拉森钢板桩围堰支护计算说明修订稿
(完整版)拉森钢板桩基坑支护方案设计和计算

(完整版)拉森钢板桩基坑支护方案设计和计算3、拉森钢板桩基坑支护方案设计和计算3.1、基本情况城展路环城河桥桥台位于河岸上,基坑开挖深度较小;桥墩长24m,宽1.7m,右偏角90°,系梁底标高为0.0m,河床底标高0.0m,因此基坑底部尺寸考虑1m施工操作面要求,布置为长26m,宽3.7m,不需土方开挖。
环城河常水位2.6m,1/20洪水位3.27m,河床底标高0.0m,河底为淤泥土。
考虑选择枯水期施工,堰顶标高为3.5m。
3.2、支护方案设计支护采用拉森钢板桩围堰支护,围堰平行河岸布置,平面布置详见附图。
堰体采用拉森钢板桩Ⅳ型,桩长12米,内部水平围檩由单根(500×300mm)H型钢组成,支撑杆设置在钢板桩顶部,由直径为600mm,壁厚为8mm钢管组成。
整个基坑开挖完成后,沿基坑四周挖出一条200×200mm排水沟,在基坑对角设500×500×500mm集水坑,用泥浆泵将集水坑内渗水及时排出基坑。
布置图:4、基坑稳定性验算4.1、桥墩基坑稳定性验算钢板桩长度为12米,桩顶支撑,标高3.5米,入土长度8.5米。
基坑开挖宽度26米,坑底标高0.0米。
基坑采用拉森钢板桩支护,围檩由单根(500×300mm)H型钢组成,设单道桩顶支撑,支撑采用直径为600mm,壁厚为8mm钢管作为支撑导梁,钢管与H型钢进行嵌固相连并焊接。
验算钢板桩长度,选择钢板桩和导梁型号,验算基底稳定性。
采用理正深基坑软件对支护结构和围囹支撑体系等变形与内力整体计算分析;支护结构的抗倾覆稳定性、抗隆起、抗管涌、嵌固深度采用理正深基坑支护结构设计软件单元计算进行分析。
4.1.1、设计标准及参数1、基坑设计等级及设计系数二级,重要性系数:1.0;支护结构结构重要性系数:1.0;构件计算综合性系数:1.25。
2 、材料力学性能指标1、单元分析工况定义(1)、工况1:打钢板桩,水面以下3.5m;(2)、工况2:在桩顶以下0.5m处安装第一道内支撑;(3)、工况3:抽水;2、单元计算[ 支护方案 ]----------------------------------------------------------------------连续墙支护---------------------------------------------------------------------- [ 基本信息 ]---------------------------------------------------------------------- [ 附加水平力信息 ]---------------------------------------------------------------------- [ 土层信息 ]---------------------------------------------------------------------- [ 土层参数 ]---------------------------------------------------------------------- [ 支锚信息 ]---------------------------------------------------------------------- [ 土压力模型及系数调整 ]----------------------------------------------------------------------弹性法土压力模型: 经典法土压力模型:---------------------------------------------------------------------- [ 工况信息 ]-------------------------------------------------------------------------------------------------------------------------------------------- [ 设计结果 ]---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ]---------------------------------------------------------------------- 各工况:内力位移包络图:地表沉降图:---------------------------------------------------------------------- [ 抗倾覆稳定性验算 ]---------------------------------------------------------------------- 抗倾覆安全系数:p , 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
拉森钢板桩支护方案评估计算书

拉森钢板桩支护方案评估计算书1. 概述本文档旨在评估拉森钢板桩支护方案的设计和计算。
拉森钢板桩是一种常用的地基支护结构,适用于土方开挖、河道治理、基坑支护等工程中。
本评估计算书将根据设计要求和计算方法对拉森钢板桩支护方案进行综合评估。
2. 设计要求2.1. 土壤力学参数:根据现场勘探数据和试验结果,确定土壤斜坡角、内摩擦角、内聚力等基本参数。
2.2. 桩材料和尺寸:选择合适的拉森钢板桩材料,并确定桩长、板厚等尺寸参数。
2.3. 水平支撑和排水设计:根据工程需求,确定水平支撑和排水设施的设计要求。
2.4. 安全系数:根据国家相关标准和规范,确定各个设计参数的安全系数。
3. 计算方法3.1. 土压力计算:根据土壤力学理论,计算拉森钢板桩承受的土压力,并考虑土体的侧向土压力和摩阻力等因素。
3.2. 桩身受力计算:计算拉森钢板桩桩身所受的水平和垂直力,并考虑土压力的作用。
3.3. 稳定性评估:评估拉森钢板桩的整体稳定性,包括侧向稳定性和纵向稳定性。
3.4. 桩-土交互作用分析:分析拉森钢板桩与土壤之间的相互作用,确定桩-土界面的剪切应力和阻力等参数。
4. 评估结果通过使用上述的设计要求和计算方法,对拉森钢板桩支护方案进行评估,得出方案的稳定性、承载力和变形等评估结果。
5. 结论综合评估表明,拉森钢板桩支护方案满足设计要求,具备良好的稳定性和承载能力。
然而,还需要进行进一步的施工方案设计和现场监测,以确保该方案在实际工程中的可行性和安全性。
以上为拉森钢板桩支护方案评估计算书的简要内容,详细的设计和计算数据请参考相关附件。
拉森钢板桩水中围堰设计及验算

拉森钢板桩水中围堰设计及验算注:本文着重介绍在水中拉森钢板桩围堰施工中,常见的设计步骤及验算方法,并配以示例图片。
1. 数据参数收集首先需要侧得墩水深, 需清除的淤泥厚, 在抽水清淤时需要设置多层支撑,此处支撑一般采用等弯矩布置。
施工中采用拉森Ⅳ型钢板桩, 需知道钢板桩的惯性模量W ,抗弯强度设计值[f b]。
其他需要的参数:水重度γw ,砂粘土的重度γ ,内摩擦角φ,粘聚力c 。
2. 确定支撑层数与间距按等弯矩布置各层支撑的间距, 得出板桩顶部悬臂端的最大允许跨度如3. 88 m,则支撑层数之间的间距依次为 L1 =2.5 m, L2 =2 m, L3 =2 m, L4 =2.28 m, L5 =2m。
3. 拉森钢板桩的长度计算首先要确定板桩的入土深度,选择用盾恩近似法来计算板桩的入土深度, 需要先计算出朗肯主动土压力系数Ka和朗肯被动土压力系数Kp。
再根据采用的支撑数,算出总的最低钢板桩桩长如16.99 m。
鉴于拉森Ⅳ钢板桩的长度,决定采用拉森桩桩长为 18 m,埋入深度为 6.02 m。
由计算可知埋入深度满足围堰的稳定性要求。
4. 拉森钢板桩强度复核计算需要参数:钢板桩的截面抵抗矩为W ,钢板桩允许抗弯应力[σ] ,得出 Mmax 来判断选用的拉森Ⅳ型钢板桩是否满足强度要求。
5. 抗倾覆验算由3可知:拉森桩理论埋入深度为 L,而实际埋入深度为L′。
计算抗倾覆系数 k =L′/L是否满足要求。
6. 基底隆起验算即水压力和淤泥压力的合力q= γw(H +L5 )+γ′(h + L5 )7. 腰梁支撑强度、刚度钢板桩围堰平面尺寸如为 8.8 m ×10 m,支撑采用并拼双道Ⅰ36b型工字钢 ,斜撑采用 60 cm壁厚 12 mm的管桩。
斜支撑按 45°角布置于腰梁相邻两工字钢之间 ,两斜支撑焊接于三等分工字钢。
腰梁间距D确定后,计算腰梁所承受的均布水平荷载P,即假定腰梁承受相邻两跨各半跨上的侧压力,再分别计算出土中和水中的侧压力。
拉森钢板桩支护方案计算书

拉森钢板桩⽀护⽅案计算书xxx有限公司拉森钢板桩⽀护⽅案计算书⽂件编号:受控状态:分发号:修订次数:第 1.0 次更改持有者:桂林市西⼆环路道路建设⼯程排⽔管道深基坑开挖施⼯⽅案计算书⼀、⼯程概况桂林市西⼆环路⼆合同段污⽔管道⼯程的起点K12+655,终点K17+748,埋设管道为聚氯⼄烯双壁波纹管(Ф500)和钢筋砼管(Ф800),基础采⽤粗砂垫层,基础⾄管顶上50cm范围为粗砂回填,其上为级配碎⽯回填⾄路床;起点管道底部标⾼为,管道平均埋深为⽶左右,最深为⽶,地下⽔位较⾼,其中有局部⾥程段厚⼟层以下是流沙层,开挖时垮塌较严重,为防⽌开挖时坍塌事故发⽣,特制定该⽅案,施⼯范围为K12+655~K14+724段左侧污⽔管。
本段施⼯段地质为松散耕⼟、粉质粘⼟,地下⽔位⾼,遇⽔容易形成流砂。
⼆、⽅案计算依据1、《桂林市西⼆环路道路建设⼯程(⼆期)施⼯图设计第三册(修改版-B)》(桂林市市政综合设计院)。
2、《市政排⽔管道⼯程及附属设施》(06MS201)。
3、《埋地聚⼄烯排⽔管管道⼯程技术规程》(CECS164:2004)。
4、《钢结构施⼯计算⼿册》(中国建筑⼯业出版社)。
5、《简明施⼯计算⼿册》(中国建筑⼯业出版社)。
三、施⼯⽅案简述1、钢板桩⽀护布置钢板桩采⽤拉森ISP-Ⅳ型钢板桩,其长度为12⽶/根,每个施⼯段50m需260根钢板桩。
根据施⼯段⼀般稳定⽔位154.0m和⽬前⽔位情况,取施⼯⽔位为154.00m。
根据管沟开挖深度(),钢板桩⽀护设置1道型钢圈梁和⽀撑。
以K14+100左侧排污管道钢板桩⽀护为例,桩顶标⾼为157.83m,桩底标⾼为148.83m,依次穿越松散耕⼟→粉质粘⼟层。
2、钢板桩结构尺⼨及截⾯参数拉森ISP-Ⅳ型钢板桩计算参数如下表所⽰:四、计算假设1、根据设计图纸中地勘资料提供的⼟层描述,本计算中⼟层参数按经验取值如下(K14+100钢板桩⽀护处):则计算取值:γ=18 KN/m3 ,φ=150,c=10 KPa 。
拉森钢板桩设计计算书

拉森钢板桩设计计算书(1)钢板桩的设置位置要符合设计要求,便于基础施工,即在基础最突出的边缘外留有支模、拆模的余地。
(2)基坑护壁钢板桩的平面布置形状应尽量平直整齐,避免不规则的转角,以便标准钢板桩的利用和支撑设置.各周边尺寸尽量符合板桩模数。
(3)整个基础施工期间,在挖土、吊运、扎钢筋、浇筑混凝土等施工作业中,严禁碰撞支撑,禁止任意拆除支撑,禁止在支撑上任意切割、电焊,也不应在支撑上搁置重物。
2 工艺流程根据施工图及高程放设沉桩定位线→引孔的施工→沉桩位置沟槽开挖1m 深→根据定位线设置沉桩导梁→整修、平整施工机械行走道路→钢板桩插入和预打→静压钢板桩→静压机行走路线处沟槽的平整→钢管桩的静压施工→挖除地表面 1.0m厚土及放坡→开挖至第一道围檩位置→设置围檩及支撑→开挖至第二道围檩位置→设置围檩及支撑→土方开挖→割除并吊出上部的钢管桩(可根据钢管桩每节的长短进行工序的调整)→施工桥台至第二道支撑下0。
5m处→填土及拆除第二道围檩及支撑→施工桥台至第一道支撑下0.5m处→填土及拆除第一道围檩及支撑→主体结构施工完成→回填土→拔除钢板桩→在桩的缝隙处用细砂回填密实在施工过程中采用集水明排方式排出坑底汇水。
3 操作工艺(1)打桩机械主机采用静压机,噪音及振动较小。
围檩、支撑、板桩吊装采用25t汽车吊.板桩围堰施工采用测量定位、屏风式打入的施工方法。
(2)钢板桩的检验及矫正对进场的钢板桩按出厂标准进行检验,应对外观质量进行检验,包括长度、宽度、厚度、高度等是否符合设计要求,有无表面缺陷,端头矩形比,垂直度和锁口形状等。
验收标准:①高度允许偏差±8mm;②宽度绝对偏差+10mm;③弯曲和挠度用2m长锁口榉板顺利通过全长挠度<1%;④桩端平面应平整;⑤钢板背面及锁口应光滑无阻.使用千斤顶、大锤和氧气、乙炔等工具材料完成包括端部修整、桩体矫曲、扭曲及局部变形矫正、锁口变形矫正。
锁口检查的方法:用一块长2~3m的同类型、同规格的钢板桩作标准,将所有同型号的钢板桩做锁口通过检查.检查采用卷扬机拉动标准钢板桩平车,从桩头至桩尾作锁口通过检查。
拉森钢板桩围堰检算书15m

拉森钢板桩围堰检算书15m钢板桩围堰检算1、构件特性取钢材的弹性模量为 211/N 101.2m ⨯,3.0=μ,)1(2/μ+=E G1.1拉森Ⅳ钢板桩截面参数:截面积 20242.0m A = 惯性矩 441086.3m I -⨯= 截面抵抗矩 331027.2m W -⨯= 截面回转半径 ix=0.282m 1.2单根Ⅰ45a 工字钢截面参数:截面积 23102.10A m -⨯= 惯性矩 4410224.3m I x -⨯= 截面抵抗矩 331043.1m W x -⨯= 1.3单根Ⅰ56a 工字钢截面参数:截面积 23105.13A m -⨯= 惯性矩 441056.6m I x -⨯= 截面抵抗矩 331034.2m W x -⨯= 2、工况分析①工况1:增江十年一遇洪水位9.31m ,围堰外最高水位按9.31m 计算,围堰第一层支撑、封底混凝土已完成,抽水至+3.07m ,第二层支撑还未安装时; ②工况2:当围堰内支撑实施结束,增江十年一遇洪水位9.31m ,围堰外最高水位按9.31m 计算,围堰受到静水压力,流水冲击力和砂土的主动土压力共同作用时。
3、围堰检算 3.1工况1:3.1.1围堰拉森Ⅳ型钢板桩最不利工况受力分析,主要荷载有:a 、静水压力,随着水深增加从上往下呈线性分布。
b 、流水冲击力,设流速为s m /2,影响范围为整个水深范围。
c 、下层饱和砂土的主动土压力荷载分析:水深7.31m ,流水冲击力合力作用点位于距上端水深1/3高度处,主动土压力为7.31—9.36m 处,另加封底混凝土以下0.5m ,也即9.36—9.86m①集中荷载:流水冲击力 grv kA F 22=K 取1.5,v 取2m/s,截面面积取一延米长,则()KN F 93.2110221031.70.15.12=⨯⨯⨯⨯⨯=作用点距顶端m 44.23/31.7=处 ②分布荷载:a.静水压力 rh p =最大线荷载值 KN F 4.6224.6100.1=⨯⨯= 从钢板桩顶端下0.19m 往下6.43m 处呈三角形分布 b.主动土压力取饱和砂土容重3/18m KN sat =γ,砂土内摩擦角030=ϕ则)2/45(tan )(02ϕγγ--=h P w satKPa P 8.6)2/3045(tan 55.2)1018(002=-⨯⨯-=为简化计算过程,具体如下: 荷载分布图:弯矩图:KN R A 1.209=m KN M .413max =MPa MPa mKN 210][9.1811027.2.4133max =〈=⨯=-σσ,满足要求 剪力图:支座反力:R A =209.1KN3.2工况23.2.1拉森Ⅳ型钢板桩围堰最不利工况受力分析,主要荷载有:a 、静水压力,随着水深增加从上往下呈线性分布。
完整版)拉森钢板桩基坑支护方案设计和计算

完整版)拉森钢板桩基坑支护方案设计和计算3.1 Basic XXXXXX。
XXX depth。
The pier is 24m long。
1.7m wide。
with a right angle of 90°。
and the beam bottom n is 0.0m。
The riverbed bottom XXX。
the bottom size of the n is arranged as26m long and 3.7m wide。
considering the 1m XXX requirement。
XXX's normal water level is 2.6m。
the 1/20 flood level is 3.27m。
and the riverbed bottom n is 0.0m。
with the XXX。
the weir crest XXX 3.5m.3.2 Support Scheme DesignThe support adopts Larsen steel sheet pile cofferdam support。
which is arranged parallel to the river bank。
The layout is XXX cofferdam uses Larsen steel sheet pile type IV。
with a pile lengthof 12 meters。
The internal XXX of a single (500×300mm) H-shaped steel。
and the support rod is set at the top of the steel sheet pile。
composed of a 600mm diameter and 8mm XXX。
a200×200mm drainage ditch is dug around the n。
拉森钢板桩计算范文

拉森钢板桩计算范文首先,拉森钢板桩的计算主要包括以下几个方面:1.桩长计算2.桩身截面计算3.钢板的选择和计算4.连接机构的计算首先,桩长的计算需要根据具体工程的要求进行。
通常根据挡土高度、土壤条件等因素来确定。
桩长的计算可以采用经验公式或者数值计算方法。
经验公式可以根据挡土高度进行估算,但对于复杂的地质条件和土质情况,还需要进行数值计算。
在进行桩身截面计算时,需要根据工程要求的桩身横截面形状和尺寸来确定。
常见的桩身横截面形状有直线形、梯形形和锯齿形等。
在确定桩身横截面形状后,需要进行相关计算,包括抗弯强度、剪切强度等计算。
这些计算可以通过材料力学公式、截面力学平衡等原理进行。
关于钢板的选择和计算,需要根据桩身截面形状和尺寸来确定。
钢板需要具备足够的强度和刚度,才能够满足工程要求。
在钢板计算中,需要考虑其破坏形式、承载力和刚度等因素。
钢板的计算可以根据经验公式或者有限元方法进行。
最后,连接机构的计算是确保拉森钢板桩系统能够正常工作和承受荷载的重要一环。
连接机构包括桩身之间的连接和桩身与基础之间的连接。
在连接机构的计算中,需要根据桩身截面形状和尺寸,结合工程要求,考虑连接的刚度和强度等因素。
连接机构的计算可以通过弹性理论、塑性理论等进行。
综上所述,拉森钢板桩的计算是一个综合性的过程,需要考虑桩长、桩身截面、钢板选择和计算以及连接机构等方面。
在进行计算时,需要根据具体工程要求的土壤条件、挡土高度等进行合理的选择和计算。
通过合理的计算和设计,可以确保拉森钢板桩系统能够满足工程要求,并具备足够的抗荷能力和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉森钢板桩围堰支护计
算说明
WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-
拉森钢板桩支护计算单
一、 检算依据:
1、《建筑施工手册》
2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案
二、已知条件:
承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。
填土层厚米,下为卵石层。
根据地质情况:取填土重度γ=m3,内摩擦角φ=15o ,卵石重度γ= KN/m3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。
三、计算:
按单层支撑和二层支撑两种情况进行检算
1、单层支护
1)、钢板桩围堰旁边的机械荷载取20KN/m2, 且距离围堰距离为米。
钢板桩最小嵌入深度t ,由建筑施工手册
在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m3
φ平均=(15*+36*)/=
主动土压力系数:K a =-45Tan 2
(
φ/2)=; 被动土压力系数:K p =+45Tan 2
(
φ/2)=。
基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p
h=
K——为被动土压力的修正系数,取。
2)、计算支点力米处:P。
=
基坑底钢板桩受力米处:
如图:
剪力图
弯矩图最小嵌入深度t:
t=。
t 。
=
h K -KK P 6a
P 0
+⨯(γ=
t=。
=
已知外界荷载:q =Ka*30=m2
求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ=1000*1340=<175 Mpa 满足要求。
2、多层支护
多层支护最小嵌入深度h :h=*h o =*n o *H=**=
第一层支撑设在+79m 处,第二层支撑设在+处, 已知外界荷载:q =Ka*30=m2。
1)、工况一:当基坑开挖到第一层支撑+79m 处时,相当于悬臂式支护结构,钢板桩最大弯矩M max =*m ,满足拉森钢板桩的承载要求,设立第一层支撑结构。
2)、工况二:当基坑开挖到第二层支撑+77m 处时,相当于单支点支护结构。
支点力T1=,钢板桩最大弯矩M max =*m
剪力图
弯矩图
满足要求,围檩施工完后可继续开挖。
3)、工况三:当基坑开挖到基坑底时,相当于多层支点支护结构
支点力T1=,T2=,基坑底部钢板桩受力T3=,钢板桩最大弯矩M max=50KN*m
剪力图
弯矩图
如图所示工况三维钢板桩受力最不利时:
mm N mm /215/N 1862
125
168001000050y I M X X <=⨯⨯==
σ 钢板桩满足要求,可继续下一道工序。
4)、工况四:浇注封底砼完成,达到设计强度后,支点转移到封底砼处。
支点力T1= KN,T2=,基坑底部钢板桩T3=,钢板桩最大弯矩M max=*m
剪力图
弯矩图
3、围檩工钢检算:
第二层围檩所受均布力集度最大,所以按第二层检算:且力为T= KN/m2,按三跨超静定梁计算求得最大弯矩M max =*m (跨中)
二层工字钢与围檩受力
336
X X x cm 25341021505.110572f M W =⨯⨯⨯=⨯=-γ
则用双拼I36a 的工字钢满足要求。
斜撑处杆件受压轴力F ,Fmax=
47.2310215
1054.504A 23
n =⨯⨯=
- cm2, 取I20工字钢An=2满足要求。