变质量动力学
变质量动量定理

设第一级火箭总质量为m1 其内携带燃料的质量为m1e 且 m1e m1 第二级火箭总质量为m2 其内携带燃料的质量为 m2e m2 载荷的质量为 m p 设燃料从火箭喷出的相对速度 r =常数 方向与火箭速度方向相反 每秒喷出的燃料质量也为常数 火箭由静止开始运动 略去重力 由例6.1式(b)可得 第一级火箭的燃料全部喷射完时火箭的速度为 m1 m2 m p 1 r ln (a) m1 m2 m p m1 当第二级火箭的燃料也全部喷射完时 速度为 m2 m p 2 1 r ln m2 m p m2 (b)
§ 6-1 变质量质点的运动微分方程
1.变质量质点的运动微分方程
(e) 设作用于质点系的外力为 F
质点系在瞬时t的动量为 p1 m dm 1 质点系在瞬时t+dt的动量为 p2 (m dm)( d ) 根据动量定理
( e) (m dm)( d ) (m dm 1 ) F dt 将上式展开得 ( e) md dm dm d dm 1 F dt
i [
mi mi 1 mn m p (1 i )mi mi 1 mn m p
]
(e)
则得第n级火箭燃料燃烧完毕时的速度
n ri ln i
i 1
n
(f)
利用拉格朗日乘子法 可以求得满足下式的 i 将使火箭的总质量为最小值
(d)
如果取 m p / m 1/ 100 则 m2 / m 1 / 10, m1 / m 9 / 10 如果仍用 0.8 、 r / g 300s m/s 则由式(d)可得 2 max 7500 这显然比 m1 m2时的 2 6000m/s 要大得多 下面讨论多级火箭 ,mn 设各级火箭的质量分别为 m1 ,m2 , , 2, ,n) 各级火箭内的燃料质量为 i mi (i 1
流体力学的基本定理质量动量能量守恒原理

流體力學的基本定理質量動量能量守恒原理流体力学的基本定理-质量、动量、能量守恒原理引言:流体力学是研究流体静力学和动力学的科学。
在研究流体的运动和行为时,有一些基本的定理被广泛应用,包括质量守恒原理、动量守恒原理和能量守恒原理。
这些原理为我们深入理解和解释流体运动提供了重要的基础。
一、质量守恒原理:质量守恒定律是流体力学中最基本的定理之一,它表明在流体中,质量是守恒的。
简单来说,当流体通过一个封闭系统时,系统内的质量总量不会改变。
这可以用一个简单的数学表达式来表示:∂ρ/∂t + ∇(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇是偏微分算子。
这个方程说明了质量的变化由流体的输运和流动引起。
二、动量守恒原理:动量守恒定律是流体运动研究中的另一个基本原理。
根据牛顿第二定律,当外力作用于一个质点时,它的动量会发生改变。
对于流体,可以将这个定律推广到流体微团上,得到了动量守恒原理。
∂(ρv)/∂t + ∇(ρv⋅v) = -∇p + ∇⋅τ + ρg其中,p是流体的静压力,τ是黏性应力张量,g是重力加速度。
这个方程描述了流体内的动量变化是由压力、黏性应力和重力引起的。
三、能量守恒原理:能量守恒定律是流体运动研究中的第三个基本原理。
在流体中,能量是守恒的,包括内能、动能和位能。
∂(ρE)/∂t + ∇⋅(ρEv) = -p∇⋅v + ∇⋅(k∇T) + ρgv其中,E是单位质量的总能量,k是热传导系数,T是温度。
这个方程表示了流体的能量变化是由压力、热传导和重力引起的。
结论:流体力学的基本定理——质量守恒原理、动量守恒原理和能量守恒原理,为我们研究和理解流体的运动和行为提供了重要的方法和工具。
这些定理在工程实践和科学研究中有着广泛的应用,对于预测和解释自然界中的流体现象至关重要。
正是基于这些基本原理,我们能够更好地理解流体力学的本质,并为实际问题的解决提供科学的依据和方法。
(字数:525字)。
变质量的牛顿第二定律在三维坐标、平动和转动方程

变质量的牛顿第二定律在三维坐标、平动和转动方程引子:牛顿第二定律在物理学中被广泛应用,是描述物体运动状态的重要定律之一。
然而,在一些特定情况下,物体的质量可能会发生变化,这就需要引入变质量的牛顿第二定律。
本文将围绕这一主题展开讨论,分析在三维坐标、平动和转动方程中的应用。
一、牛顿第二定律的基本概念1. 牛顿第二定律的表述及原理牛顿第二定律是经典力学中的基本定律之一,它描述了物体在外力作用下的加速度与所受力的关系,通常表达为F=ma,其中F为物体所受的合外力,m为物体的质量,a为物体的加速度。
这一定律的基本原理是力是物体运动状态改变的原因,力的大小和方向决定了物体的加速度。
2. 牛顿第二定律在三维坐标中的表示在三维坐标系中,物体可能受到来自不同方向的合外力,此时可以通过矢量运算来表示牛顿第二定律。
根据矢量的性质,可以将合外力表示为一个三维矢量F=(F_x, F_y, F_z),物体的加速度也可以表示为一个三维矢量a=(a_x, a_y, a_z),则牛顿第二定律可以表示为F=ma。
二、变质量的牛顿第二定律的推导及应用1. 变质量的概念及原因在一些特定情况下,物体的质量可能会随时间变化,例如火箭发射过程中燃料消耗导致质量减小。
此时,传统的牛顿第二定律就无法准确描述物体的运动状态,需要引入变质量的概念。
2. 变质量的牛顿第二定律的推导根据牛顿第二定律的基本原理,可以推导出变质量的牛顿第二定律。
假设物体的质量随时间变化,其质量函数可以表示为m(t),则物体所受的合外力F(t)与加速度a(t)的关系可以表示为F(t)=m(t)a(t)。
在质量变化的情况下,需要考虑质量随时间的变化率dm/dt对物体运动状态的影响,进而推导出变质量的牛顿第二定律。
3. 变质量的牛顿第二定律在平动和转动方程中的应用在实际的物理问题中,变质量的牛顿第二定律被广泛应用于描述物体的平动和转动状态。
通过数学建模和推导,可以得到物体质量变化情况下的运动方程,从而更准确地预测物体的运动轨迹和速度。
《理论力学 动力学》 第十六讲 变质量质点的运动微分方程

变质量动力学曾凡林哈尔滨工业大学理论力学教研组本讲主要内容1、变质量质点的运动微分方程2、变质量动力学在火箭发射中的应用3、变质量质点的动力学普遍定理1、变质量质点的运动微分方程(1) 变质量质点的运动微分方程m 在时刻t ,质点的质量为m ,速度为vv 1在时刻t+d t ,并入速度为v 1的微小质量d mm +d m v 并入后,系统质量变为m +d m ,速度变为v +质点系在t 瞬时的动量:11d m m =+×p v v t +d t 质点系在t+d t 瞬时的动量:2(d )(d )m m =++p v v 根据动量定理有:(e)21d d t=-=p p p F (e)1d d d d d d m m m m t+×+×-×=v v v v F 略去高阶微量d m ·d v ,并在等式两边同时除以d t , 得:(e)1d d ()d d m m t t --=v v v F 式中v 1-v=v r 为微小质量在并入前相对于质点m 的相对速度, 令d d r m t f =F v 则有:(e)d d m tf =+v F F —变质量质点的运动微分方程方程形式与常质量质点运动微分方程相似,仅在右端多了一项F ϕ,它具有力的量纲,常称为反推力。
当d m /d t >0 时,F ϕ与v r 同向;当d m /d t <0 时,F ϕ与v r 反向。
1、变质量质点的运动微分方程(2) 常用的几种质量变化规律i 质量按线性规律变化1)1(0<-=t t m m b b ,由知,其反推力为:b 0d d m t m-=r 0rd d mm t f b ==-F v v 当v r 为常量时,反推力也为常量,且与v r 方向相反。
ii 质量按指数规律变化tm m b -=e 0由知,其反推力为:0d d t m m e t b b -=-r 0rd d tmm e t b f b -==-F v v 令a ϕ表示仅在反推力F ϕ作用下变质量质点的加速度,则:0rrtt m e m m e b f f b b b ---===-F v a v 当v r 为常量时,a ϕ也为常量,即由反推力引起的加速度为常量。
质量互变规律的定义

质量互变规律的定义
质量互变规律又称费曼原理,指的是任何作用力在引起对象发生物理变化时,物质的质量变化将受其影响。
一句话概括这一质量互变理,就是“受力之物所变者质量”。
质量互变规律可以用在不同的领域和任务中,从生物学、化学到物理等方面都不可或缺。
例如,在化学反应中,当某一化学物质受到能量刺激时,它可以转化为物质结构不同的另一种物质。
此外,当物体受到外力,比如加热、压缩或冷却时,物质的形状也会随着力的施加而变化,而且质量也会相应地发生变化。
最后,当人们在研究某种物质的结构时,他们也可以应用质量互变原理来识别和判断它们之间的相互作用和化学变化情况,以及其产生的影响。
另外,在力学和能量转换领域,应用质量互变规律也显得尤为重要。
它可以帮助我们理解工程动力学和热力学中物质的变化及其产生的影响,比如当某物体被蒸气推动时,物体质量会发生变化,这一变化会对蒸气的流动速度产生影响。
此外,在互联网安全领域,质量互变规律也起作用。
传统的安全工具往往依赖质量互变规律来帮助开发者编写可行性安全代码,防止入侵攻击,以及发掘和修复已知漏洞等。
总之,质量互变规律是一种非常重要的物理原理,它在多个领域都有广泛的应用,并且在生物学、化学、物理和互联网安全等领域能够产生重要的影响。
质量互变规律使得物理化学变化更容易计算和理解,因此,我们应该更加重视这一重要的物理原理。
质点动力学知识点总结

质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。
在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。
在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。
希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。
一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。
根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。
根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。
二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。
这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。
2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。
这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。
三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。
根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。
动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。
根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。
四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。
动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。
变质量相对运动动力学系统的对称性与守恒量

(0 1)
其 中
释
”啬 毒+一 寺 《 ( 毒 口
(, ,) 足 结构方 zg口 满
则 这种不 变性称 为变 质量 相对运 动动力 学 系统 的 Le 称 性 。 i对
定理 2 如果无 限小 变换 的生 成元 , 足确定 方 程 (0 , 存 在规 范 函数 G £满 】 )且
Q
3 系统 的 L e对 称性 与守 恒 量 i
Le 称性是 微分 方程 在无 限小变换 F i对 的不变性 。由微分 方程 在无 限小变 换 下的不 变性 理论 可知 。 如果 无 限小变换 的生 成元 , 毒满 足如下 确定 方程
轴 龇 = (? 0, o, (r  ̄) O - 0 《 + 0 oo, e 一 o o
证 明
,
岳
楠等 : 变质量 相对 运动 动 力学 系统 的对称性 与 守恒量
2 1
0 ( 口) (O-o㈣ ) | + £ + 一 + £gt- (一” )一 ) s 軎 一o2 厶(+ +(亩= — ) X Q (口( 一rI — 。 毒 軎 —一 ) -) O Q 一= ” L
1 口 2
。 ,= , 一 ,2, _ =, =2, + ) , _ 0 口 1删 2 0 (1) , s,
(3 2)
Ql Q”£q亩,:,Q = 2g , ” - ,,・口) 口十 1 = ( 口 其 中 m ,[ gபைடு நூலகம்常数 。试研 究 系统 的对 称性 与守恒 量 。 o0, ∞,
L 。 ‘(,+ Q” + )£ 口 。+ ^0 ,+ L) ( 。 + + ( 一 )e
则 变质 量相对运 动 动力学 系统 的 Le 称性 导致 守恒 量 . 如 i对 形
变质量动力学

变质量动力学引言有些物体在运动过程中质量不断增加或减少,譬如火箭在飞行时不断地喷出燃料燃烧后产生的气体,火箭的质量在不断减小,因此飞行中的火箭质量是变化的物体;还有比如不断吸进空气又喷出燃气的喷气式飞机、投掷载荷的飞机、在农业收割机旁不断接收粮食的汽车以及在江河中不断凝聚或融化的浮冰等,都是变质量的物体。
要搞清楚他们运动的特征就要将他们简化成物理模型进行研究.一般情况下,当变质量物体作平移,或只研究它们的质心的运动时,可简化为变质量指点来研究.关键词;变质量运动学动量定理动量距定理1。
变质量指点的运动微分方程1.变质量指点的运动微分方程:设变质量质点在瞬时的质量为,速度为;再瞬时,有微小质量并入,只是指点的质量为,速度为;微小质量在尚未并入的瞬时,它的速度为,以原质点与并入的微小质量组成质点系。
设作用于质点系的外力为。
质点在瞬时的动量为:质点系在瞬时的动量为:根据动量定理得将上式展开得略去高阶微量,并以除各项,得或上式中是微小质量在并入前相对于质点的相对速度,令则可以得到上式称为变质量质点的运动微分方程。
式中是变量,是代数量.变质量质点的运动微分方程是求解变质量质点运动规律的基本方程。
其中常称为反推力。
2.两种常用的质量变化规律1。
质量按线性规律变化。
设变化规律为,式中, 皆为常数,该式代表质量随时间变化呈线性关系.由知,其反推力为由上式可知,当为常量时,反推力也为常量,且与方向相反。
3.质量按指数规律变化。
设变化规律为式中,全为常数。
由知,其反推力为令表示仅在反推力作用下变质量质点的加速度则当为常量时,也是常量,即由反推力而引起的加速度为常量。
2。
变质量质点的动力学普遍定理1。
变质量指点的动量定理变质量质点在任一瞬时的动量,其中是时间的函数,将动量对时间求导得得出记并入(或放出)质量的绝对速度为,即则有记称为由于并入(或放出)质量的绝对速度引起的反推力,它具有力的量纲且能改变质点的动量。
得出:=+上式称为变质量质点动量定理的微分形式:变质量质点的动量对时间的导数,等于作用于其上的外力与由于并入(或放出)质量的绝对速度而引起的反推力的矢量和.将上式积分,设=0时质点质量为,速度为,得=+=+上式称为变质量质点动量定理的积分形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变质量动力学
引言
有些物体在运动过程中质量不断增加或减少,譬如火箭在飞行时不断地喷出燃料燃烧后产生的气体,火箭的质量在不断减小,因此飞行中的火箭质量是变化的物体;还有比如不断吸进空气又喷出燃气的喷气式飞机、投掷载荷的飞机、在农业收割机旁不断接收粮食的汽车以及在江河中不断凝聚或融化的浮冰等,都是变质量的物体。
要搞清楚他们运动的特征就要将他们简化成物理模型进行研究。
一般情况下,当变质量物体作平移,或只研究它们的质心的运动时,可简化为变质量指点来研究。
关键词;变质量 运动学 动量定理 动量距定理
1.变质量指点的运动微分方程
1. 变质量指点的运动微分方程:
设变质量质点在瞬时t 的质量为m ,速度为v ;再瞬时t dt +,有微小质量dm 并入,只是指点的质量为dm m +,速度为v dv +;微小质量dm 在尚未并入的瞬时t ,它的速度为1v ,以原质点与并入的微小质量组成质点系。
设作用于质点系的外力为()e F 。
质点在瞬时t 的动量为:
11p mv dm v =+⋅
质点系在瞬时t dt +的动量为:
2()()p m dm v dv =++
根据动量定理
()21e dp p p F dt =-=
得
()1()()()e m dm v dv mv dm v F dt ++-+⋅=
将上式展开得
()1e mdv dm v dm dv dm v F dt +⋅+⋅-⋅=
略去高阶微量dm dv ⋅,并以dt 除各项,得
()1e dv dm dm m v v F dt dt dt
+-=
或
()1()e dv dm m v v F dt dt
--=
上式中1()v v -是微小质量dm 在并入前相对于质点m 的相对速度r v ,令
r dm F v dt
Φ=
则可以得到 ()e dv m F F dt
Φ=+
上式称为变质量质点的运动微分方程。
式中m 是变量,
dm dt 是代数量。
变质量质点的运动微分方程是求解变质量质点运动规律的基本方程。
其中F Φ常称为反推力。
2. 两种常用的质量变化规律
1.质量按线性规律变化。
设变化规律为
0(1)m m t β=-, 1t β<
式中0m ,β 皆为常数,该式代表质量随时间变化呈线性关系。
由0dm m dt
β=-知,其反推力为 0r r dm F v m v dt
βΦ==- 由上式可知,当r v 为常量时,反推力F Φ也为常量,且与r v 方向相反。
3. 质量按指数规律变化。
设变化规律为
0t m m e β-=
式中0m ,β全为常数。
由0t dm m e dt
ββ-=-知,其反推力为 0t r r dm F v m e v dt
ββ-Φ==- 令a Φ表示仅在反推力F Φ作用下变质量质点的加速度
r F a v m
βΦΦ==- 则当r v 为常量时,a Φ也是常量,即由反推力而引起的加速度为常量。
2.变质量质点的动力学普遍定理
1.变质量指点的动量定理
变质量质点在任一瞬时的动量p mv =,其中()m m t =是时间t 的函数,
将动量对时间求导得
()dp d mv dm dv v m dt dt dt dt
==+ 得出
r dp dm dm v F v dt dt dt =++ 记并入(或放出)质量的绝对速度为1v ,即
1r v v v =+
则有
1dp dm F v dt dt
=+ 记 1a dm F v dt Φ=
称a F Φ为由于并入(或放出)质量的绝对速度引起的反推力,它具有力的量纲且能改变质点的动量。
得出: dp dt =()d mv dt
=F +a F Φ 上式称为变质量质点动量定理的微分形式:变质量质点的动量对时间的导数,等于作用于其上的外力与由于并入(或放出)质量的绝对速度而引起的反推力的矢量和。
将上式积分,设t =0时质点质量为0m ,速度为0v ,得
00mv m v -=0t Fdt ⎰+0t a F dt Φ⎰=0t
Fdt ⎰+01m
m v dm ⎰ 上式称为变质量质点动量定理的积分形式。
2.变质量质点的动量矩定理
变质量质点对任一点O 的动量矩为
O L r mv =⨯
式中r 为从点O 指向该质点的矢径,点O 为定点。
将上式对时间t 求导,得 O dL dt =()d r mv dt ⨯=dr mv dt ⨯+()d r mv dt ⨯=()d r mv dt
⨯ 上式称为变质量质点的动量矩定理:变质量质点对某定点的动量矩对时间的导数,等于作用于质点上外力的合力对该点之矩与由于并入(或放出)质量的绝对速度引起的反推力对该点力矩的矢量和。
3.变质量质点的动能定理
变质量质点动量订立的微分形式可以写为 dv m dt +dm v dt = F +1dm v dt
将上式各项点乘dr ,得
1mv dv dmv v F dr dmv v ⋅+⋅=⋅+⋅ 由于2
21()22
v mv dv d mv dm ⋅=-,因此上式可以写为 22111()()22
d mv v dm F dr v v dm +=⋅+⋅ 或
2211()22
a d mv v dm F dr F dr Φ+=⋅+⋅ 上面两式称为变质量质点的动能定理:变质量质点的动能微分与放出(或并入)的元质量由于其牵连速度而具有的动能的代数和,等于作用于质点上外力合力的元功与由于并入(或放出)质量 的绝对速度引起的反推力所作的元功之和。
4. 实际问题中的变质量质点的动量定理及动量矩定理
日常生活或工程实践中,常会遇到质量不断变化的质点系,例如,向外喷射气体的火箭、吸入空气同时又喷出燃气的喷气式飞机、冻结或融化中的浮冰等.有的是不断地并入质量,有的是不断地放出质量,有的既并入又放出质量,这样的质点系称为变质量物体.变质量问题是理论力学研究的一个重要内容。
通常用到的几个变质量物体运动方程
1. 变质量物体的平动运动方程
()d dm m V F u V F dt dt
=+-=+Φ 该式是研究变质量问题的一个基本方程,简称密歇尔斯基方程。
2. 变质量物体绕定点转动的运动方程
()()n d r mv r F dr F dt
⨯=⨯+Φ-⨯ 上式中r F ⨯叫合外力距,dm r r u dt
⨯Φ=⨯叫反推力矩,dr ⨯n F 叫向心力距。
3. 变质量物体绕定点做一般曲线运动的方程
()()()n d r mv r F dr F F dt
τ⨯=⨯+Φ-⨯+ 式中dr ⨯F τ称为切向力矩。
例:用手拿住均匀链条的上端,使下端刚好着地,突然将手放开,使链条竖直下落,求下落速度,并求证地面受到的最大压力是链条重量的3倍。
解 : 设x 轴向下,x 轴原点在链条初始位置的最高点,对空中长为l x -和即将落地的微质量链条组成的变质量体系进行考虑,()m l x ρ=-,dm dx ρ=-,N 为地面静止链条向上作用于微质量链条dm 的力,u 是dm 与空中主体链条分开后的瞬时速度即0,对该变质量体系应用变质量运动的微分方程可得
(0)dv dm m
mg N v dt dt
=-+- 化为: 2dv m
mg N v dt ρ=-+ 再将上面用动量定理求出的21N T m g v ρ=-=代入得
dv m
mg dt
= 于是有 22v gx =
而地面受到的压力为
211T N m g v m g ρ=+=+
当全部落下时,
22v gl =,22v gl =
得出最大压力为
2gl g=3g T M M ρ=+
因此,地面受到最大的压力为链条重量的3倍。
3.参考文献
【1】 江优良 廖湘萍《变质量物体运动微分方程应用讨》
【2】 郑荣霞 肖泰明 罗跃《变质量质点力学的动量矩定理及动能定理研究》湖北成人教育学院学报 2008
【3】 颜振珏 《从变质量的运动谈起》 黔南民族师范学院学报 2008
【4】 王奇文 李建国《变质量物体的运动方程和应用》 河南科学 2009
【5】 余君彦 李德明《对变质量质点运动的讨论及应用》 科技信息 2006。