212:,:a a l x l x c c=-=的距离分别为21,d d ,则1212||||AF AF d d =;(2)设A 为椭圆上任一点,12,AF AF 分别与椭圆交于,B C 两点,则212212||||2(1)||||1AF AF e F B F C e++≥-(当且仅当点A 在椭圆的顶点取等);(3)设A 为椭圆上且不在坐标轴上的任一点,过A 的椭圆切线为l ,M 为线段12F F 上一点,且1122||||||||AF F M AF MF =,则直线AM l ⊥;(4)面积为2ab 的椭圆内接四边形仅有1个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中2017届一诊模拟考试数学试卷(理科)考试时间:120分钟 总分:150分 命题人:刘在廷 审题人:张世永一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案凃在答题卷上.) 1.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则=⋂B C A R ( ) A (3,0)- B (3,1]-- C (3,1)-- D (3,3)- 2.设i 为虚数单位,复数(1)i i +的虚部为( )A 1-B 1C i -D i3. 已知点O A B 、、不在同一条直线上,点P 为该平面上一点,且22+OP OA BA =u u u r u u u r u u u r,则( ) A .点P 不在直线AB 上 B .点P 在线段AB 上C .点P 在线段AB 的延长线上D .点P 在线段AB 的反向延长线上4.我校教育处连续30天对同学们的着装进行检查,着装不合格的人数为如图所示的茎叶图,则中位数,众数,极差分别是( )A 44,45,56B 44,43,57C 44,43,56D 45,43,575. 在三角形ABC 中,45sin ,cos 513A B ==,则cos C =( ) A 3365或6365 B 6365 C 3365D 以上都不对 6. 如图所示的程序框图输出的S 是126,则条件①可以为( )A n ≤5B n ≤6C n ≤7D n ≤87. 住在狗熊岭的7只动物,它们分别是熊大,熊二,吉吉,毛毛,蹦蹦,萝卜头,图图。
为了更好的保护森林,它们要选出2只动物作为组长,则熊大,熊二至少一个被选为组长的概率为( )A 1142B 12C 1121D 10218.某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A 25+ B 5 C 45+ D 225+9. 如果实数,x y 满足关系1020,00x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩又 273x y c x +-≤-恒成立,则c 的取值范围为( )A 9[,3]5B (],3-∞C [)3,+∞D (]2,310. 已知函数()|ln |f x x =,若在区间1[,3]3内,曲线g x f x ax =-()()与x 轴有三个不同的交点,则实数a 的取值范围是 ( ) A ln 31[,)3e B ln 31[,)32e C 1(0,)e D 1(0,)2e11. 函数x x y 2sin cos ⋅=的最小值为m ,函数2tan 22tan xy x=-的最小正周期为n ,则m n+的值为( ) A432π-B 43π-C 432π+D 43π+ 12. 已知椭圆2222221(0,,)x y c a b c a b e a b a+=>>=-=,其左、右焦点分别为12,F F ,关于椭圆有以下四种说法:(1)设A 为椭圆上任一点,其到直线2212:,:a a l x l x c c=-=的距离分别为21,d d ,则1212||||AF AF d d =;(2)设A 为椭圆上任一点,12,AF AF 分别与椭圆交于,B C 两点,则212212||||2(1)||||1AF AF e F B F C e++≥-(当且仅当点A 在椭圆的顶点取等);(3)设A 为椭圆上且不在坐标轴上的任一点,过A 的椭圆切线为l ,M 为线段12F F 上一点,且1122||||||||AF F M AF MF =,则直线AM l ⊥;(4)面积为2ab 的椭圆内接四边形仅有1个。
其中正确的有( )个.A 1B 2C 3D 4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
) 13. 若0sin a xdx π=⎰,则8a x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为________(用数字作答)14.已知非直角△ABC 中,内角A,B,C 的对边分别是,,a b c ,其中1c =,又3C π=,若sin sin()3sin 2C A B B +-=,则△ABC 的面积为_________.15. 具有公共y 轴的两个直角坐标平面α和β所成的二面角βα轴-y -等于︒60,已知β内的曲线C '的方程是24y x '=,曲线C '在α内的射影在平面α内的曲线方程为22y px =,则p =_____________.16.已知()|2017||2016||1||1||2017|()f x x x x x x x R =-+-++-+++++∈L L ,且满足2(32)(1)f a a f a -+=-的整数a 共有n 个,222222(24)4()(2)2x x k k g x x x ++-+=+-的最小值为m ,且3m n +=,则实数k 的值为___________.三.解答题(17-21每小题12分, 22或23题10分,共70分. 在答题卷上解答,解答应写出文字说明,证明过程或演算步骤.) 17. 已知等比数列{}n a 满足113a =,4181a =(1)求数列{}n a 的通项公式;(2)设31212111()log ,()()(),,n n n nf x x b f a f a f a T b b b ==+++=+++L L 求2017T18.参加成都七中数学选修课的同学,对某公司的一种产品销量与价格进行了统计,得到如下数据和散点图:(参考数据:61()()34580,iii x x y y =-⋅-=-∑61()()175.5iii x x zz =-⋅-=-∑621()776840ii y y =-=∑,61()()3465.2i i i y y z z =-⋅-=∑)(1)根据散点图判断,y 与x ,z 与x 哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及数据,建立y 关于x 的回归方程(方程中的系数均保留两位有效数字).(3)定价为多少元/kg 时,年利润的预报值最大?19. 如图,直角三角形ABC 中,60,BAC ∠=o点F 在斜边AB 上,且4,,AB AF D E =是平面ABC 同一侧的两点,AD ⊥平面,ABC BE ⊥平面,ABC 3, 4.AD AC BE === ⑴ 求证:平面CDF ⊥平面;CEF⑵ 点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度。
20.平面上两定点1(1,0)F -,2(1,0)F ,动点P 满足12||||PF PF k += (1)求动点P 的轨迹;(2)当4k =时,动点P 的轨迹为曲线C ,已知1(,0)2M -,过M 的动直线l (斜率存在 且不为0)与曲线C 交于P,Q 两点,(2,0)S ,直线1:3l x =-,SP,SQ 分别与1l 交于A,B 两点.A,B,P,Q 坐标分别为(,)A A A x y ,(,)B B B x y ,(,)P P P x y ,(,)Q Q Q x y求证:1111A BP Qy y y y ++为定值,并求出此定值;21.已知()sin ,()ln f x a x g x x ==,其中a R ∈(1()y g x -=与()y g x =关于直线y x =对称)(1)若函数()(1)()G x f x g x =-+在区间(0,1)上递增,求a 的取值范围;(2)证明:211sinln 2(1)nk k =<+∑; (3)设12()()2(1)(0)F x g x mx x b m -=--++<,其中()0F x >恒成立,求满足条件的最小整数b 的值。
请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分. 选修4-4:坐标系与参数方程22.已知直线l 的参数方程为t t y t x (213231⎪⎪⎩⎪⎪⎨⎧+=--=为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为)6sin(4πθρ-=.(1)求圆C 的直角坐标方程;(2)若),(y x P 是直线l 与圆面)6sin(4πθρ-≤的公共点,求y x +3的取值范围.选修4-5:不等式选讲23.已知函数()1 1.f x x m x =++- ⑴ 当2m =时,求不等式()4f x <的解集; ⑵ 若0m <时,()2f x m ≥恒成立,求m 的最小值.成都七中2017届一诊模拟考试数学试卷(理科)(参考答案)一.选择题1-5:BADBC 6-10:BCDCA 11-12:BA 二、填空题 13. 1120; 14. 3328; 15.4 16. 0或-2 三.解答题17. 解:(1)∵{}n a 为等比数列,设公比为q又4181a =113a = 13q ∴= 即数列{}n a 是首项为13公比为13的等比数列 1()3n n a ∴=(2)由已知可得:()n f a n =-则:123n b =----……-n (1)2n n +=- 故:1112()1n b n n =--+ 111112(1)())2231n T n n ⎡⎤=--+-+-⎢⎥+⎣⎦……+(12(1)1n =--+201720171009T =-19. 证明:(Ⅰ)∵直角三角形ABC 中,∠BAC=60°,AC=4, ∴AB=8,AF=AB=2,由余弦定理得CF=2且CF ⊥AB .∵AD ⊥平面ABC ,CF ⊂平面ABC ,∴AD ⊥CF ,又AD∩AB=A ,∴CF ⊥平面DABE , ∴CF ⊥DF ,CF ⊥EF .∴∠DFE 为二面角D ﹣CF ﹣E 的平面角. 又AF=2,AD=3,BE=4,BF=6,故Rt △ADF ∽Rt △BFE .∴∠ADF=∠BFE ,∴∠AFD+∠BFE=∠AFD+∠ADF=90°, ∴∠DFE=90°,D ﹣CF ﹣E 为直二面角.∴平面CDF ⊥平面CEF . (建系求解,只要答案正确,也给分)(2)以C 为坐标原点,建立如图所示的空间直角坐标系C ﹣xyz ,设CM =(0,0,0),(0,,0),(4,0,3),3,0)C M x D F ∴(4,,3);(3,3)DM x DF =--=--u u u u r u u u r则面DMF 的法向量:43(3,3,x m x -=u r同理可知:面CDM 的法向量(3,0,4)n =-r由2|cos ,|5m n <>=u r r ,则1393x =或3x =经检验,3x =F DM C --的余弦值为25-不合题意 所以1393CM =20. 解:(1)由题意:当2k <时,动点P 不表示任何图形; 当2k =时,动点P 的轨迹是线段; 当2k >时,动点P 的轨迹是椭圆(2)当4k =时,动点P 的轨迹方程为:22143x y += 设1:(0)2PQ x ny n =-≠,则2214312x y x ny ⎧+=⎪⎪⎨⎪=-⎪⎩ 可得:2245(34)304n y ny +--=∴224534,3434P Q P Q ny y y y n n +=⋅=-++∴2234344515434P QP Q n y y n n y y n ++==-⋅-+ ∴11415P Q n y y +=- 又点,P Q 在直线PQ 上,∴11,,22P P Q Q x ny x ny =-=- ∴,522P PSP P Py y k x ny ==--同理:,522Q Q SQ Q Qy y k x ny ==-- 又;55A B SA SB y yk k ==-- 由;SP SA SQ SB k k k k ==则552P A P y y ny =--,则5112525PA P P ny n y y y -==- 同理:1B y 125Q n y =-∴11A B y y +=11128()2515P Qn n y y +-=- ∴11211A BP Qy y y y +=+21. 解:(1)由题意:/1()sin(1)ln ,()cos(1)0G x a x x G x a x x=-+=-->恒成立, 则1cos(1)a x x <-恒成立。