金刚石研究文献综述
金属结合剂金刚石工具研究进展

金属结合剂金刚石工具研究进展摘要:金刚石的硬度极高,被广泛用作磨料来加工硬质材料,如混凝土、硬质合金或天然石材等。
随着新型陶瓷混凝土等加工对象的不断出现和变化,要求金刚石工具要持续改进,以提高其切削效率、减少自身磨损、同时降低其制造和使用成本。
本文综述了人造金刚石颗粒的性能、不同类型金属结合剂的成分组成和基本性能、金刚石与金属结合剂的界面结合强度的措施,并对金属结合剂金刚石工具的发展作了进一步探讨。
关键词:金属结合剂;金刚石;界面结合强度引言本文将分类对前人的研究结果进行综述,归纳人造金刚石颗粒的特性,对比不同金属结合剂的成分组成和材料性能,总结金刚石/结合剂的界面行为,展望金属结合金刚石工具的发展方向。
1金刚石磨粒的特性金刚石磨粒承担去除材料的作用,不仅要能经受住高速下的冲击力,而且要具有自锐性,即当磨粒磨损钝化后,能破裂生成新的切削刃。
金刚石的品级、粒度、含量等基本性能,以及其同结合剂的匹配均影响工具的切削效果。
国际上具有代表性的金刚石制造商有元素六和ge公司,其制造的用于切割和钻探的高品级金刚石晶形规则、棱角饱满、对称度高、抗冲击强度和热稳定好。
我国的金刚石生产企业有中南钻石、黄河旋风、郑州华晶等,它们生产的金刚石品种齐全,虽然某些产品性能上与国外产品有差异,但价格上有优势。
我国已占据世界金刚石合成量的90%以上,是名副其实的生产大国,现正向质量强国迈进。
2金属结合剂特点种类金刚石磨具用结合剂主要有树脂、金属、陶瓷等3类。
金属结合剂按主要成分可以分为:钴基、铜基(常为青铜、黄铜)、铁基、钨基、镍基、铝基结合剂等。
金属结合剂通常由黏结金属、骨架材料和添加剂组成。
黏结金属应具有较低的熔融温度,使其具有液相烧结的特性,填充于骨架金属之间及骨架金属与金刚石之间,牢固地黏结骨架金属和金刚石,使工具具有较高的强度和抗冲击性。
黏结金属通常是几种金属的合金,如Co、Fe、Cu等金属及其合金。
骨架金属以碳化物为主,如WC、W2C、TiC等,也可用难熔金属W、Mo代替WC等使用,其作用是在高温烧结时保持固相状态,固定金刚石,同时提高基体韧性和耐磨性。
人造金刚石研究报告

人造金刚石研究报告摘要:人造金刚石是一种通过人工合成方式制备的具有类似天然金刚石结构和性质的新材料。
其在颜色、硬度和耐磨性方面具有突出优势,并且具有广泛的应用前景。
本报告对人造金刚石的制备方法、性质以及应用进行了综述,并对其未来发展方向进行了展望。
1.引言金刚石是一种具有超高硬度和优异物理性质的自然矿物,然而,其稀缺性和高价值限制了其应用范围。
人造金刚石的问世填补了市场需求与供给之间的空白,为不同领域的应用提供了更多可能性。
2.人造金刚石的制备方法人造金刚石的制备方法主要包括高温高压法、化学气相沉积法和其他化学合成方法。
高温高压法是最早被使用的方法之一,通过在高温高压条件下模拟地壳中金刚石的形成过程制备人造金刚石。
化学气相沉积法则是将金属催化剂与烃类原料放置在高温高压下进行反应制备金刚石。
其他化学合成方法则采用不同的化学反应路径,在较低温度和压力条件下制备金刚石。
3.人造金刚石的性质人造金刚石的性质类似于天然金刚石,具有极高的硬度、热导率和光学透明性。
然而,人造金刚石也有其不同之处,如杂质含量较高、晶体结构略有差异。
人造金刚石的硬度和耐磨性使其在工业领域中有着广泛的应用,例如用于切削工具、磨料、光学器件等。
4.人造金刚石的应用人造金刚石因其独特的性质在多个领域得到了应用。
在切削工具领域,人造金刚石可制成高速切削刀具,用于加工硬质材料;在电子学领域,人造金刚石具有优异的热导率和绝缘性能,可用于制备高功率电子设备的散热材料;在光学领域,人造金刚石可用于制备光学窗口、透镜和激光器件等。
5.人造金刚石的未来发展随着科技的进步和人造金刚石制备技术的不断发展,人造金刚石在未来有着广阔的应用前景。
研究人员正在尝试改进制备方法,提高人造金刚石的质量和晶体尺寸,以满足不同应用需求。
此外,人造金刚石的微纳加工技术也是一个研究的热点,将有助于人造金刚石在纳米器件和生物医学领域的应用。
结论:人造金刚石作为一种新的材料,在颜色、硬度和耐磨性方面具有突出优势,并且具备多种应用潜力。
中国金刚石矿产资源综述(2)

中国金刚石矿产资源综述(2)中国金刚石矿产资源综述(2)胡经国(yuanzi16)九、中国金刚石矿床类型中国已知金刚石矿床可分为岩浆岩型,即金伯利岩型原生矿床和金刚石砂矿床两种类型。
1、金伯利岩型金刚石原生矿床3种。
中国已发现金伯利岩管有20余个,主要分布在山东和辽宁两省。
金伯利岩管一般呈圆形、椭圆形和不规则型产出;直径数米至数百米,长径与短径比约2∶1~4∶1;岩管截面有膨大和狭缩现象,至一定深度常渐变成岩脉状。
岩管产状一般很陡,倾角约为75°~85°。
岩管含矿性高。
中国已探明的金刚石原生矿大多属此种类型矿床。
中国已发现金伯利岩脉有400余条,分布于辽宁、山东、贵州3省,虽部分含金刚石,但具有工业价值的极少。
目前已知,仅山东省蒙阴红旗1号、红旗5号金伯利岩脉中的金刚石原生矿具有工业价值。
金伯利岩床见于山东、河南等省。
岩浆沿围岩层面作平缓面状侵入,岩床倾角一般为10°,含矿性低,很少形成工业矿床。
2、金刚石砂矿床按形成时代,可分为古砂矿和现代(第四纪)砂矿两个亚类。
中国具有工业价值的金刚石砂矿,均为现代(第四纪)砂矿,分布在山东、湖南、辽宁和江苏等省。
包括残坡积、洪坡积、河流冲积等形成的各种砂矿。
十、中国金刚石典型矿床1、辽宁省瓦房店(复县)金刚石矿田该矿床属金伯利岩型金刚石原生矿田。
位于辽宁省瓦房店市以西。
矿田长约28km,宽约18km,面积约为500km2。
在大地构造上,该矿田处于华北地台辽东台隆复县-新金拗陷的复州拗陷内。
拗陷的基底为太古宇鞍山群角闪斜长片麻岩和混合岩化花岗岩、变粒岩。
上覆三个构造层:下为中新元古界构造层,由长城系、蓟县系的片麻岩、白云质大理岩、千枚岩、石英质砂岩、粉砂质页岩等组成,42号、30号、50号、51号、68号、74号金伯利岩体均侵入于蓟县系地层中;中为古生界构造层,由寒武系、奥陶系、石炭系的灰岩、砂页岩夹煤层组成;上为中生界构造层,以侏罗系砂岩、砾岩为主。
金刚石研究文献综述

合成金刚石文献综述1 前言金刚石,俗称钻石,在工业和宝石领域都起着重要的作用,在工业领域主要是作为超硬材料在采掘机械的钻头、切割机的刀具、磨具等,宝石用途主要是作为主镶宝石和陪镶宝石。
随着天然金刚石的日渐稀少,人工合成金刚石成为世界各国晶体学研究的重要对象。
在目前的资料中,金刚石具有最大的原子密度(176atoms/nm3),最大可能的单位原子共价键数目,极强的原子键能(7.6eV),这些为金刚石的特殊性质提供了基础。
金刚石是等轴晶系,立方晶胞,它的晶胞特点使得金刚石成为一种极限功能材料:最高硬度(10400kg/mm2),最高热导率(常温下20W/cm.K),最高传声速度(18.2km/s),最宽透光波段,抗强酸强碱腐蚀,抗辐射,击穿电压高,介电常数小,载流子迁移率大,绝大部分金刚石既是电的绝缘体,又是热的良导体,而掺杂后又可成为卓越的P型或N 型半导体。
金刚石在常温下抗所有酸、碱的腐蚀,即便是在高温下也抗所有酸的腐蚀。
在现代社会中,金刚石被广泛的应用到工业、科技、国防、医疗卫生等很多领域当中[1]。
2 正文2.1金刚石的合成理论金刚石的化学组分为碳,它和石墨同为碳的同质异象体,因此,合成金刚石的原理就是借助于金刚石组分为纯碳的特点,设法将石墨在一定条件下转化为金刚石。
目前人工合成金刚石的主要理论有三种,分别为:溶剂论、催溶论和固相转化论[3]。
其中,溶剂论认为,在金刚石热力学稳定的高温高压条件下,在有触媒(比如金属)存在时,非金刚石型碳(比如石墨)溶解于熔融的金属中而形成一般意义上的化学溶液。
当相对于金刚石的溶解度达到过饱和时,金刚石就会从溶液中成核晶出。
无触媒存在时,则认为是在更高的压力和温度下,石墨熔化解体,温度降低时熔体冷凝而得到金刚石。
总之,无论什么条件下。
金刚石形成的前提是石墨的解体。
有触媒存在时金刚石形成的历程可表示为金刚石是在这中胶体溶液过饱和的情况下析出结晶而成;催化论的核心观点认为,高温高压下,熔融的金属仅仅能溶解碳还不够,还必须具有如下作用:或者是金属的原子有吸引石墨原子的电子,从而使其具有形成碳的正离子的能力,或者是金属的晶格可作为金刚石晶体的结晶基底,从而大大降低金刚石的晶出能量。
金刚石的成因及其矿床形成背景综述

金刚石的成因及其矿床形成背景综述摘要:金刚石既是一种昂贵的、永恒的宝石资源,又是现代工业和国防建设中不可缺少的矿物原料,它是在特定的温、压条件下,由独特的地质作用形成的特种矿产。
尽管他可能存在着多种成因和原生矿床,但捕虏晶成因迄今仍占主导地位,而具有工业价值的原生金刚石矿床则主要是金伯利岩型和钾镁煌斑岩型,其主要产出的地理分布基本遵循克利福德定律。
关键词:金刚石成因矿床1 前言金刚石是一种昂贵的、永恒的宝石资源,又是现代工业和国防建设不可缺少的矿物原料p2 成因对于金刚石的成因,历史上曾有多种不同的看法,总体可概括为如下两种[3]:上个世纪八十年代以前居于主导地位的岩浆成因,其认为金刚石是在金伯利岩或钾镁煌斑岩中结晶形成的;上个世纪八十年代初期以来居于主导地位的捕虏晶成因,其相关理论依据主要有:(1)金刚石与寄主岩石间的时间差,即:金刚石包体的铷、锶同位素测年确定金刚石的结晶年龄为32~34亿年,而金刚石寄主岩的侵入年龄往往低于16亿年[4]。
两者形成时间的巨大差异表明,后期形成的金刚石寄主岩只是将早期已结晶形成的金刚石运移至地表。
(2)在原生矿床中发现了含金刚石的榴辉岩和方辉橄榄岩捕虏体,这说明金刚石在地幔中形成和被两种地幔岩捕获,携带金刚石包裹体的地幔岩被金伯利岩带到了地表,其直接证明了寄主岩中的金刚石属于捕虏晶成因。
(3)全世界不同地区的产出的金刚石,其内部包裹体矿物基本相似。
(4)金刚石表面往往具熔蚀、再生、变形纹等,这说明金刚石在上地幔中已经形成并在后期被运到地表的过程中经历了变质变形作用及再生加大作用。
金刚石的“捕虏晶”成因说虽然占据主导地位,但它并不排除金刚石还可能存在其它的成因。
基于球粒陨石中普遍存在有金刚石,有人提出了金刚石源于“宇宙成因”。
此外,也有人提出了金刚石源于“变质成因”、金刚石的“二次形成说”以及火山口炸裂的过程中聚结形成等观点。
3 成矿背景金伯利岩中的金刚石矿床的开采已有着悠久的历史,而金伯利岩岩浆活动则主要限于大陆克拉通地区,多数金伯利岩型金刚石矿床分布于太古宙克拉通上[3]。
新型金刚石材料的研究进展和应用

新型金刚石材料的研究进展和应用随着科技的发展,研究人员们一直在探索更优秀的材料。
金刚石作为工业上的一种重要材料,因其硬度高、耐磨性强而被广泛应用。
然而,传统金刚石材料的晶格结构不完美,导致其强度不高,易于碎裂。
随着科技的发展,新型金刚石材料的研究逐渐成为了热点问题。
本文将着重介绍新型金刚石材料的研究进展和应用。
1. 新型金刚石材料的研究进展1.1 超硬金刚石材料超硬金刚石材料是一种由金刚石晶体和其他材料共同构成的新型材料,具有强度高、硬度高等特点。
由于超硬金刚石的强度高,故而大大提高了其的应用范围。
目前,该材料已被广泛应用在航空、航天、工业加工等领域。
1.2 氮化金刚石材料氮化金刚石材料是一种新型的金刚石材料,是以金刚石和氮化硼组成的化合物,具有更高的硬度、抗裂能力和导热性。
据研究,氮化金刚石的硬度比传统金刚石提高了10倍之多。
该材料在高温、高压、强酸、强碱、高放射性等复杂环境下具有稳定性,可广泛应用于半导体照射器具、高温高压实验装置、电力行业等领域。
1.3 氢化金刚石材料氢化金刚石材料是一种以金刚石和氢共同构成的新型金刚石材料,在其晶格结构中,氢原子充当了“粘合剂”的作用,从而让这种金刚石材料的硬度更高。
研究人员近年来已成功制备了单晶氢化钻石,其硬度比传统金刚石提高了10倍之多。
这种材料的应用前景非常广阔,可广泛应用于机械制造、工业加工、武器装备、半导体等领域。
2. 新型金刚石材料的应用2.1 工业加工领域新型金刚石材料的应用使得工业加工领域的工作效率大大提高。
随着超硬金刚石材料的应用,精密、高效的成型刀具已经大量应用于工业生产实践之中。
使用超硬金刚石磨具,可以大大提高机械零部件的加工精度,使得零部件加工的质量更加稳定,赢得了广泛的市场信赖。
2.2 航空航天领域新型金刚石材料的应用对于提高航空、航天领域的安全性和可靠性有着积极的意义。
由于氮化金刚石材料的硬度高、抗裂能力好,因此可以广泛应用于发动机、航空涡轮发动机以及人造卫星等复杂器材上,提高其的寿命和可靠性。
金刚石的研究论文

金刚石刀具性能及其应用研究作者:韩波峰摘要:描述了金刚石的物理特性,对金刚石刀具的分类及其性能行了介绍,包括天然金刚石、聚晶金刚石、聚晶金刚石复合片、化学气相沉积金刚石涂层刀具。
分析和对比了不同类型金刚石刀具的应用场合,为企业在加工难加工材料时选用超硬金刚石材料刀具时提供参考。
1 引言金刚石是精密和超精密加工的超硬刀具材料之一,金刚石刀具具有极高的硬度和耐磨性、低摩擦系数、高弹性模量、高热导、低热膨胀系数,以及与非铁金属亲和力小等优点。
可以用于非金属硬脆材料如石墨、高耐磨材料、复合材料、高硅铝合金及其它韧性有色金属材料的精密加工。
金刚石刀具类型繁多,性能差异显著,不同类型金刚石刀具的结构、制备方法和应用领域有较大区别。
2 金刚石材料特性金刚石为单—碳原子的结晶体,其晶体结构属等轴面心立方晶系(晶系原子密度最高)。
金刚石中碳原子间连接键为sp3杂化共价键,具有很强的结合力、稳定性和方向性。
人工合成金刚石性能取决于sp3价键与非晶无定形碳sp2杂化共价键相对比率。
如果sp3含量过低得到二者混合物体为类金刚石(Diamond-Like Carbon,简称DLC)。
晶体结构使金刚石具有最高的硬度、刚性、导热系数以及优良的抗磨损、抗腐蚀性和化学稳定性等均高于硬质合金。
如表1所示,可见单晶金刚石硬度最高,热导率最大,热膨胀系数最小,故其综合物理性能最佳。
3 金刚石刀具类型及其性能目前,工业用金刚石刀具根据成分和结构不同可分为五种:1.天然金刚石Natural Diamond(ND);2.人造聚晶金刚石Artificial Polvcrystalline Diamond(PCD);3.人造聚晶金刚石复合片Polycrystalline Diamond Compact(PDC);化学气相沉积涂层金刚石刀具Chemical Vapor Deposition DiamondCoated Tools(CVD)。
4.沉积厚度达100µm的无衬底纯金刚石厚膜Thick Diamond Film(CD);5.在刀具基体表面直接上沉积厚度小于30µm的金刚石薄膜涂层Coated Thin Diamond Film(CD)。
金刚石资源状况与发展综述

・
石器 时代 So e( d N w S o e Ag , 元 t n Ol/ e tn ) e 公
前 l万 年
・
青铜 时代 B o z g , r neA e 公元前 3 0 0 0年
HE -i Xu ln
( u l e a c n t ue f G oo yf rMie a eo re 。 u l 4 0 4 C i a G i nR s rh I s tt o e lg n r l su cs G i n 5 1 0 , h n ) i e i o R i Ab t a t Th c r i f n t r ld a o d r s u c s i d e t a s e a l g n c c n i sr c : e s a ct o a u a im n e o r e s u o h r h m t l e i o d — y o to s i n .Th r p r i n o a u a im o d r s u c s i i ai e ri l b 1 a u a i — ep o o to f t r l a n e o r e Ch n f we g o a t r l a n d n s n n d m o d r s u c s M o e v r i mo d i o e o h o t i p r a t s r t g c m a e i l a n e o re . r o e 。d a n s n ft e m s m o t n t a e i t ra s t p e e t y t e i e h d i a k y f rd a o d t a e g e tp o r s .Ch n a d a - r s n .S n h t m t o s e o im n o m k r a r g e s c i a h sa v n t g s o u n iy t c n q e a d t l n o y t e ii g d a o d r s u c s S n h tc a e n q a t , e h i u n a e t f r s n h szn i m n e o r e . y t e i t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合成金刚石文献综述1 前言金刚石,俗称钻石,在工业和宝石领域都起着重要的作用,在工业领域主要是作为超硬材料在采掘机械的钻头、切割机的刀具、磨具等,宝石用途主要是作为主镶宝石和陪镶宝石。
随着天然金刚石的日渐稀少,人工合成金刚石成为世界各国晶体学研究的重要对象。
在目前的资料中,金刚石具有最大的原子密度(176atoms/nm3),最大可能的单位原子共价键数目,极强的原子键能(7.6eV),这些为金刚石的特殊性质提供了基础。
金刚石是等轴晶系,立方晶胞,它的晶胞特点使得金刚石成为一种极限功能材料:最高硬度(10400kg/mm2),最高热导率(常温下20W/cm.K),最高传声速度(18.2km/s),最宽透光波段,抗强酸强碱腐蚀,抗辐射,击穿电压高,介电常数小,载流子迁移率大,绝大部分金刚石既是电的绝缘体,又是热的良导体,而掺杂后又可成为卓越的P型或N 型半导体。
金刚石在常温下抗所有酸、碱的腐蚀,即便是在高温下也抗所有酸的腐蚀。
在现代社会中,金刚石被广泛的应用到工业、科技、国防、医疗卫生等很多领域当中[1]。
2 正文2.1金刚石的合成理论金刚石的化学组分为碳,它和石墨同为碳的同质异象体,因此,合成金刚石的原理就是借助于金刚石组分为纯碳的特点,设法将石墨在一定条件下转化为金刚石。
目前人工合成金刚石的主要理论有三种,分别为:溶剂论、催溶论和固相转化论[3]。
其中,溶剂论认为,在金刚石热力学稳定的高温高压条件下,在有触媒(比如金属)存在时,非金刚石型碳(比如石墨)溶解于熔融的金属中而形成一般意义上的化学溶液。
当相对于金刚石的溶解度达到过饱和时,金刚石就会从溶液中成核晶出。
无触媒存在时,则认为是在更高的压力和温度下,石墨熔化解体,温度降低时熔体冷凝而得到金刚石。
总之,无论什么条件下。
金刚石形成的前提是石墨的解体。
有触媒存在时金刚石形成的历程可表示为金刚石是在这中胶体溶液过饱和的情况下析出结晶而成;催化论的核心观点认为,高温高压下,熔融的金属仅仅能溶解碳还不够,还必须具有如下作用:或者是金属的原子有吸引石墨原子的电子,从而使其具有形成碳的正离子的能力,或者是金属的晶格可作为金刚石晶体的结晶基底,从而大大降低金刚石的晶出能量。
或者与碳原子形成易分解的某种结合物,以便分解后析出金刚石。
与溶液过饱和理论相比较,此种理论已注意到了金属与石墨除溶解以外的相互作用,这本身就是一大进步;所谓固相转化,是指石墨晶体不经解体而整体地转化为金刚石晶体。
高温高压条件下,没有触媒物质参与时,一种ABCA型结构石墨的c轴压缩大约61.5%,再使每单层上各半的碳原子相对层面上下位移约0.25A就可“扭”成金刚石。
若有金属触媒存在时,在高压使石墨层间距缩短的同时,高温使金属熔融,并使之扩散到石墨每个单层之中,从而使石墨单层被改造成具有金刚石结构的碳原子层,进而将会有金刚石晶体析出[2]。
2.2 金刚石的合成方法及存在问题合成金刚石的方法有很多,其中,常用合成方法主要有:高温高压法、化学气相沉淀法、炸药爆炸合成金刚石纳米粉、金属热解还原催化形成金刚石。
2.2.1高温高压法高温高压法的原理是模拟自然过程,让石墨在高温高压的环境下转变成金刚石。
从热力学角度看,在室温常压下,石墨是碳的稳定相,金刚石是碳的不稳定相,而且金刚石与石墨之间存在着巨大的能量势垒,要将石墨转化为金刚石,必须克服这个能量势垒。
目前使用HPHT生长技术,一般只能合成小颗粒的金刚石,在合成大颗粒金刚石单晶方面,主要使用晶种法,在较高压力和较高温度下(6000MPa,1800K),几天时间内使晶种长成粒度为几个毫米,重达几个克拉的宝石级人造金刚石。
高温高压法的缺点是:较长时间的高温高压使得生产成本昂贵,设备要求苛刻,而且HPHT金刚石由于使用了金属催化剂,使得金刚石中残留有微量的金属粒子,因此要想完全代替天然金刚石还有相当的距离。
而且用目前的技术生产的HPHT金刚石的尺寸只能从数微米到几个毫米,这也限制了HPHT金刚石的大规模应用。
2.2.2化学气相沉淀法化学气相沉积是通过含有薄膜元素的挥发性化合物与其它气相物质的化学反应产生非挥发性的固相物质并使之以原子态沉积在置于适当位置的衬底上,从而形成所要求的材料。
化学气相沉淀法中金刚石的生长机理包括形核和生长两个过程:一、形核:依据形核工艺的不同,金刚石形核可分为异质形核和同质形核。
异质形核是指含碳活性基团到达衬底表面使得表面碳浓度增大并最终达到可以形成金刚石核心的水平。
同质形核是指通过各种预处理方法在基底表面留下足够多的金刚石籽晶,在随后的生长过程中,金刚石以这些籽晶为核心快速生长。
实验表明,高密度的金刚石晶核有利于金刚石薄膜的生长。
二、生长:金刚石在形核完成之后就进入生长阶段,实质上就是同质外延生长的过程,因此在此过程中大部分碳转化为sp2结构的石墨,有极少部分碳转化成sp3金刚石。
如果能及时有效地除去sp2结构的石墨状碳而留下sp3结构的金刚石碳,就能实现金刚石薄膜的生长。
化学气相沉淀法存在的问题是:气相沉积金刚石薄膜的历史发展到今天,合成技术与金刚石薄膜的性质研究已取得了长足的进步,然而应用开发还存在许多问题,金刚石薄膜异质外延生长的机理还不十分清楚。
非金刚石衬底表面上金刚石异质外延的实现,低温沉积金刚石薄膜、气相合成金刚石中晶体缺陷和杂质的有效控制,金刚石薄膜与其他衬底材料间的附着力的提高以及提高金刚石的生长速度、降低生产成本等都是进一步开发金刚石薄膜工业化应用所需解决的主要问题。
但金刚石作为一种优异的工程材料,由于CVD法金刚石薄膜的成功制备,使得金刚石在科学和工业领域里的应用正在扩大。
2.2.3炸药爆炸合成金刚石纳米粉这种金刚石粉的制备方法与传统的石墨相变法不同,它是以负氧平衡的含碳炸药(如三硝基甲苯,TNT)为原料,在爆轰时由于炸药分子中的氧不足以将全部碳氧化成为CO或CO2,因此爆轰区内存在有游离碳,在爆轰区高压和高温的作用下,这种游离碳可以部分地转化为金刚石。
实验表明只用TNT虽然可以生成游离碳,由于TNT的爆轰压力不高,因而还不能生成金刚石。
用TNT与RDX(黑索金,Hexogen,1,3,5-trimethylene-2,4,6-trinitramine)的混合物就可以生成金刚石。
炸药爆炸法制备的纳米金刚石粉是由炸药中的碳在爆轰反应区中形成的,爆轰产物在冷却介质中淬火,在等熵膨胀区内被部分保存下来。
通过改变炸药组成、初始装药度、装药尺寸核结构、猛炸药的颗粒尺度、炸药中添加物的种类核数量、冷却介质的种类核状态、爆炸室的体积核结构等因素,可以改变反应区中游离碳的数量反应区宽度和反应时间、产物飞散过程等参数,这样就可以控制金刚石的收律、基本颗粒和团聚体的尺寸、表面结构和形貌等,以满足不同应用目标对金刚石性质的要求。
2.2.4金属溶剂热解还原催化合成金刚石在有机合成中利用传统的Wurtz反应:R1X+R2X+2Na→R1-R2+2Na X可以使烷烃链长增加,由此启示如果在适当的温度和压力下面将CCl4和Na反应,碳原子可以连接形成一个三维的网络,如果这样的一个三维网络是sp3杂化的形式的话,那么得到的就是金刚石。
需要注意的是这个过程的操作需要很小心很快的完成,因为Na和CCl4混合,如果处理不当的话,容易发生爆炸。
在这个反应中选择CCl4作为碳源合成金刚石,Na是作为还原剂和熔剂,反应在700℃的条件下进行,需要金属作为催化剂。
尽管产率只有2%,但是确实能够生成金刚石。
这种合成金刚石的方法仍需要改进,对于该的反应动力学过程的控制和理解还有许多工作要做。
寻找一种比较好的催化剂对于金刚石晶体的形成和生长是很关键的。
过渡金属(例如Ni,Co,Mn,Fe和Pt)和它们的合金以及它们的碳化物可能是比较好的催化剂。
另外,用其他的卤代烃作为碳源(例如用C2Cl6,CCl4,CBr4或者是这些卤代烃的混合物)来代替CCl4可能会提高整个过程的效率。
有理由相信金刚石晶种的加入能够提高金刚石的产率。
这种方法可能会为金刚石以及其他碳化物的置备(例如SiC,TiC,WC)提供一种新的方式[2]。
2.3 金刚石的合成现状2.3.1世界金刚石的合成现状1953年瑞典ASEA公司的Liander 等人使用压力球装置,生产出40颗金刚石小晶体,但未正式对外宣布;1955年美国通用电气公司(GE)的F·P·Bundy 等人采用静压熔媒法(简称GE法)成功地合成了金刚石;1959年南非戴比尔斯公司(De Beers)发展了非常类似于美国通用电气公司的合成金刚石的技术──外延生长技术[4],并于1961年开始合成金刚石的商业性生产;1970年美国通用电气公司宣布合成了克拉级(大于5mm)的宝石级金刚石;1971年前苏联的研究人员也声称他们合成出了宝石级金刚石,但因成本太高,故没有经济效益;1985年日本住友电气工业公司(Sumitomo Electric Industries)合成了黄色宝石级金刚石;1987年戴比尔斯公司合成出了11.14ct的宝石级金刚石(长10mm,宽16mm,略呈黄色,为一完全的单晶体,是在高温高压条件下采用温差法合成),1990年又成功地合成出了质量很好的金刚石单晶,重达14.2ct,1992年则合成出38.4ct 的世界最大的工业级金刚石;1990年俄罗斯宣布了利用“分裂球(split--sphere)法”或称BARS法生长合成出7.5mm,重1.5ct的不同颜色的宝石级金刚石;同年,美国通用电气公司也宣布合成出了具有特殊物理性能的宝石级金刚石。
这表明着金刚石合成技术取得了不断的发展。
2003年美国阿波罗公司合成出达到宝石级单晶,并开始商业性生产。
最近有据报道说,美国华盛顿卡内基研究所地球物理实验室的研究人员已能用CVD法(化学气相沉淀法)非常快速地生产出很大的金刚石。
他们用CVD快速(100μm/h)生产出了10ct、半英寸厚的单晶金刚石,差不多有5倍于用一般高压高温合成方法和其它CVD方法商业性生产的金刚石。
他们还用这种方法生产出了从紫外到红外都是透明的无色单晶金刚石。
有几个小组已开始用CVD生产金刚石单晶,但生产大的无色和无瑕的金刚石单晶体始终是个难题。
2004年,卡内基的研究人员发现,高压高温热处理不仅能优化CVD金刚石的光学性质,而且能提高其硬度。
采用新技术后,现今他们已能够用CVD生产出透明的金刚石而不再需要高压高温热处理。
为了进一步加大合成金刚石晶体的尺寸,他们用CVD顺序地在金刚石基片的6个面上生长宝石级金刚石。
他们宣称,用这种方法能够实现英寸级(约300ct)无色金刚石单晶的三维生长。
2.3.2我国金刚石的合成现状我国的金刚石合成技术与世界先进水平相比,虽然存在着较大的差距,但也取得了一定的研究成果。