氦质谱检漏仪的检漏方法
常用的几种氦质谱检漏方法(1)

书山有路勤为径,学海无涯苦作舟
常用的几种氦质谱检漏方法(1)
氦质谱检漏方法比较多,根据被检件的测量目的可以分为两种类型,一种是漏点型,另一种是漏率型;在实际检验过程中要根据检验的目的选用最合理的方法, 要以被检器件的具体情况而定,灵活运用各种检漏方法。
1、测定漏点型氦质谱检漏方法确定漏点型既是确定要检部件的具体漏点或漏孔的位置,在大部件或大型部件中较为常见,如卫星、导弹弹体、弹头、输气管道、气罐、油罐、锅炉等。
1.1、喷氦法氦质谱检漏方法这是最常用的一种方法,通常用于检测体积相对较小的部件,将被检器件和仪器连通,在抽好真空后,在被检器件可能存在漏孔的地方(如密封接头,焊缝等) 用喷枪喷氦,如图4 所示,假如被检器件某处有漏孔,当氦喷到漏孔上时,氦气立即会被吸入到真空系统,从而扩散到质谱室中,氦质谱检漏仪的输出就会立即有响应,使用这种方法应注意:氦气是较轻的惰性气体,在喷出后会自动上升,为了准确的在漏孔位置喷氦,喷氦时应自上而下,由近至远(相对检漏仪位置) ,这是因为在喷下方时氦气有可能被上方漏孔吸入,就很难确定漏孔的位置; 再者漏孔离质谱室的距离检漏仪反应时间也不同,因此喷氦应先从靠近检漏仪的一侧开始由近至远来进行。
图4 喷氦法检漏示意图
在检测较大部件时要借助机械泵进行真空预抽,就可以提高检漏效率和时间,如图5 所示,喷氦法在检查那些结构比较复杂的,密封口和焊缝又比较多而且挤在一起的小容器时,由于氦喷出后会很快扩散开来,往往不容易准确地确定漏隙所在的部位,要采取从不同角度喷氦,仔细观察反应时间上的差别和将已发现的漏孔用真空封泥暂时封起来等办法,就可以把漏孔逐个检出。
氦检漏步骤

氦检漏步骤
1、抽真空至5Pa以下就可以开始检测。
2、插上检漏仪电源,关闭上部手动挡板阀,开启检漏仪总电源,此时,“放气”
灯亮起,等待系统运行
3、当“系统正常”及旁边的两个灯都显示为绿色时,观察预置参数,应为10-15,
一般取15,观察数值,应为10的-8至-9次方时,可以开始检漏(等待
几分钟)
4、按“检漏”键,缓慢开启顶部手动挡板阀,注意:检漏口的压强不得超过
10MPa,否则机器易损坏,
5、数值稳定后,先记录下来,这就是“本底”
6、逐个将氦气充入焊缝,并封堵插入口,将数值变动记录下来。
全部完成充氦
后再观察20分钟,看数值有无大的变动。
7、关机时,应先关闭上部手动挡板阀,然后开启放气键,最后关电源。
氦质谱仪背压检漏方法_概述及解释说明

氦质谱仪背压检漏方法概述及解释说明1. 引言1.1 概述氦质谱仪背压检漏方法是一种常用的无损检测方法,用于检测工业设备及管道系统中可能存在的泄露点。
该方法通过利用氦气的特殊物理性质和气体流动原理,实现对泄漏点进行准确、快速的定位和评估。
背压检漏方法具有非侵入性、高灵敏度和自动化程度高等优势,在工业领域得到了广泛应用。
1.2 文章结构本文将围绕氦质谱仪背压检漏方法展开详细论述,文章结构包括引言、背压检漏方法的原理、背压检漏方法的步骤与实施、背压检漏结果分析与评估以及结论与展望等部分。
首先介绍了本文的概述和目的,然后详细解释了背压检漏方法相关的原理,并探讨其在不同领域中的应用优势。
接下来,阐述了使用该方法进行检测时所需进行的准备工作和步骤,并提供了数据分析与处理方法。
最后,对测试结果进行评估和解读,并分析存在的误差,并提出改进措施。
文章最后总结了本次研究的主要成果,并提出了未来进一步研究的方向。
1.3 目的本文旨在全面概述氦质谱仪背压检漏方法,介绍其原理、优势和应用领域,详细阐述该方法的步骤与实施过程,并提供相关数据分析与处理方法。
同时,通过对实验结果的评估与解读,发现存在的误差并提出改进措施。
通过对氦质谱仪背压检漏方法进行深入研究和分析,期望为工程技术领域中泄漏点检测及预防提供参考和指导,并为后续研究提供基础依据。
2. 背压检漏方法的原理:2.1 氦质谱仪背压检漏原理:氦质谱仪背压检漏是一种常用的方法,该方法基于气体分子的运动特性和质谱检测技术,通过检测目标物体表面的潜在泄漏点来实现泄漏检测。
其原理可以简要概括为以下几个步骤。
首先,将高纯度的氦气作为探测介质注入已密封的被测试系统或设备内部。
由于氦气分子具有很小的尺寸和较高的扩散性能,在目标物体出现泄露时,氦气会从泄漏点逸出到周围环境中。
接下来,使用一个质谱仪进行监测和分析。
质谱仪内部设置了一个称为“零背景样品”的容器,其中充满了监测过程中未受外部干扰影响而得到平衡状态的环境空气样品。
氦质谱检漏方法

[1]氦质谱检漏技术是真空检漏领域里不可缺少的一种技术,由于检漏效率高,简便易操作,仪器反应灵敏,精度高,不易受其他气体的干
ห้องสมุดไป่ตู้
扰,在电阻炉检漏中得到了广泛应用。氦质谱检漏仪是根据质谱学原理,用氦气作示漏气体制成的气密性检测仪器。由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。质谱室里的灯丝发射出来的电子,在室内来回地振荡,并与室内气体和经漏孔进人室内的氦气相互碰撞使其电离成正离子,这些氦离子在加速电场作用下进人磁场,由于洛伦兹力作用产生偏转,形成圆弧形轨道,改变加速电压可使不同质量的离子通过磁场和接收缝到达接收极而被检测。喷氦法、吸氦法是氦质谱检漏仪在电阻炉检漏中最常用的两种方法。
华尔升氦质谱检漏仪常见的三种检漏法

华尔升氦质谱检漏仪常见的三种检漏法华尔升氦质谱检漏仪应用广泛,在检漏作业中,根据不同产品对密封的要求多采用负压法,正压法和压氦法三种检漏方法。
1、负压法检漏负压法检漏是将被检件接到检漏仪的检测口,用喷枪连续向可疑的漏孔喷射示踪气体,示踪气体通过漏孔进入检漏仪并被检测。
一般电子器件的外壳、高压开关管、氧化锌、避雷器等都应采用这种方法检漏。
根据产品的不同,需要选择不同尺寸的夹具或辅助工具。
举个例子,比如管壳的检漏。
检漏仪正常工作后,用标准漏孔进行漏率校准,就可以对管壳作喷吹检漏,先将夹具固定在检漏口,待测管壳放在夹具上面的橡皮板上,辅助抽气系统将其抽至预定真空后自动接至仪器的测量系统。
然后用喷枪连续向管壳喷氦气,时间一般1~3秒,当管壳存在漏孔时,氦气将通过漏孔进入仪器的质谱分析部分,漏量大小在漏率表上直接显示出来,这种方法既能判断漏孔的位置也可测量漏孔的大小。
整个检测周期只需一分钟。
2、正压法检漏正压法检漏与负压法检漏相反,吸枪接在检漏仪的检测口,而被检件充入规定压力的示踪气体,漏孔泄漏出来氦气被吸枪吸入检漏仪被检测。
大型容器或内部放气管量很大的容器做负压检漏很不经济,而且检漏速度慢,一般采取正压检漏。
这种正压检漏法应注意事项:首先必须校准仪器的吸枪灵敏度,再向容器内充入比一个大气压高的氦气;其次有些容器是薄板结构,建议在容器外面做夹具防止高压时变形损坏器件;最后吸枪沿焊缝移动时速度不要太快,离开表面1mm左右,以保证吸入灵敏度,将探头做成喇叭口形效果更好。
3、压氦法检漏压氦法检漏是将压有一定压力的示踪气体的被检件放入检漏夹具中,然后连至检漏仪将其抽空,示踪气体通过漏孔泄漏出来,经检漏仪检测总泄漏量。
一般小型电子器件宜采用这种检漏方法。
首先将仪器调整好,再将器件放入加压罐内压入氦气,氦气进入有漏孔的器件内部,无漏孔的器件只是表面吸咐氦气。
器件加压压力和时间根据GB2423,2328文件而定,器件从加压罐中取出后将表面吸咐的氦气吹掉再放入检漏夹具中抽空,待真空抽至设定值后自动将夹具连至仪器的测量系统。
正压法氦质谱检漏

正压法氦质谱检漏
正压法氦质谱检漏是一种常用的气体检漏方法,它利用氦气的小分子直径和低扩散系数特性,通过正压法将氦气注入被检测物体的内部,然后使用氦质谱仪检测被检测物体表面或密封边界是否存在漏气点。
正压法氦质谱检漏主要包括以下几个步骤:
1. 准备工作:将氦气充入质谱仪并建立质谱仪与被检测物体之间的连接。
2. 真空处理:在被检测物体内部建立一定的真空,以确保检测结果的准确性。
3. 注氦:将一定压力的氦气注入被检测物体的内部。
通常可以使用氦气罐或氦气压缩机进行注氦。
4. 检测:打开质谱仪,并进行氦气泄漏检测。
质谱仪将通过检测氦气的质谱信号,确定是否存在氦气泄漏点。
如果存在泄漏点,质谱仪将显示泄漏量的大小。
正压法氦质谱检漏的优点是灵敏度高、精确度高,能够检测到微小的气体泄漏点。
同时,由于氦气是稀有气体,对环境的影响较小。
然而,正压法氦质谱检漏也存在一些局限性,如设备价格较高,操作复杂,需要专业的操作人员等。
因此,该检漏方法主要适用于对泄漏点精确度要求高的场合。
氦质谱背压检漏

氦质谱背压检漏
氦质谱背压检漏是一种常用的检漏方法,主要用于检测气体系统中的微小泄漏。
其基本原理是利用氦气在质谱仪中的高灵敏度检测能力,通过测量系统中的氦气浓度差异来确定泄漏点。
具体操作步骤如下:
1. 确保系统处于关闭状态,并将质谱仪连接到气体系统的出口。
2. 在质谱仪的控制面板上设置合适的检测参数,如扫描速度、灵敏度等。
3. 打开质谱仪的抽气泵,将氦气抽入系统中。
4. 在气体系统中设置适当背压,通常在10-1000 Pa之间。
5. 开始检测,观察质谱仪的显示屏上的氦气峰值图谱。
6. 如果氦气峰值图谱中存在异常的峰值或与背景不一致的波动,表示存在泄漏点。
7. 根据泄漏点的大小和位置,采取相应的修复措施进行处理。
需要注意的是,在进行氦质谱背压检漏时,要确保气体系统的密封性良好,确保检漏结果的准确性。
此外,背压的设置应适当,过高的背压可能影响检测的灵敏度,而过低的背压可能导致系统内氦气稀释不足,也会影响检测的准确性。
氦质谱检漏试验方法

氦质谱检漏试验是一种常用的无损检测方法,主要用于检测设备或容器的密封性能。
其基本原理是通过氦气的渗透或压力差,检测设备或容器的漏气情况,从而判断其密封性能的好坏。
氦质谱检漏试验方法一般包括以下几个步骤:
1.准备测试设备:将待检设备或容器进行清洗和干燥处理,确保表面干净无油污和杂质。
2.安装氦质谱检漏仪:将氦质谱检漏仪安装到测试设备上,并连接好气源和检漏探头。
3.进行氦质谱检漏测试:在测试设备的接口处注入氦气,并通过检漏探头监测氦气泄漏的情况。
氦气泄漏的情况可以通过氦质谱检漏仪的显示屏或声音提示来判断。
4.分析测试结果:根据测试结果,判断设备或容器的密封性能是否符合要求,并确定是否存在漏气问题。
需要注意的是,氦质谱检漏试验需要在无风的环境下进行,以避免氦气的外泄。
同时,氦质谱检漏试验也不能完全替代其他检漏方法,应根据实际情况选择合适的检测方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
漏率的定义和单位
真空系统中漏气/虚漏与抽气之间的平衡 真空系统中漏气流量的平衡表示式如下: P =(Qo +∑Qi)/S +Po
P-----系统达到的压力 Po—真空泵的极限压力 S-----真空系统的有效抽速 Qo---由系统外部流向系统内部的总漏率 ∑Qi—虚漏所形成的总漏率(如材料表面出气等)
灯泡 断路器
汽车行业 航天 医药行业
起搏器 泵 回旋装置 气囊 减震器 过滤器 压缩机
工业应用
制冷
冰箱 空调
钟表行业
研究所
粒子加速器 核聚变
航空
Airplane tanks
飞机制造业
导弹
食品包装 10-7 10-6 10-5 10-4 10-3
10-12
10-11
10-10
10-9
10-8
检漏的目的
被测 件
ASM 142
逐步区域检漏:吸枪式检漏
对被测件内部进行充氦 用吸枪在被测件表面缓慢移动,采样逃逸的氦气 主要的优点 可以很好的检到漏点位置, 且易于操作 不需要将被测件抽真空
He
被测 件
He
总漏率检测:真空法检漏
将被测件充氦,然后放置于 一个与检漏仪相连的真空腔内 主要的优点 非常高的灵敏度 可以连接辅助泵,从而提高 生产量
压降法检漏
压缩空气或 抽真空
被测 件
将被测件加正压或抽真空到一定的压力,然后关闭 阀门,通过真空计观察单位时间内的压力变化
打正压的 压降法可 以检测到 1mbar l/s以 上的漏率
而采用抽真空的压降法可以作为对漏率大小的评估,但是,该 方法评估的不仅是泄漏,也包括释气。而且,如果漏率较小时 (< 10-4mbar l/s),在粗真空下观察压降会消耗很长时间,但 在中真空下观察又会受释气的影响!
Test part vacuum inside
Air
气泡法检漏
被测 件
水泡法,最多可 测到10-4mbar.l/s; 检漏完毕需要干 燥;且被测件很大 的话就更困难!
将打压后的被测件浸在水槽里,气泡 可以反映漏率的大小
也可以采取肥皂泡法,通常在5分钟内出现1mm半 径的肥皂泡,其漏率约为10-5mbar l/s
He
被测件
He
ASM 142
总漏率检测:吸枪式累积检漏
将被测件充氦,然后放置 于一个与吸枪探头相连的累积 腔内
He
主要的优点 总漏率检测,可靠 相对而言成本较低
被测 件
He
ASM 142
总漏率检测:背压式检漏
第一步 : 将被测件放置于一个充氦 的腔内 第二步 : 将被测件放于通风处(去 除表面累积的氦,以防影响之后的检 测精度 第三步 : 将被测件放置于一个与吸 枪探头相连的腔内 主要的优点 总漏率检测 相对而言,成本较低
因此,检漏的目的在于
将泄漏降低到一个可以接受的,不 影响系统正常运行的程度!
检漏的方法
不同的检漏方法
被测件内部压力 > 1000 mbar 被测件内部压力 < 1000 mbar
检漏的方式
对被测件内部打压
FLOW
正压 :
真空 :
对被测件抽真空
Air/test gas
FLOW
Test part pressurized with test gas
时间
He
F2
检漏仪
t t:秒 V : 升 (被测件体积) SHe : 检漏仪的氦抽速 F1 : 初始氦显示 F2 : 最终氦显示 (背景)
当不再有氦气进入被测件,氦信 号也并不是立即就会消失的
缩短响应时间的方法
通常,缩短响应时间的方法就是增大 抽速:
被测件
1/ 增加一台辅助泵 2/ 选择更大氦抽速的检漏仪 增加辅助泵会造成氦气的分流
*
氦检漏仪的灵敏度
低灵敏度
一个容积为 1 升的自行车轮胎如果在24小时内气就漏光的话 漏率为 3,5.10-2 mbar.l/s = 每秒有3 个 半径 2 mm 的气泡
*
氦检漏仪的灵敏度 高灵敏度
一个含 30 g 气体的打火机, 全部的气体漏光则需要 5 百万年, 漏率为 1.10-11 mbar.l/s
He
t (90%) = 2.3 V/(SHLD+Saux) 检漏仪 辅助泵 QHLD = Qleak x SHLD/(SHLD+Saux) 其中,SHLD-检漏仪抽速,S aux-辅助泵抽速, QHLD-检漏仪显示漏率,Q leak-实际漏率
氦质谱检漏仪的内部构造
氦质谱检漏仪的工作原理
氦质谱检漏仪的核心部件: 是一个检测氦气分压力的真空计 : 该真空计也称为质谱仪或分析仪. P He : 真空计测得的氦气 分压力
•
流量 = 泵的抽速 x 压力
流量 =
体积 x压力 时间
流量的定义
•
所以,在10bar下一升气体与在1bar下10升气体所含的气体 分子数是相同的
1升
=
10 升
AIR
10 bar 1 bar
流量的定义
当我们在海平面高度下跑步 : 丝毫没有任何问题
我们的肺就象一台泵 : S = 4 l/s 泵的抽速是 4 l/s
1
He
2
3
不同检漏法的灵敏度比较
He
He
He
ASM 142
被测 件 被测 件
ASM 142
He
与吸枪法相比,喷枪式或真空法检漏的灵敏度更 高,因为在大气中还含有5ppm的氦气
氦检漏仪灵敏度的概念
氦检漏仪灵敏度在我国用最小可检漏率来表示: 最小可检漏率的定义是指在满足如下条件下----(1)仪器处于最佳工作条件下 (指:被检件出气很小;无较大漏孔;仪器参数调至最佳状态) (2)以1atm的纯氦作为示漏气体 (3)动态检漏时所能检出的最小漏孔的漏率 (指:检漏时不用累积法;仪器本身的真空系统仍在抽气;仪 器反应时间小于1秒).
被测件
He
检漏仪 辅助泵
氦质谱检漏仪的检漏方法 检漏时常遇到的问题
被测件
检漏仪
高真空泵 罗茨泵
究竟应该把检漏仪安装 在哪个位置???
He
前级泵
漏率的计算,定义和单位
流量的定义
› ›
流量体现的是在单位时间下 流体分子数的多少 对于液体而言:
•
流量 = 液体泵的抽速
流量 =
体积 时间
›
而对于气体而言:
« small » lea
« Industrial » le
ks
10-7
aks
10-3
« big » leaks
气泡法检漏 压降法检漏
氦质谱检漏仪检漏
逐步区域检漏:喷氦式检漏
将被测件抽真空 用喷枪对被测件表面喷氦 检测进入被测件的氦流量
He
He
主要的优点 非常高的灵敏度 比较便宜
漏率的定义和单位
看! 一个气泡!
例如: 假设对于一个体积 为10升的容器,压力在80 秒内的变化为2mbar,那 么漏率
Q = 2 mbar x 1 liters = 0.25 mbar . l/s. 80 seconds
漏率的定义和单位
mbar. liter/second
›
漏率其实反映的是在一定时间内从泄漏的气体分子的数量.
例如: 假设漏率为 1mbar.l/sec (20°C的空气) 每秒将会有2.5*1019 个空气分子逃逸 !!!
时间
压力 = 1000 mbar 压力 = 1 mbar
25.000.000.000.000.000.000 个空气分子/秒
*
漏率的定义和单位
漏率的不同单位
漏率反映的是气体的流量, 例如 在某一个特定压力下(Pa, atm, mbar, torr)的体积流量(m3/s, cc/s, l/s)
0 1
F=Pc x Sc
21
漏率的计算
虽然确切的计算泄漏量很难,但 是可以用以下公式进行初步的估 算(层流,20摄氏度空气):
Qpv = 135 x d4/L x(Po2-Pi2)/2
其中,d-漏点的直径,L-漏点的长度,Po-高压端压 力,Pi-低压端压力
漏率的定义和单位
针对于一个体积(V)不变的容器,单位 时间(Δt)内压力的变化量(ΔP)与该容 器体积(V)的乘积就是泄漏量: Q leak = V x ΔP / Δt 因此,泄漏量的单位通常用mbar l/s(也可用 Pa m3/s , atm cc/s 或 Torr l/s)
起搏器 导管 输血管 药物包装
安全气袋 罐和管道 空调 减震器 前灯 散热器 车轮 传感器
食品包装行业
其它容器
飞机制造行业 航天
发动机 天线 腔
液压元件 回旋装置 机翼 导弹
核技术
元器件
钟表行业 物理研究所
粒子加速器
通常在检漏时容易遇到的问题
氦质谱检漏仪的检漏方法 检漏仪中的高真空泵
检漏仪进气口 泄露造成的氦气流量
虽然泵的抽速并没有发生变化 : 4l/s, 但是在山上的压力要比海平面的压力 要低很多 但是当我们在海拔很高的山上跑步时 : 我们就觉得呼吸不过来了 所以,吸氧量(流量) 自然就大不相同了
流量的定义 流量
Pa F=Pa x Sa
在每一个 截面上, 气体的流 量都是相 同的
Pb F=Pb x Sb Pc c
当氦气进入被测件后,检漏仪并 不是立即就能够捕捉到信号的!
t = V/SHe t = 3V/SHe
63%的氦信号
V t = 2.3 SHe
t:秒 V : 被测件(包括管道 )的体积 SHe : 检漏仪的氦抽速ຫໍສະໝຸດ 95%的氦信号90%的氦信号