三角形复习题
八年级数学 三角形 专题复习50道(含答案)

八年级数学三角形专题复习50道一、选择题:1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.已知AB=1.5,AC=4.5,若BC的长为整数,则BC的长为()A.3B.6C.3或6D.3或4或5或63.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线4.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A.20米B.15米C.10米D.5米5.如图,在五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的邻补角,则∠1+∠2+∠3等于( )A.90°B.180°C.210°D.270°6.按照定义,三角形的角平分线(或中线、或高)应是()A.射线B.线段C.直线D.射线或线段或直线7.如图中有四条互相不平行的直线L.L2.L3.L4所截出的七个角.关于这七个角的度数关系,下列1何者正确( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°8.三角形三条高的交点一定在()A.三角形的内部B.三角形的外部C.三角形的内部或外部.D.三角形的内部、外部或顶点9.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC一条角平分线,则∠CAD度数为( )A.40° B.45° C.50° D.55°10.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0B.0<a<4C.4<a<8D.0<a<811.如图,在△ABC中,∠A=,角平分线BE.CF相交于点O,则∠BOC=( )A.90°+B.90°-C.180°+D.180°-12.下列长度的三条线段能组成三角形的是( )A.1cm,2cm,3.5cmB.4cm,5cm,9cmC.5cm,8cm,15cmD.6cm,8cm, 9cm13.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒B.20cm的木棒;C.50cm的木棒D.60cm的木棒14.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°15.如图,直角△ADB中,∠D=90°,C为AD上一点,且∠ACB的度数为(5x-10)°,则x的值可能是(A)10 (B)20 (C)30 (D)4016.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°17.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S=4cm2,则S△ABC的值为△BEF()A.1cm2B.2cm2C.8cm2D.16cm218.若a、b、c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c19.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个B.3个C.4个D.5个20.已知△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或10二、填空题:21.若等腰三角形的周长为21,其中两边之差为3,则各边长分别为。
三角形复习题

班级:姓名:三角形复习题一.三角形的内角(一)三角形内角和定理、解决简单的实际问题。
1.三角形内角和定理:2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE 的度数.3.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】二.多边形(一).多边形的概念以及内角、外角和。
1.平面内,由叫做多边形。
组成多边形的线段叫做。
如果一个多边形有n条边,那么这个多边形叫做。
多边形叫做它的内角,多边形的边与它的邻边的组成的角叫做多边形的外角,连接多边形的线段叫做多边形的对角线。
2.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的2, 求这个多边形的3边数及内角和.3.已知一个多边形的内角和是外角和的3倍,则这个多边形为几边形.三.三角形的高,中线,角平分线(一)三角形的高,中线,角平分线1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC >∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.草稿纸:。
三角形复习题

B C 七年级〔下〕第七章《三角形》复习学校 班级 学号 [一] 认识三角形1.三角形有关定义:在图9.1.3〔1〕中画着一个三角形ABC .三角形的顶点采用大写字母A 、B 、C 或K 、L 、M 等表示,整个三角形表示为△ABC 或△KLM 〔参照顶点的字母〕.如图9.1.3〔2〕所示,在三角形中,每两条边所组成的角叫做三角形的内角,如∠ACB ;三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如∠ACD 是与△ABC 的内角∠ACB 相邻的外角.图9.1.3〔2〕指明了△ABC 的主要成分.图9.1.32.三角形可以按角来分类:所有内角都是锐角――锐角三角形;有一个内角是直角――直角三角形; 有一个内角是钝角――钝角三角形;3三角形可以按角边分类:.把三条边都相等的三角形称为等边三角形〔或正三角形〕;两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰;. 练习:1、图中共有〔 〕个三角形。
A :5B :6C :7D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是〔 〕A :AE B :CD C :BF D :AF3、三角形一边上的高〔 〕。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能4、能将三角形的面积分成相等的两部分的是〔 〕。
A :三角形的角平分线B :三角形的中线C :三角形的高线D :以上都不对 6、具备以下条件的三角形中,不是直角三角形的是〔 〕。
A :∠A+∠B=∠CB :∠A=∠B=12∠C C :∠A=90°-∠B D :∠A-∠7、一个三角形最多有 个直角,有 个钝角,有 个锐角。
8、△ABC 的周长是12 cm ,边长分别为a ,b , c , 且 a=b+1 , b=c+1 , 则a= cm , b= cm , c= cm 。
9、如图,AB∥CD ,∠ABD 、∠BDC 的平分线交于E ,试判断△BED 的形状?图9.1.4CD AC10 、如图,在4×4的方格中,以AB为一边,以小正方形的顶点为顶点,画出符合以下条件的三角形,并把相应的三角形用字母表示出来。
2022-2023学年人教版八年级数学上册《第11章 三角形》期末综合复习题(附答案)

2022-2023学年人教版八年级数学上册《第11章三角形》期末综合复习题(附答案)一.选择题(共9小题)1.若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1B.5C.7D.92.图中三角形的个数是()A.8B.9C.10D.113.如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°4.下列图中具有稳定性的是()A.B.C.D.5.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的外角和都是360°C.两条直线被第三条直线所截,内错角相等D.平行于同一直线的两条直线互相平行6.四边形的内角和为()A.180°B.360°C.540°D.720°7.现有长度分别为20cm,30cm的两根木条,从下面四根木条中选取一根,首尾相接能连成一个三角形木架,则应选取的是()A.10cm B.20cm C.50cm D.60cm8.已知直角三角形的一个锐角为25°,则它的另一个锐角的度数为()A.25°B.65°C.75°D.不能确定9.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°二.填空题10.在△ABC中,∠A=52°,∠B=102°,则∠C=.11.正五边形的内角和为°,外角和为°.12.如图,有下列结论:①∠A>∠ACD;②∠B+∠ACB=180°﹣∠A;③∠A+∠ACB<180°;④∠HEC>∠B.其中,正确的是(填上你认为正确的所有的序号).13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B =.14.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.15.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=.三.解答题16.如图,AD是△ABC的角平分线,∠1=∠2,∠3=∠4,IE⊥BC于点E,(1)若∠ABC=40°,∠ACB=80°,则∠5=,∠6=.(2)猜想∠5、∠6的数量关系是:.(3)请对你的猜想进行证明.17.四边形ABCD中,∠A=140°,∠D=80度.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.18.已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.(1)求∠2的度数;(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.19.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,则∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)根据①中的计算结果写出∠A与∠A1之间等量关系;(3)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A6与∠A的数量关系;(4)如图,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.20.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.参考答案一.选择题1.解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.2.解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选:B.3.解:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.4.解:因为三角形具有稳定性,而只有C是全部由三角形结构组成.故选C.5.解:A、三角形的中线、角平分线、高线都是线段说法正确,故此选项不符合要求;B、任意三角形的外角和都是360°说法正确,故此选项不符合要求;C、两条直线被第三条直线所截,只有两直线平行时,内错角才能相等,此说法错误,故此选项符合要求;D、平行于同一直线的两条直线互相平行,说法正确,故此选项不符合要求;故选:C.6.解:四边形的内角和=(4﹣2)•180°=360°.故选:B.7.解:设第三根木条的长为lcm,∵△的另外两边分别为20cm,30cm,∴30cm﹣20cm<l<20cm+30cm,即10cm<l<50cm.∴四个选项中只有B符合题意.故选:B.8.解:∵直角三角形的两个锐角互余,而一个锐角为25°,∴另一个锐角的度数为90°﹣25°=65°.故选:B.9.解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.二.填空题10.解:∵∠A=52°,∠B=102°,∴∠C=180°﹣∠A﹣∠B=180°﹣52°﹣102°=26°.故答案为26°.11.解:∵n边形的内角和公式(n﹣2)•180°,∴正五边形的内角和为(5﹣2)•180°=540°,外角和为360°,故答案为540°;360°.12.解:①∠A<∠ACD,故①错误;②∠B+∠ACB=180°﹣∠A,故②正确;③∠A+∠ACB<180°,故③正确;④∠HEC=∠AED>∠ACD>∠B,则∠HEC>∠B,故④正确.故答案为:②③④.13.解:∵∠ACD=∠A+∠B,∠A=80°,∠ACD=150°,∴∠B=70°.故答案为:70°.14.解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n•(n+2)=n2+2n故答案为:n2+2n.15.解:如图,连接AO并延长,∵∠A=80°,∠1=15°,∠2=40°,∴∠BOC=∠A+∠1+∠2,=80°+15°+40°,=135°.故答案为:135°.三.解答题16.解:(1)∵∠ABC=40°,∠ACB=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵AD是△ABC的角平分线,∠1=∠2,∠3=∠4,∴∠5=∠1+∠BAD=20°+30°=50°,同理可得∠6=50°,故答案为:50°,50°;(2)猜想∠5=∠6;(3)证明:∵∠5=∠BAD+∠1=(∠A+∠B)=(180°﹣∠C)=90°﹣∠C,∠6=90°﹣∠3=90°﹣∠C,∴∠5=∠6.17.解:(1)因为∠A+∠B+∠C+∠D=360,∠B=∠C,所以∠B=∠C=.(2)∵BE∥AD,∴∠BEC=∠D=80°,∠ABE=180°﹣∠A=180°﹣140°=40°.又∵BE平分∠ABC,∴∠EBC=∠ABE=40°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣40°﹣80°=60°.或解:∵BE∥AD,∴∠ABE=180°﹣∠A=180°﹣140°=40°,又∵BE平分∠ABC,∴∠ABC=2∠ABE=80°,∴∠C=360°﹣∠ABC﹣∠A﹣∠D=60°.(3)∵∠A+∠ABC+∠BCD+∠D=360°,∴∠ABC+∠BCD=360°﹣∠A﹣∠D=360°﹣140°﹣80°=140°.∵∠EBC=∠ABC,∠BCE=∠BCD,∴∠E=180﹣∠EBC﹣∠BCE=180°﹣(∠ABC+∠BCD)=180°﹣×140°=110°.18.解:(1)∵∠1=∠C,∠2=2∠3,∴∠C=∠1=∠2+∠3=2∠3+∠3=3∠3,∵∠BAC+∠2+∠C=180°,即70°+2∠3+3∠3=180°,∴∠3=22°,∴∠2=2∠3=44°;(2)AE⊥BC,∵∠DAC=∠BAC﹣∠3=70°﹣22°=48°,又∵AE平分∠DAC,∴∠DAE=∠DAC=24°∴∠1=3∠3=66°,∴∠AED=180﹣∠1﹣∠DAE=180°﹣66°﹣24°=90°,即AE⊥BC.19.解:(1)∠A;70°;35°;(2)∠A=2∠A1;(3)∠A=64∠A6;(4)∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD 的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.因此①∠Q+∠A1的值为定值正确.20.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA.∵∠DOB+∠EOB+∠OEA=90°,∴∠DOB=30°,∴∠A=30°;(3)∠P的度数不变,∠P=30°,∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.。
中考《三角形认识》复习练习题及答案

中考数学复习专题练习认识三角形一、选择题:1、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.54、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°5、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20° B.25° C.30° D.40°6、一个多边形少加了一个内角时,它的度数和是1310°,则这个内角的度数为()A.120° B.130° C.140° D.150°7、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°8、一个正多边形的每个内角都等于140°,那么它是正()边形A.正六边形 B.正七边形 C.正八边形 D.正九边形9、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米10、如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.1211、.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2是( )A.52° B.61° C.65° D.70°12、如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、a、b、c为三角形的三条边,则= .14、如图,△ABC的两条高线AD、BE交于点F,∠BAD=45°,∠C=60°,则∠BFD的度数为15、如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,a取值范围是.16、一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是 .17、已知△ABC 的三边长 a、b、c,化简│a+b-c│-│b-a-c│的结果是 .18、将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.19、如图,∠2+∠3+∠4=320°,则∠1= .20、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .21、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2= .22、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.23、如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N= _.24、如图,一个面积为50平方厘米正方形与另一个小正方形并排放在一下起,则△ABC面积是平方厘米.三、简答题:25、如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm两部分,求三角形各边的长.26、如图,AD为△ABC的中线,BE为△ABD的中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)作出△BED的BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?27、(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.28、如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB= 度;(2)如图2,若直角顶点C在∠O内部,求出∠ADO+∠OEB的度数;(3)如图3,如果直角顶点C在∠O外部,求出∠ADO+∠OEB的度数.29、如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为;(2)若∠A=α,则∠P1的度数为;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为(用n与α的代数式表示)30、阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:.他发现,连接AP,有,即.由AB=AC,可得.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵,∴.∵AB=AC,∴.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC 的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示位置,利用图4探究得出此时BD,PM,PN,PQ之间数量关系是:.31、已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M是线段BC的中点,连接DM、EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.参考答案1、A.2、C.3、A.4、A.5、D.6、B.7、C.8、D.9、B.10、B.11、B.12、B.13、答案为:2a.14、答案为:60° 15、答案为:a>5.16、答案为:2<a≤8,10≤a<18.17、答案为:2b-2c. 18、答案为:75°.19、答案为:40°.20、答案为:180°.21、答案为:60°.22、答案为:40°.23、答案为:360°或540°或720°.24、答案为25.25、解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴ =10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴ =8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.26、解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°。
【解直角三角形】专题复习(知识点+考点+测试)

《解直角三角形》专题复习一、直角三角形的性质 1、直角三角形的两个锐角互余 几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
几何表示:【∵∠C=90°∠A=30°∴BC=21AB 】 3、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为AB 的中点 ∴ CD=21AB=BD=AD 】4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在Rt △ABC 中∵∠ACB=90° ∴222c b a =+】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD ⊥AB ∴ BD AD CD •=2AB AD AC •=2 AB BD BC •=2】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
(a b c h •=•)由上图可得:AB •CD=AC •BC二、锐角三角函数的概念 如图,在△ABC 中,∠C=90°c asin =∠=斜边的对边A Ac bcos =∠=斜边的邻边A Ab atan =∠∠=的邻边的对边A A Aab cot =∠∠=的对边的邻边A A A锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0.三、锐角三角函数之间的关系(1)平方关系(同一锐角的正弦和余弦值的平方和等于1) 1cos sin 22=+A A(2)倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA •tan(90°—A)=1; cotA •cot(90°—A)=1; (3)弦切关系tanA=A Acos sin cotA=AA sin cos(4)互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A)AC BDsin A sin c A ,cos b c A 12S ab =)结论:直角三角形斜边上的高)测底部不可到达物体的高度BP=xcot α 东 西 2八、基本图形(组合型)翻折平移九、解直角三角形的知识的应用问题:(1)测量物体高度.(2)有关航行问题.(3)计算坝体或边路的坡度等问题十、解题思路与数学思想方法图形、条件单个直角三角形直接求解实际问题数学问题辅助线构造抽象转化不是直角三角形直角三角形方程求解常用数学思想方法:转化、方程、数形结合、分类、应用【聚焦中考考点】1、锐角三角函数的定义2、特殊角三角函数值3、解直角三角形的应用【解直角三角形】经典测试题(1——10题每题5分,11——12每题10分,13——16每题20分,共150分) 1、在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 2、sin65°与cos26°之间的关系为( )A. sin65°< cos26°B. sin65°> cos26°C. sin65°= cos26°D. sin65°+ cos26°=1 3、如图1所示,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米4、如图2,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1图15、把直角三角形中缩小5倍,那么锐角∠A 的正弦值 ( ) A. 扩大5倍 B. 缩小5倍 C. 没有变化 D. 不能确定6、如图3,在Rt △ABC 中,∠C=90°,D 为BC 上的一点,AD=BD=2,AB=23,则: AC 的长为( ).A .3B .22C .3D .3227、如果∠A 是锐角,且3sin 4B =,那么( ). A .030A ︒<∠<︒ B .3045A ︒<∠<︒C .4560A ︒<∠<︒D .6090A ︒<∠<︒8、已知1cos 3α=,则3sin tan 4sin 2tan αααα-+的值等于( )A.47B.12C .13D .09、 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为______。
初一数学 三角形专题复习

初一数学三角形专题复习一.选择题(共50小题)1.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.2.下列各图中,画出AC边上的高,正确的是()A.B.C.D.3.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的高和中线4.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部5.下列说法正确的是()A.三角形的角平分线是射线B.连接三角形任意两边中点的线段是三角形的中线C.三角形的高都在三角形的内部D.直角三角形的三条高线交于直角顶点处6.下列说法正确的个数有()①三角形的角平分线、中线和高都在三角形内;②直角三角形只有一条高;③三角形的高至少有一条在三角形内;④三角形的高是直线,角平分线是射线,中线是线段.A.1个B.2个C.3个D.4个7.如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性8.如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短C.两定确定一条直线D.三角形的稳定性9.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等10.下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.3cm,4cm,8cm C.3cm,3cm,5cm D.4cm,4cm,8cm11.在△ABC中,AB=8,BC=2,AC的长为奇数,△ABC的周长为()A.17B.19C.17或21D.17或1912.在△ABC中,AB=10,BC=2,并且AC的长为偶数,则△ABC的周长为()A.20B.21C.22D.2313.三角形的两边长分别为2cm和7cm,另一边长a为偶数,则这个三角形的周长为()A.13cm B.15cm C.17cm D.15cm或17cm14.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7B.7或9C.7D.915.如图,AB=7,AC=3,则中线AD的取值范围是()A.4<AD<11B.2<AD<5.5C.2<AD<5D.4<AD<1016.如图,点D是△ABC的边BC上的中线,AB=6,AD=4,则AC的取值范围为()A.2<AC<14B.2<AC<12C.1<AC<4D.1<AC<817.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=44°,∠C=70°,则∠DAE的度数是()A.10°B.12°C.13°D.15°18.如图,CD,CE分别是△ABC的高和角平分线,∠A=25°,∠B=65°,则∠DCE度数为()A.20°B.30°C.18°D.15°19.如图,a∥b,Rt△ABC的直角顶点C在直线b上.若∠A=43°,∠2=25°,则∠1等于()A.18°B.22°C.25°D.32°20.将一副三角尺按如图所示的方式叠放,则∠1的度数为()A.45°B.60°C.75°D.15°21.如图,∠ACE是△ABC的外角,BD平分∠ABC,CD平分∠ACE,且BD,CD相交于点D.若∠A=80°,则∠D等于()A.30°B.40°C.50°D.55°(21题)(22题)22.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°23.已知△ABC的内角∠A=a,分别作内角∠ABC与外角∠ACD的平分线,两条平分线交于点A1,得∠A1;∠A1BC 和∠A1CD的平分线交于点A2,得∠A2;…以此类推得到∠A2023的度数是()A.B.C.D.24.如图,在△ABC中,∠BAC=50°,∠ABC和∠ACB的平分线交于点P,则∠BPC的度数是()A.115°B.100°C.105°D.125°25.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE 于点E,若∠BOC=115°,则∠2=()A.30°B.25°C.20°D.35°(25题)(26题)26.如图,△ABC的两个外角的平分线相交于点O,若∠A=80°,则∠O等于()A.40°B.50°C.60°D.80°27.如图:①②③中,∠A=42°,∠1=∠2,∠3=∠4,则∠O1+∠O2+∠O3=()度.A.84B.111C.225D.20128.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,且∠BIC=140°,BM,CM分别平分∠ABC,∠ACB的外角,则∠BMC的度数是()A.25°B.30°C.35°D.40°29.如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,BG、CG分别平分三角形的两个外角∠EBC、∠FCB,则∠D和∠G的数量关系为()A.B.∠D+∠G=180°C.D.30.如图,在△ABC中,∠A=∠ABC,BH是∠ABC的平分线,BD和CD是△ABC两个外角的平分线,D、C、H三点在一条直线上,下列结论中:①DB⊥BH;②;③DH∥AB;④;⑤∠CBD=∠D,其中正确的结论有()A.2个B.3个C.4个D.5个31.在△ABC中,∠ABC,∠ACB的平分线交于点O,∠ACB的外角平分线所在直线与∠ABC的平分线交于点D,与∠ABC的外角平分线交于点E,下列结论:①;②;③;④∠E+∠DCF =90°+∠ABD.其中所有正确结论的序号是()A.①②B.③④C.①②④D.①②③④32.如图,在△ABC中,∠B=∠C,D为BC边上的一点,点E在AC边上,∠ADE=∠AED,若∠BAD=24°,则∠CDE的度数为()A.12°B.14°C.16°D.24°33.如图,在△ABC中,∠B=∠C=45°,点D在BC上,点E在AC上,连接AD,DE,∠ADE=∠AED,若∠BAD =m°,则∠CDE等于()A.B.C.D.34.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°35.如图中,高BD与CE交于O点,若∠BAC=72°,则∠BOC的度数为()A.72°B.126°C.108°D.162°36.如图,△ABC中,∠A=80°,高BE和CH的交点为O,则∠BOC等于()A.80°B.120°C.100°D.150°37.如图,在△ABC中,∠C=40°,按图中虚线将∠C剪去后,∠1+∠2等于()A.140°B.210°C.220°D.320°38.如图,将一个三角形剪去一个角后,∠1+∠2=230°,则∠A等于()A.35°B.50°C.65°D.70°39.如图,△ABC中,点D,E分别在∠ABC和∠ACB的平分线上,连接BD,DE,EC,若∠D+∠E=295°,则∠A 等于()A.65°B.60°C.55°D.50°40.如图所示,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.45°B.50°C.55°D.60°41.如图,三角形纸片ABC中,∠A=80°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=30°,则∠β的度数是()A.30°B.40°C.50°D.60°42.如图,将一张三角形纸片ABC的三角折叠,使点A落在△ABC的A′处折痕为DE,若∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是()A.γ=180°﹣α﹣βB.γ=α+2βC.γ=2α+βD.γ=α+β43.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°44.如图,将纸片△ABC沿DE折叠使点A落在点A′处,若∠1=80°,∠2=16°,则∠A为()A.25°B.28°C.32°D.36°45.如图,在△ABC中,∠1=120°,∠2=50°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠C的度数是()A.40°B.35°C.50°D.45°46.若△ABC满足下列某个条件,则它不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠B C.∠A:∠B:∠C=1:4:3D.∠A=2∠B=3∠C47.具备下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=1:2:3 B.∠A+∠B=∠C C.∠A=∠B=3∠C D.48.根据下列条件能判定△ABC是直角三角形的有()①∠A+∠B=∠C,②,③∠A:∠B:∠C=5:2:3,④∠A=2∠B=3∠C.A.1个B.2个C.3个D.4个49.在下列条件①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=∠C;④∠A:∠B:∠C=1:2:3中,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个50.如图,线段AD,BC相交于点O,连接AB,CD,AP平分∠BAD,CP平分∠BCD,则∠P,∠B,∠D满足的关系式是()A.∠P=∠B+∠D B.∠P=∠D﹣∠B C.D.二.填空题(共9小题)51.已知AD是△ABC的边BC上的中线,若△ABD的周长比△ACD的周长大6,则AB与AC的差是. 52.BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是.53.在△ABC中,AD为BC边的中线,若△ABD与△ADC的周长差为3,AB=8,则AC=.54.在△ABC中,BC边上的中线把三角形分割为两部分,若分割的这两部分周长之差为2,AB=5,则AC的长为.55.已知:如图所示,在△ABC中,点D、E、F分别为BC、AD、CE的中点,且,则阴影部分的面积为cm2.56.如图所示,在△ABC中,D、E、F分别为BC、AD、CE的中点,且S△ABC=4cm2,则阴影部分(△AEF)的面积等于.57.如图所示,在△ABC中,点D,E分别为BC,AD的中点,且S△ABC=4cm2,则阴影部分的面积为cm2.58.如图,在△ABC中,D、E、F分别为BC、AD、CE的中点,且S△ABC=24cm2,则阴影部分△AEF的面积为cm2.59.阅读材料:如图1所示,线段AB与CD相交于点O,称△AOC与△DOB为“对顶三角形”.根据三角形内角和定理知“对顶三角形”有如下性质:∠A+∠C=∠B+∠D.(1)如图2所示,线段AB与CD相交于点O,∠CAO与∠BDO的平分线AP和DP相交于点P,AP交CD于点M,DP交AB于点N,已知∠B=96°,∠C=98°,则∠P的度数是.(2)如图3所示,∠A+∠B+∠C+∠D+∠E+∠F=.三.解答题60.如图①,线段AB,CD相交于点O,连接AD,CB.如图②,在图①的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.(1)图①中请直接写出∠A+∠D与∠B+∠C之间的数量关系:;(2)应用(1)的结果,猜想∠P与∠D,∠B之间存在着怎样的数量关系?并说明理由.。
全等三角形判定-专题复习50题(含答案)

全等三角形判定一、选择题:1.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA2.方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC、△DEF,下列说法中成立的是()A.∠BCA=∠EDF B.∠BCA=∠EFDC.∠BAC=∠EFD D.这两个三角形中,没有相等的角3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△C DB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.下列判断中错误..的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.在△ABC和△A/B/C/中,已知∠A=∠A/,AB=A/B/,在下面判断中错误的是( )A.若添加条件AC=A/C/,则△ABC≌△△A/B/C/B.若添加条件BC=B/C/,则△ABC≌△△A/B/C/C.若添加条件∠B=∠B/,则△ABC≌△△A/B/C/D.若添加条件∠C=∠C/,则△ABC≌△△A/B/C/8.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F9.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm10.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1 B.2 C.3 D.411.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a212.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.二、填空题:13.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.14.如图示,点B在AE上,∠CBE=∠DBE,要使ΔABC≌ΔABD, 还需添加一个条件是__________.(填上你认为适当的一个条件即可)15.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是.16.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).17.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.18.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.19.如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE= 度.20.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.三、解答题:21.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A.B.试说明AD+AB=BE.22.如图,E、A.C三点共线,AB∥CD,∠B=∠E,,AC=CD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(下)第七章《三角形》复习 姓名 A )FD EB DC Eo Fb= CA学校班级 学号[一]认识三角形1 •三角形有关定义:在图9.1.3( 1)中画着一个三角形ABC.三角形的顶点采用大写字 母A 、B 、C 或K 、L 、M 等表示,整个三角形表示为△ ABC 或厶KLM (参照顶点的字母). 如图9.1.3 (2)所示,在三角形中,每两条边所组成的角叫做三角形的内角,如/ ACB ; 三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角, 如/ ACD 是与△ ABC 的内角/ ACB 相邻的外角.图9.1.3 (2)指明了△ ABC 的主要成分.q迪—'空心、启•一用于琦try 疳卜歼12•三角形可以按角来分类:所有内角都是锐角——锐角三角形;有一个内角是直角——直角三角形; 有一个内角是钝角——钝角三角形;图 9.1.4个锐角。
边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰; 练习:1、图中共有( )个三角形。
A : 5B : 6C : 7D : 82、 如图,AE 丄BC ,BF 丄AC ,CD 丄AB ,则△ ABC 中AC 边上的高是( A : AE B : CD C :3、 三角形一边上的高( A :必在三角形内部 C :必在三角形外部4、 能将三角形的面积分成相等的两部分的是( )。
A :三角形的角平分线B :三角形的中线C :三角形的高线D :以上都不对 B &具备下列条件的三角形中,不是直角三角形的是( )A:/ A+ / B= / C B:/ A= / B 」/ C C:Z A=90 ° - / B D :Z A- / B=902 7、一个三角形最多有 ____ 个直角,有 ______ 个钝角,有8> △ ABC 的周长是 12 cm ,边长分别为 a ,b , c ,且 a=b+1 , b=c+1 ,贝 U a _ cm ,cm , c= ______ c m 。
9、如图,AB // CD ,/ ABD 、/ BDC 的平分线交于 E ,试判断△ BED 的形状?BF D : AF)。
B :必在三角形的边上D :以上三种情况都有可能3三角形可以按角边分类:•把三条边都相等的三角形称为等边三角形(或正三角形);两条图 9.1.310、如图,在4X4的方格中,以AB 为一边,以小正方形的顶点为 顶点,画出符合下列条件的三角形,并把相应的三角形用字母表示出 来。
(1) _____________________________ 钝角三角形是 。
(2) 等腰直角三角形是 _________ 。
(3) 等腰锐角三角形是 ___________ 。
[二]三角形的内、外角和定理及其推论的应用1. 三角形的一个外角等于 ________________ 两个内角的和;2. 三角形三角形的一个外角 _______ 任何一个与它不相邻的内角3. 三角形的内角和 _______ 三角形的外角和等于 ________ 练习:1、三角形的三个外角中,钝角最多有( )。
A : 1个 B : 2个 C : 3个 D : 4 个 2、 下列说法错误的是( )o A :一个三角形中至少有两个锐角B : —个三角形中,一定有一个外角大于其中的一个内角C :在一个三角形中至少有一个角大于 60°D :锐角三角形,任何两个内角的和均大于 90°3、 一个三角形的外角恰好等于和它相邻的内角,则这个三角形是( A :锐角三角形 B :直角三角形 C :钝角三角形 D :不能确定4、直角三角形两锐角的平分线相交所成的钝角是( )A : 120° B : 135 C : 150° D : 165&在△ ABC 中,/ A=100°,Z B- / C=40°,则/ B= _________ ,/ C= ______ 。
7、如图1,Z B=50°,Z C=60°,AD ABC 的角平分线,求/ ADB 的度数 9、已知:如图 3, AE // BD ,/ B=28°,Z A=95°,求/ C 的度数。
[三]三角形三边关系的应用三角形的任何两边的和 _______ 第三边.三角形的任何两边的差 ________ 第三边.5、A ABC 中, A 100°, C 3 B ,贝U B■CDA图 9.1.9B图3练习:1、以下列线段为边不能组成等腰三角形的是( )。
A: 2、2、4 B : 6、3、6 C : 4、4、5 D : 1、1、12、现有两根木棒,它们的长度分别为 40 cm 和50 cm 若要钉成一个三角架,则在下列四根棒中应选取()A : 10 cm 的木棒B : 40 cm 的木棒C : 90 cm 的木棒D : 100 cm 的木棒 3、 三条线段a=5,b=3,c 为整数,从a 、b 、c 为边组成的三角形共有( )•A : 3个B : 5个C :无数多个D :无法确定4、 在厶ABC 中, a=3x ,b=4x ,c=14,则x 的取值范围是( )。
A : 2<x<14 B:x>2 C:x<14 D:7<x<149、如果a ,b ,c 为三角形的三边,且(a b )2 (a c )2b c 0,试判断这个三角形的形状。
10、如右图,△ ABC 的周长为24,BC=10, AD 是厶ABC 的中线,且被分得的两个三角形 的周长差为2,求AB 和AC 的长[四]多边形的内、外角和定理的综合应用n 边形的内角和为 _________________ ;正n 边形的单个内角为 ___________________ 任意多边形的外角和都为 _______ ;正n 边形的单个外角为 __________________1、若四边形的四个内角大小之比为 1: 2: 3: 4,则这四个内角的大小为 _________ 。
5、如果三角形的三边长分别为 m-1, m , m+1 (m 为正数),则m 的取值范围是( A : m>0 B: m>-2 C: m >2 D: m < 2等腰三角形的两边长为25cm 和12cm ,那么它的第三边长为 cm 。
工人师傅在做完门框后•为防变形常常像图 4中所示的那样上两条斜拉的木条 这样做根据的数学道理是 ______________________ 08、已知一个三角形的周长为15 cm ,且其中的两边都等于第三边的2倍,求这个三角形的最 短边。
6、7、)2、如果六边形的各个内角都相等,那么它的一个内角是__________。
3、在各个内角都相等的多边形中,一个外角等于一个内角的-,则这个多边形的每个内角3为 _______ 度。
4、(n+1 )边形的内角和比n边形的内角和大()。
A: 180°B: 360° C: nx 180°D: nX 360°5、n边形的内角中,最多有()个锐角。
A: 1个B: 2个C: 3个D: 4个7、若多边形内角和分别为下列度数时,试分别求出多边形的边数① 1260°② 2160°8、已知n边形的内角和与外角和之比为9:2,求n。
9、考古学家厄莎•迪格斯发掘出一块瓷盘的碎片。
原来的瓷盘的形状是一个正多边形。
如果原来的瓷盘是正十六边形,那么它大概是三世纪和平王朝礼仪用的盘子;如果原来的瓷盘是正十八边形,那么它大概是十二世纪哇丁王朝宴会用的盘子,厄莎度量这块碎片的每一条边的长度,发现它们的大小都相同。
她猜想原来的完好的盘子所有的边的大小都相同的。
她再度量每块碎片上的角,发现它们的大小也相同。
她猜想,原来的完好的盘子所有角的大小也相同。
如果每一个角的度数是160°,那么这个盘子出自哪一个朝代呢?[五]用正多边形拼地板当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就拼成一个平面图形1、用正三角形和正方形组合铺满地面,每个顶点周围有 _____ 个正三角形和_____ 个正方形'2、任意的三角形、 _________ 也能铺满平面。
4、下列正多边形地砖中不能铺满地面的正多边形是()。
A:正三角形B :正四边形C :正五边形D :正六边形5、若铺满地面的瓷砖每一个顶点处由6块相同的正多边形组成,正多边形只能是()A:正三角形B :正四边形C :正六边形D :正八边形&现有一批边长相等的正多边形瓷砖,请你设计能铺满地面的瓷砖图形。
正八边形正十二边形(1) 能用相同的正多边形铺满地面的有 __________________________ 。
(2) _________________________________________________________________ 从中任取两种来组合,能铺满地面的正多边形组合是 ____________________________________ (3) _________________________________________________________________ 从中任取三种来组合,能铺满地面的正多边形组合是 ____________________________________ (4) 你能说出其中的数学道理吗?7、下列图形中,哪些图形能接成一个平面图形而不留一点空隙?一、选择题(4分X 8=32分)1. 一个三角形的三个内角中A 、 2个B 、 3个C 、 4个 6.—个多边形内角和是10800,贝S 这个多边形的边数为第七 形单章三角 元测试卷班级姓名学号 __________A 、至少有一个钝角C 、至多有一个锐角B 、至少有一个直角 D 、至少有两个锐角2.下列长度的三条线段中,能组成三角形的是 ( )A 、3cm , 5cm , 8cmB 、8cm , 8cm , 18cmC 、0.1cm , 0.1cm , 0.1cmD 、3cm ,40cm ,8cm 3•如图1,点P 有厶ABC 内,贝S 下列叙述正确的是( BA 、x yB 、x ° >y °C 、x ° <y °D 、不能确定第 3题 4.已知,如图,AB // CD ,/ A=70°,/ B=400,则/ ACD=( )A 、 55°B 、 70°C 、 40°D 、 11005.下列图形中具有稳定性有(3)(4)(1 ) ( 2)第4题C 、 87•如图所示,已知△ ABC 为直角三角形,/ C=90,若烟图中虚线剪去/C ,则/ 1 + Z 2等于()BE 交于,点P ,若/ A=500,贝S / BPC 等于( A 、 90° B 、 130° C 、 270° D 、 315°填空题(3分X 10=30分)9. 如图,AB// CD / A = 96°,/ B=Z BCA 则/BCD= ______________10. 如图,△ ABC 中, / A = 35°,/ C = 60° ,BD 平分/ ABC DE// BC 交 AB 于 E, _____________ 则/ BDE= _______ , / BDC= .11. 某多边形内角和与外角和共1080°,则这个多边形的边数是 _________ 10.如图,则/ A +/ B +/ C +/ D+Z E +/ F= __________________12. 如图,BE 是△ ABC 的角平分线,人。