用直方图描述数据

合集下载

直方图与条形图

直方图与条形图

直方图与条形图直方图和条形图是常用的数据可视化方式,它们能够以直观的方式展示数据的分布情况和变化趋势。

本文将就直方图和条形图的定义、特点、应用以及制作方法进行探讨。

一、直方图与条形图的定义及特点直方图和条形图都是用于描述数据分布的图表形式,它们有以下几点不同:1. 直方图:直方图是一种列状图,横轴表示数据的范围或者分组,纵轴表示该范围或分组内数据的频数(或频率)。

直方图更适用于展示连续型变量的分布情况,例如人口年龄分布、体重分布等。

直方图的列宽表示数据的范围,列高表示该范围内数据的频数或频率。

2. 条形图:条形图是一种用矩形代表数据的图表,横轴表示数据的种类或类别,纵轴表示数据的数值。

条形图适用于展示离散型变量的分布情况,例如商品销售情况、学生考试成绩等。

条形图的矩形高度表示数据的数值,矩形宽度可以相等或不相等。

二、直方图与条形图的应用领域和作用直方图和条形图在很多领域都有广泛的应用,主要包括以下几个方面:1. 数据分布:直方图和条形图能够直观地展示数据的分布情况,帮助人们了解数据的集中趋势和分散程度。

通过观察直方图或条形图的形状,可以判断数据的偏态(左偏、右偏、对称)、尖态(峰度)以及集中程度等。

2. 比较分析:直方图和条形图可以用于比较不同组别或类别之间的数据差异,从而找出规律和趋势。

例如,通过对比不同年份的销售数据条形图,可以看出产品销售情况是否有变化。

3. 预测趋势:基于历史数据的直方图和条形图可以帮助预测未来的趋势和可能的分布情况。

通过观察数据的变化和分布规律,可以做出合理的推测和预测。

三、制作直方图和条形图的方法制作直方图和条形图可以使用各种统计软件和工具,例如Microsoft Excel、Python的matplotlib库等。

以下是制作直方图和条形图的一般步骤:1. 收集数据:首先需要收集所需的数据,确保数据的准确性和完整性。

2. 数据分组:对于直方图,需要对连续型变量进行分组,确定分组的宽度或范围。

什么是直方图

什么是直方图

什么是直方图直方图(Histogram)也叫柱状图,是一种统计报告图,由一系列高度不等的纵向条纹表示数据分布的情况。

假设我们有一堆硬币,如下图所示,我们想知道一共有多少钱。

我们当然可以一枚一枚地数,但这样如果硬币多了可能会搞乱,因此我们需要先把硬币分类,然后分别统计每种硬币的数量。

把统计的结果图示出来,就成了直方图。

下图的横向数轴标示出硬币的面额(Kind of Coins),纵向标示出硬币的数量(Number of Coins)。

图像的直方图以灰度图为例,假设我们的图中一共只有0,1,2,3,4,5,6,7这8种灰度,0代表黑色,7代表白色,其它数字代表0~7之间不同深浅的灰度。

统计的结果如下,横轴标示灰度级别(0~7),纵轴标示每种灰度的数量。

Photoshop(PS)中的显示。

直方图统计数据Photoshop CS提供了动态的直方图面板,CS之前的版本要通过图象>直方图来察看。

横轴标示亮度值(0~255),纵轴标示每种像素的数量。

像素(Pixels) - 图像的大小,图像的像素总数。

[5*3=15]色阶、数量、百分位这三项根据鼠标指针的位置来显示横坐标当前位置的统计数据。

色阶(Level) - 鼠标指针所在位置的亮度值,亮度值范围是0~255。

[181]数量(Count) - 鼠标指针所在位置的像素数量。

[4]百分位(Percentile) - 从最左边到鼠标指针位置的所有像素数量÷图像像素总数。

[(1+2+1+2+3+4)/15 = 13/15 = 0.8667 = 86.67%]当鼠标拖动,选中直方图的一段范围时,色阶、数量、百分位将显示选中范围的统计数据。

下面举个简单的例子来说明平均值、标准偏差、中间值。

例如图像A只有4个像素,亮度分别是200、50、100、200。

平均值(算术平均数,Mean,Average) - 图像的平均亮度值,高于128偏亮,低于128偏暗。

《直方图》数据的收集、整理与描述PPT

《直方图》数据的收集、整理与描述PPT
由于身高数据具有连续性,因此我们应采用直方图来描述频数分布。
155 165 155 156 148 168 155 170 158 150 155 153 159 160 153 156 160 159 150 156 161 160 162 156 150 155 145 155 166 149 160 145 142 154 165 142 156 156 145 163 165 155 164 160 155 170 165 156 145 142 156 162 162 160 150
谢谢!
第十章 数据的收集、整理与描述
10.2 直方图
10.2 直方图
我们学习了条形图、折线图、扇形图等描述数据的方法, 下面介绍另一种常用来描述数据的统计图——直方图.
10.2 直方图
问题 为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中 挑选身高相差不多的40名同学参加比赛.为此收集到这63名同学的身高(单位: cm)如下:
10.2 直方图
探究 上面对数据进行分组时,组距取 3,把数据分成 8 组.如
果组距取 2 或 4,那么数据分成几个组?这样能否选出需要 的 40 名同学呢?
10.2 直方图
4.画频数分布直方图 如图,为了更直观形象地看出频数分布的情况,可以根 据上表画出频数分布直方图(histogram).
158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156 选择身高在哪个范围的同学参加呢?

用直方图描述数据

用直方图描述数据

§12.2.2 用直方图描述数据第五课时教学目标(一)教学知识点1.学会根据实际情况划分组距.2.学会处理数据,整理得出频数分布表.3.学会画出频数分布直方图.(二)能力训练要求1.经历分组、整理、列表等过程,提高处理数据的能力.2.经历各种数学活动,进一步发展合作交流意识和能力,增加学生的数学应用意识和能力.(三)情感与价值观要求1.积极参与活动,体验学生数学的乐趣,从而提高学习兴趣.2.锻炼学生独立思考、合作交流的学习习惯,通过对现实问题的解答,获得学习数学的成就感.教学重点1.灵活掌握划分组距的方法.2.学地用直方图表示数据频数分布情况教学难点针对具体问题,具体划分组距并画出直方图.教学方法自主合作─探究归纳.教具准备多媒体演示.教学过程Ⅰ.提出问题,创设情境问题:为了参加学校年级之间的广播操作赛,初中二年级准备从63名同学中挑出身高相差不多的40名同学参加比赛,为此收集到这63名同学的身高(单位cm)数据如下:158 158 160 168 159 159 151 158159 168 158 154 158 154 169 158158 158 159 167 170 153 160 160159 159 160 149 163 163 162 172161 153 156 162 162 163 157 162162 161 157 157 164 155 156 165166 156 154 166 164 165 156 157153 165 159 157 155 164 156选择哪些同学参加呢?(多媒体演示出以上问题内容)[师]为了使参赛选手的身高比较整齐,我们所选40名同学身高差距不应太大,怎样从中调出这40名同学呢?我们这节课来研究这样的问题.Ⅱ.导入新课[师]类似这样的问题,在现实生活中经常遇到.如何解决这类问题,请同学们对上面的问题,认真思考,展开讨论,看能否找出一种办法.[生]要解决这个问题,需要了解学生身高的分布情况.我们可以把这些数据适当分组,数出每组的频数即学生人数,根据频数分布的情况再作决定.[师]很好!我们首先来把这些数据进行适当的分组.怎样分组适合?组距取多少较好呢?请大家分组讨论,每组拿出一个分组方案.[生]首先我们观察到这组数据的最小值是149,最大值是172,它们的差是23,说明身高的变化范围是23cm.因此我们把数据按身高的范围进行分组,•取组距为5,则可以按范围148≤x<153,153≤x<158,…,168≤x<173分成5组.整理可得下面的频数分布表:身高x 划记频数148≤x<153 Τ 2153≤x<158 正正正下18158≤x<163 正正正正正Τ27163≤x<168 正正一11168≤x<173 正 5[生]我们取组距为3,则可把数据按范围149≤x<152,152≤x<155,…,170≤x<173分成8组,整理可得下面的频数分布表:149≤x<151151≤x<153153≤x<155155≤x<157157≤x<159159≤x<161161≤x<163171≤x<173[生]我们取组距为2,则可以把数据按范围149≤x<151,151≤x<153,…,171≤x<173分成12组,整理可得下面的频数分布表:[师]以上三位同学分组的方法都是可行的,当然也肯定还有别的方法.我们先就这三种分法,从中挑出身高差不多的40名同学,看看如何.[生]按第一个同学的分组方案,我们可看出,身高在153≤x<158,158≤x<•163两组人最多,一共有18+27=45人,因此可以从身高在153~163cm之间的学生中选队员.按第二个同学的分组方案,我们可以看出,身高在155≤x<158,158•≤x<•161,161≤x<164三个组人数最多,一共有12+19+10=41人.因此,可以从身高在153•~164cm之间挑选队员.按第三个同学的方案,我们可以看出,身高在155≤x<157,157≤x<159,159•≤x<161,161≤x<163四个组人数最多,一共有8+11+12+7=38人,身高在153≤x<155中有6人,身高在163≤x<165中也有6人.因此可以从身高在153~163cm之间或155•~165之间挑选队员.[师]很正确,看来以上三种分组方案都可以选出身高比较整齐的队员.当然其他的分组方法也可以选出整齐的队员,但就以上三种方案,你认为哪种更好,更方便?[生]我认为第二种方案较好,它不像第一种方案那样,组距显大,分组数较少,造成频数有点集中,带来挑选队员时人数要不太少,要不过多;也不像第三种方案那样,由于组距显小,分组数较多,以至于频数分布零散,带来挑选队员时不易把握,再者分组太多也带来统计时烦琐,不方便.[师]不错,组距与组数的确定没有固定标准,要凭借经验和研究的具体问题来决定.通常数据越多,分成的组数也越多.当数据在100个以内时,•根据数据多少通常分成5~12个组.就这个问题来说,第二种方案的确较好,既能按要求挑选出合适队员,在统计整理数据时,也不是很烦琐.由此可知,同学们在以后确定组距与组数时,一定要具体问题,具体对待,多积累经验,以方便、快捷而又科学、准确地解决问题.为了更清楚地看出频数分布情况,可以根据以上表格画出频率分布直方图.下面请同学们用横轴表示身高,等距离标出各组端点,用纵轴表示频数,以各组频数为高画出与这组对应的矩形,即可得到频数分布直方图,分别按三种方案画出三个频数分布直方图:方案1:方案2:方案3:Ⅲ.课时小结本节课我们通过挑选广播比赛队员的问题,从分析实际问题的需要到如何确定组距、分组.从列频数分布表到描绘频数分布图,经历了不断探讨的过程.最后归纳出分组的一般规律,掌握了频数分布直方图的绘制方法.本节的重点是频数分布直方图的绘制,难点是确定组距与分组.Ⅳ.课后作业习题12.2 第3题、第4题(只绘出直方图).Ⅴ.活动与探究下列数据是截止2002年费尔兹奖得主获奖时的年龄:29 39 35 33 39 28 33 35 3131 37 32 38 36 31 39 32 3837 34 29 34 38 32 35 36 332030 29 32 35 36 37 39 38 40 3837 39 38 34 33 40 36 36请根据下面不同的分组方法列出频数分布表,画出频数分布直方图,比较哪一种分组能更好地说明费尔兹奖得主获奖时的年龄分布:1.组距是2,各组是28~30,30~32…2.组距是5,各组是25~30,30~35…3.组距是10,各组是20~30,30~40…过程及结果:观察这组数据,最小年龄是28,最大年龄是40,之差是12,说明年龄变化范围是12岁.1.组距取2,各组是28≤x<30,30≤x<32,…,40≤x<42,分成7组,•列表记录如下:2.组距是5,各组是25≤x<30,30≤x<35…,40≤x<45,分成4个组,•频数分布表如下:3.组距是10,各组是20≤x<30,…,40≤x<50,分成3组,频数分布表:频数分布直方图:由以上直方图可以明显看出第二种分组方法能更好地说明费尔兹奖得主的年龄分布情况.板书设计§12.2.2 用直方图描述数据一、分析实际问题,选用描述方法二、确定组距,划分组别三、列表、绘图备课资料统计小知识1.恩格尔定律和恩格尔系数.19世界德国统计学家恩格尔根据统计资料,对消费结构的变化得出一个规律:一个家庭收入越少,家庭收入中(或支出中)用来购买食物的支出所占的比例就越大,随着家庭收入的增加,家庭收入中(或支出中)用来购买食物的支出则会下降.推而广之,一个国家越穷,每个国民的平均收入中(或平均支出中)用于购买食物的支出所占的比例就越大,随着国家的富裕,这个比例成下降趋势.恩格尔定律的公式:食物支出对总支出的比率(R1)=食物支出变动百分比总支出变动百分比或食物支出对收入的比率(R2)=食物支出变动百分比收入变动百分比.R2又称为食物支出的收入弹性.恩格尔定律是根据经验数据提出的,它是在假定其他一切变量都是常数的情况下才适用的,因此在考察食物支出在收入中所占的比例变动的问题时,还应当考虑城市化程度、食品加工,饮食业和食物本身结构变化等因素会影响家庭食物支出增加.只有达到相当高的平均食物消费水平时,收入的进一步增加才不对食物支出发生重要影响.恩格尔系数是根据恩格尔定律得出的比例数,是表示生活水平高低的一个指标.其计算公式如下:恩格尔系数=食物支出金额总支出金额除食物支出外、衣着、住房、日用必需品等支出,也同样在不断增长的家庭收入或总支出中,所占比重上升一段时间后,呈递减趋势.。

统计调查-直方图

统计调查-直方图

数据预测
通过对直方图的观察和分析,可以对 未来的数据变化趋势进行预测,为决 策提供依据。
直方图的局限性
对数据量要求较高
直方图适用于数据量较大的情况,对于少量数据,直方图的分布 可能不够稳定,难以准确描述数据的分布特征。
对数据的处理方式较为简单
直方图只是一种简单的数据处理方法,对于一些复杂的数据分布情 况可能无法准确描述。
颜色区分
使用不同的颜色或标记来区分不同的数据系列或类别,以便更直观地比较。
强调异常值
对于异常值或关键点,可以使用不同的颜色或标记来突出显示,以便引起关注。
05
直方图与其他统计图的比较
柱状图与直方图的区别
柱状图主要用于展示分类数据的频数分布,而直 方图则主要用于展示连续变量的频数分布。
柱状图的柱子是互相独立的,而直方图中的柱子 是连续的,表示数据在某个范围内的频数分布。
考虑数据量
对于大量数据,应选择较小的分组间 距,以便更好地观察数据分布;对于 少量数据,则可以适当增大分组间距 。
合理设置坐标轴和刻度
刻度设置
坐标轴的刻度应与分组间距相匹配,以便准确反映数据分布 情况。
标签和标题
在直方图上添加适当的标签和标题,以清晰地说明数据的含 义和比较的基准。
使用适当的颜色和标记
直方图的绘制方法
确定数据范围和分组
将数据分成若干个组,每组的 数据范围称为组距。
计算每组的频数
统计每个组内数据的数量。
计算每组的组中值
组中值是该组中间位置的数值 ,用于代表该组的平均水平。
绘制条形图
根据频数和组中值绘制条形图 ,条形的高度代表该组的频数 ,条形的长度代表该组的组距

直方图的应用场景

《用直方图描述数据》教学反思

《用直方图描述数据》教学反思

《用直方图描述数据》教学反思
天兴中学邱元兰
通过一个星期的听课和上课使我感觉到数学对学生来讲是一门比较难学的科目,课本上的内容虽简单但学生很难理解它,因此我们在教学过程中应结合学生的实际情况。

这个星期我上了《用直方图描述数据》,课后通过老师的指导和自己的思考,我认识到自己在上课中的几点问题:
1.重点不够突出,例如组数、组距的确定讲的不够充分,还有组中值的概念强调的不够。

2.高估了学生的接受能力,应该在课堂上加强对学生的练习,还有在画直方图时应教学生一些技巧,比如说在数轴上取点,应先取两边端点,然后取等分点。

3.板书不够正楷,而且有点多。

4.由于第一次上课有点紧张,整堂课上的不够完美,时间安排不够紧凑。

对于自己的不足,在今后的教学中要努力改正。

具体要求:要做到课前备好课,上课时精神要饱满,对学生要多花时间,尤其是成绩差一点的,要多帮助他们,争取使整个班级的学生成绩有所提高。

更重要的一点是要多向指导老师请教,多听课,从中吸取经验,提高自己的实践能力。

也要求对学生作到:一.做好课堂简要摘记。

二.指导学生掌握反思的方法。

三.从课后学习情况的反思及作业情况的自我反思中加强反思能力的培养。

四.帮助学生提高反思效果。

数学直方图知识点总结

数学直方图知识点总结

数学直方图知识点总结直方图是一种用来表示数据分布的图形,它以长方形的高度来表示相应的数据频数或频率。

直方图可以清晰地显示数据的分布规律和特点,因此在统计学中有着广泛的应用。

在本文中,我将对直方图的相关知识点进行总结,包括直方图的构成要素、绘制方法、应用场景等方面进行详细介绍。

一、直方图的构成要素1. 数据频数和频率直方图是由一系列长方形组成的,每个长方形的高度代表相应数据的频数或频率。

频数是指某个数值在数据集中出现的次数,而频率是指该数值在数据集中出现的频率。

频数和频率是直方图的基本构成要素,它们能够直观地反映数据的分布情况。

在绘制直方图时,我们通常选择频率作为纵轴的标度,以便更好地比较不同数据集之间的分布情况。

2. 数据区间直方图的横轴通常表示数据的区间范围,每个长方形代表一个数据区间。

在确定数据区间时,我们需要根据数据的大小和分布情况来选择合适的区间宽度,以便更好地呈现数据的分布规律。

通常情况下,数据区间的宽度应该尽量相同,这样才能使直方图更加准确地显示数据的分布情况。

3. 坐标轴和标题直方图通常由横轴、纵轴和标题组成。

横轴表示数据的区间范围,纵轴表示数据的频率或频数,而标题则说明直方图所表示的数据集名称或相关信息。

正确设置坐标轴和标题对于理解直方图所要传达的信息非常重要,因此在绘制直方图时,我们需要注重这些构成要素的设置。

二、直方图的绘制方法1. 确定数据区间在绘制直方图前,我们首先要确定数据的区间范围。

通常情况下,我们需要根据数据的分布情况选择合适的区间宽度,然后确定各个数据区间的范围。

在确定数据区间时,我们需要确保每个区间的宽度尽量相同,以便更好地呈现数据的分布规律。

2. 绘制长方形绘制直方图时,我们需要根据数据的频率或频数来确定每个长方形的高度。

一般来说,长方形的高度代表相应数据的频率或频数,而长方形的宽度则代表数据的区间范围。

在绘制长方形时,我们需要确保相邻的长方形之间没有空隙,以便更好地显示数据的分布情况。

直方图数学PPT课件

直方图数学PPT课件

议一议
上面我们选取的组距是
3,从而把数据分成8组
,若我们选取的组距是
2或4呢,那么组距分成
几个组?
四、画频数分布直方图
为了更直观形象地看出频数分布的情况,可以根据频数分布表,画出频数
分布直方图.
纵轴
频数/组距
小长方形的面积=组距×(频数
÷组距)=频数
7
6
5
4
小长方形
的高是频
数与组距
的比值
3
2
1
横轴
地位和作用
(3)统计每组中数据出现的次数(频数)
分组
人数
分组
人数
1750~2000
1
1
3000~3250
7
15
2000~2250
2250~2500
2500~2750
2750~3000
1
3250~3500
3500~3750
10
3
9
3750~4000
4000~4250
9
4
绘制频数直方图
人数
16
14
14
个组,那么由于
最大值-最小值


=
=


组距
所以要将数据分成8组:149≤x<152,152≤x<155,…,170≤x<173.这里组数和组距
分别是8和3.
三、列频数分布表
对落在各个小组内的数据进行累计,得到各个小组内的数据的个数
(叫做频数).整理可以得到频数分布表.
身高分组
频数
149≤x<152 152≤x<155 155≤x<158
地位和作用
例2.为了了解某地区新生儿体重状况,某医院随机调取了该地区60名
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年中考结束后,某市从参加中考的12000名学生 中抽取200名学生的数学成绩(考生得分均为整数,满 分120分)进行统计,评估数学考试情况,经过整理得 到如下频数分布直方图, 请回答下列问题: (2)补全频数分布直方图
2003年中考结束后,某市从参加中考的12000名学生 中抽取200名学生的数学成绩(考生得分均为整数,满 分120分)进行统计,评估数学考试情况,经过整理得 到如下频数分布直方图, 请回答下列问题: (3)若成绩在72分以上 (含72分)为及格, 请你评估该市考生数学 成绩的及格率与数学考 试及格人数。
大部分同学处于哪个分数段? 成绩的整体分布情况怎样?
制作频数分布表
先将成绩按10分的距离分段,统计每个分数 段学生出现的频数,填入表.
成绩段 49.5~59.5 划记 频数 2
59.5~69.5
69.5~79.5 79.5~89.5 89.5~99.5

正正 正正 正
9
10 14 5
根据频数分布表绘制直方图
79.5分到89.5分 这个分数段的学 生数最多
根据频数分布表绘制直方图
90分以上 的同学较 少
根据频数分布表绘制直方图
不及格的 学生数最 少!!!
绘制频数折线图
将直方图中每个小 长方形上面一条边 的中点顺次连结起 来,即可得到频数 折线图
画频数分布直方图的一般步骤:
(1) 计算最大值与最小值的差(极差). (2) 决定组距与组数:
频数 8 6 4 2 0 22.5 24.5 26.5 28.5 30.5 32.5 数据
1、一个样本含有20个数据:35,31,33,35,37, 39,35,38,40,39,36,34,35,37,36,32,34,35,
36,34.在列频数分布表时,如果组距为2,那么应
分成___组,32.5~34.5这组的频数为_____.
小结
通过本节学习,我们了解了频数分布的意义 及获得一组数据的频数分布的一般步骤: (1)计算极差; (2) 决定组距和组数; (3) 决定分点; (4) 列出频数分布表; (5)画出频数分布直方图和频数折线图。
注意:一般情况
(1)可以由组距来求组数; (2)当数据个数小于40时,组数为6-8组; 当数据个数40—100个时,组数为7-10组;
极差/组距=_______ 数据分成_____组.
画频数分布直方图的一般步骤:
(1) 计算最大值与最小值的差(极差).
极差:
(2) 决定组距与组数: 极差/组距=________
解: Байду номын сангаас4)列频数分布表:
分组 频数记录 频数 22.5~ 24.5~2 26.5~2 28.5~ 30.5~ 合计 24.5 6.5 8.5 30.5 32.5
2
3
8
4
3
20
例题:已知一个样本:27,23,25,27,29,
31,27,30,32,21,28,26,27,29, 28,24,26,27,28,30。 列出频数分布表, 并绘出频数分布直方图和频数折线图。 解: (5)画频数分布直方图和频数折线图:
解:(1)计算最大值与最小值的差: 32-23=9 (2)决定组距为2, 因为9/2=4.5,所以组数为5 (3)决定分点: 22.5~24.5,24.5~26.5, 26.5~28.5,28.5~30.5,30.5~32.5.
例题: 已知一个样本:27,23,25,27,29,
31,27,30,32,21,28,26,27,29, 28,24,26,27,28,30。 列出频数分布表, 并绘出频数分布直方图和频数折线图。
数据分成_____组.
(3) 决定分点. (4)列频数分布表.
数出每一组频数
(5)绘制频数分布直方图.
横轴表示各组数据,纵轴表示频数, 该组 内的频数为高,画出一个个矩形。
例题:
已知一个样本:27,23,25,27,29, 31,27,30,32,21,28,26,27,29, 28,24,26,27,28,30。 列出频数分布表, 并绘出频数分布直方图和频数折线图。
探索知识
享受快乐
12.2.2
用直方图描述数据
(1)扇形统计图的特点?
(2)扇形统计图的制作步骤?
(3)什么是频数?什么是频率?
某班一次数学测验成绩如下: 63 , 84 , 91 , 53 , 69 , 81 , 61 , 69 , 91 , 78 , 75 , 81 , 80 , 67 , 76 , 81 , 79 , 94 , 61 , 69 , 89 , 70 , 70 , 87 , 81 , 86 , 90 , 88 , 85 , 67 , 71 , 82 , 87,75,87,95,53,65,74,77.
2、对某班同学的身高进行统计(单位:厘 米),频数分布表中165.5~170.5这一组学 生人数是12,频率是0.25,则该班共有____名 学生.
3、 2003年中考结束后,某市从参加中考的12000名学生中抽取 200名学生的数学成绩(考生得分均为整数,满分120分)进行 统计, 评估数学考试情况,经过整 理得到如下频数分布直方图, 请回答下列问题: (1)此次抽样调查 的样本容量是_____
相关文档
最新文档