SPC控制图的分类

合集下载

详细全面的SPC详解

详细全面的SPC详解

详细全面的SPC详解SPC(Statistical Process Control,统计过程控制)是一种用于管理和优化生产过程的方法,它的目的是通过使用统计工具来分析生产过程中的数据,从而控制和改进产品质量。

SPC强调预防原则,即通过预防措施来减少产品缺陷和不良情况的发生,而不是在出现问题后再进行纠正。

SPC的基本概念包括控制图、过程能力指数、规格界限等。

控制图是SPC的核心工具,它用于监控生产过程中的关键变量,并根据统计原理判断生产过程是否处于控制状态。

控制图通常由均值-标准差控制图和极差控制图两种类型组成。

过程能力指数是指生产过程满足产品规格要求的程度,它通常被用来评估生产过程的能力,以便进行改进。

规格界限则是根据产品要求和客户要求设定的界限,用于确定产品是否合格。

SPC的实施方法包括以下几个步骤:1.选择关键变量:首先需要选择需要监控的关键变量,例如产品尺寸、材料特性等。

2.设计控制图:根据选定的关键变量,设计适合的控制图,并确定控制界限。

3.收集数据:按照一定的时间间隔收集生产过程中的数据,并对数据进行记录和整理。

4.分析数据:根据控制图的规则,判断生产过程是否处于控制状态,并找出异常点。

5.采取措施:根据分析结果,采取适当的措施来改进生产过程,例如调整工艺参数、更换设备等。

6.监控和反馈:持续监控生产过程,并及时反馈相关信息,以确保生产过程的质量和稳定性。

SPC的优势在于它可以及时发现生产过程中的异常情况,从而采取措施防止问题的扩大。

此外,SPC还可以提高生产过程的稳定性和产品质量的一致性,减少浪费和成本。

未来,SPC将会在更多的领域得到应用和发展,例如智能制造、医疗保健、金融服务等行业。

总之,SPC是一种有效的过程管理和优化工具,可以帮助企业提高产品质量和生产效率。

学习和掌握SPC技能对于从事质量管理、生产管理、工艺优化等工作的专业人士来说是非常重要的。

SPC“控制图”的分析与判定

SPC“控制图”的分析与判定

SPC“控制图”的分析与判定控制图(Control Chart)又叫管制图,是对过程质量特性进行测定、记录、评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。

图上有三条平行于横轴的直线:中心线(CL,Central Line)、上控制线(UCL,Upper Control Line)和下控制线(LCL,Lower Control Line),并有按时间顺序抽取的样本统计量数值的描点序列。

UCL、CL、LCL统称为控制线(Control Line),通常控制界限设定在±3标准差的位置。

根据控制图使用目的不同,控制图可分为:分析用控制图和控制用控制图。

根据统计数据的类型不同,控制图可分为:计量控制图和计数控制图(包括计件控制图和计点控制图)。

计量型控制图平均数与极差控制图( -X-R Chart )平均数与标准差控制图( -X-S Chart )中位数与极差控制图( ~X-R Chart )个別值与移动极差控制图( X-Rm Chart )计数值控制图不良率控制图(P chart)不良数控制图(nP chart,又称 np chart 或 d chart)缺点数控制图(C chart)单位缺点数控制图(U chart)控制图种类及应用场合:控制图的分析与判定应用控制图的目的,就是要及时发现过程中出现的异常,判断异常的原则就是出现了“小概率事件”,为此,判断的准则有两类。

第一类:点子越出界限的概率为0.27% 。

准则1属于第一类。

第二类:点子虽在控制界限内,但是排列的形状有缺陷。

准则2-8属于第二类。

控制图八大判异准则(口诀)2/3A (连续3点中有2点在中心线同一侧的B区外<即A 区内>4/5C (连续5点中有4点在中心线同一侧的C区以外)6连串(连续6点递增或递减,即连成一串)8缺C (连续8点在中心线两侧,但没有一点在C区中)9单侧(连续9点落在中心线同一侧)14交替(连续14点相邻点上下交替)15全C (连续15点在C区中心线上下,即全部在C区内1界外(1点落在A区以外)▶2/3A (连续3点中有2点在中心线同一侧的B区外<即A区内>)判读:1 . 控制过严;2 . 材料品质有差异;3 . 检验设备或方法之大不相同;4 . 不同制程之资料绘于同一控制图上;5 . 不同品质材料混合使用。

统计过程控制SPC第二版

统计过程控制SPC第二版

例如,原材料的质量不符合规定要求;机 器设备带病运转;操作者违反操作规程; 测量工具带系统性误差,等等。由于这些 原因引起的质量波动大小和作用方向一般 具有一定的周期性或倾向性,因此比较容 易查明,容易预防和消除。又由于异常波 动对质量特性值的影响较大,因此,一般 说来在生产过程中是不允许存在的。


np或p图 p图
关心的是 单位零件缺陷数吗?

样本容量 是否恒定?


C或U图 U图
二、控制图
计量型控制图
二、控制图 计数型控制图
二、控制图 4、控制图应用的二个阶段
从生产过程中,定期抽取样本,测量各样 本的质量特性值,然后将测得的数据加以 统计分析,判断过程是否处于稳定受控状 态,从中发现过程异常原因(特殊原因), 从而及时采取有效对策,使过程恢复到正 常稳定受控状态。
预防与检测
检测——容忍浪费
在生产部门,通过检查最终产品并剔除不合格产品。不合格的总是不合格。 在管理部门,经常靠检查或重新检查工作来找出错误 这实质上是“死后验尸”,造成时间和材料等的浪费
计数型:通常是指不用仪器即可测出的数 据。计件如不合格件数;计点如PCB上的 漏焊数、溢胶数等
计量型 计数型
计件型 计点型
二、控制图 2、控制图的构成
18 17 16 15 14 13 12 11 10
9 8 7 6 5
1
2
3
4
点落在该区间的概率为99.7%
5
6
7
8
9
+3
Average
-3
10
二、控制图
▪ ……
二、控制图
计数型控制图
不良率控制图(P图) 不良品数控制图(Pn图) 缺陷数控制图(C图) 单位缺陷数控制图(U图)

SPC控制图详解

SPC控制图详解

SPC控制图详解什么是控制图?控制图是对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图。

控制图的应用控制图中包括三条线1.控制上限(UCL)2。

中心线(CL)3。

控制下限(LCL)控制图的种类数据:是能够客观地反映事实的资料和数字数据的质量特性值分为:计量值可以用量具、仪表等进行测量而得出的连续性数值,可以出现小数。

计数值不能用量具、仪表来度量的非连续性的正整数值。

计量型数据的控制图Xbar—R图(均值-极差图)Xbar—S图(均值-标准差图)X-MR图(单值-移动极差图)X-R(中位数图)计数型数据的控制图P图(不合格品率图)np图(不合格品数图)c图(不合格数图)u图(单位产品不合格数图)控制图的判异控制图可以区分出普遍原因变差和特殊原因变差1。

特殊原因变差要求立即采取措施2.减少普遍原因变差需要改变产品或过程的设计错误的措施1.试图通过持续调整过程参数来固定住普通原因变差,称为过渡调整,结果会导致更大的过程变差造成客户满意度下降。

2.试图通过改变设计来减少特殊原因变差可能解决不了问题,会造成时间和金钱的浪费。

控制图可以给我们提供出出现了哪种类型的变差的线索,供我们采取相应的措施。

控制图上的信号解释有很多信号规则适用于所有的控制图(Xbar图和R图),主要最常见的有以下几种:规则1:超出控制线的点规则2:连续7点在中心线一侧规则3:连续7点上升或下降规则4:多于2/3的点落在图中1/3以外规则5:呈有规律变化SPC控制图建立的步骤1。

选择质量特性2。

决定管制图之种类3.决定样本大小,抽样频率和抽样方式4。

收集数据5。

计算管制参数(上,下管制界线等)6.持续收集数据,利用管制图监视制程SPC控制图选择的方法1.X—R控制图用于控制对象为长度、重量、强度、纯度、时间、收率和生产量等计量值的场合。

X控制图主要用于观察正态分布的均值的变化,R控制图主要用于观察正态分布分散或变异情况的变化,而X—R控制图则将二者联合运用,用于观察正态分布的变化.2.X—s控制图与X—R图相似,只是用标准差(s)图代替极差(R)图而已.3.Me—R控制图与X—R图也很相似,只是用中位数(Me)图代替均值(X)。

SPC控制图的分类

SPC控制图的分类

控制图选用原则在质量管理工作中,通常用到各种控制图,用于分析或控制制程,本文在此对如何选用控制图简单归纳如下表,请大家参与讨论计量型数据控制图x--R 平均值—极差图1、通常子组样本容量小于9,一般为4或52、此控制图,因使用方便,效果也好,故使用最普遍X --S 平均值—标准差图1、因标准差比极差描述产品或过程变异更优,故在有计算机时用此种图形更好2、当子组样本容量大于9时,人工计算极差较困难时,常用计算机计算3、通常用于分析制程用X~-R 中位数图1、通常用于现场操作者进行控制制程用2、使用此图时,子组数通常为奇数,分析所得结果偏差比上两者都大X-MR 单值移动极差图1、通常在测量费用高时使用2、测量数据输出比较一致时常用(如溶液的浓度)3、检查过程的变化不如其它计量型控制图敏感计数型数据控制图p 不合格品率图适用于测量在一批检验项目中不合格品项目的百分数,是一个比率,故各子组样本容量不一定要一样np 不合格品数图用来度量一个检验中的不合格品的数量,是一个数值,故各样本容量应固定c 不合格数图用来测量一个检验批内不合格的数量,它要求样本容量恒定或受检数量恒定u 单位产品不合格数图用来测量具有容量不同的样本的子组内,每检验单位之内的不合格数量按控制图测量性质不同,控制图可分为计量型控制图和计数型控制图两大类。

前者反映产品或过程特性的计量数据,后者反映计数数据。

计量型控制图又可分为:1)均值-极差(X-R)图:适用于长度,重量,时间,强度,成分以及某些电参数的控制2)均值-标准差(X-S)图:适用于样本较大的过程控制3)单值-移动差(X-Rs)图:只能获得一个测量值或测量成本较高的情形.4)中位数-极差(X-R)图计数型控制图:1)缺陷数(C)控制图:计数检验的个数相对于被检验对象的总体很少时适用.2)百分率(P)图:适用于计数的值所占的比例较大时.2、按控制图用途不同,控制图可分为分析用控制图与控制用控制图。

SPC控制图简介

SPC控制图简介
过程均值偏移
8.3:连续6点递增或递减
Six points in a row steadily increasing or
decreasing
过程均值偏移
9. 异常点原因分析的步骤
• 对于控制图所出现的异常点, 我们建议按下列順序 进行检查:
a. 取 Data 是否随机; b. 数字的读取是否准确、测试仪器是否符合
两种变异
过程预防 对过程采取行动 避免浪费、不生产
无用产品的 预防策略
偶因 始终存在 不易识别
异因 可查明特殊原因
归结为5M1E
1.3 统计过程控制的目的
• SPC的目的:建立并保持过程处于可接受的并且稳定的水平, 以确保产品和服务符合规定的要求
• 控制图。是实现上述目的所应用的主要统计工具
表征过程 当前样本 序列信息
LCL
UCL

Specification Limits (USL,LSL)
由顾客或管理层确定,表述过程的理想状态
Control Limits
(UCL,LCL)
由抽样数据计算确定,表述过程的实际状态
1.2 传统方法与过程预防策略
传统的质量检验策略
科学的过程预防策略
事后检验 浪费和不经济
未识別
识別
不控制 生产过程 控制
• 分析用控制图的目的是对收集到的一定数据进 行分析,寻找稳态。
• 控制用控制图是对实时数据进行分析,保持稳 态。
• 稳态,也称统计控制状态(state in statistical control),即过程中只有偶因没有异因的状态。
• 稳态是生产追求的目标。
4.1 稳态的统计解释(又称统计稳态)
8. 判异准则

SPC控制图的判定方法

SPC控制图的判定方法

SPC控制图的判定方法SPC(Statistical Process Control)控制图是一种统计工具,用于分析和监控过程中的变异性,并判断过程是否稳定。

通过控制图的使用,可以帮助企业提高产品质量、降低成本和提高生产效率。

本文将介绍SPC控制图的判定方法。

一、控制图的基本原理1.1 数据收集与分类要绘制SPC控制图,首先需要收集相关的数据。

这些数据可以是产品尺寸、重量、时间等方面的测量结果。

收集的数据需要根据特定的要求进行分类和整理,以便后续的统计分析。

1.2 参数与变量在控制图中,可以使用参数图和变量图两种类型的控制图。

参数图适用于可计量的特征,如长度、重量等,而变量图适用于计数型数据,如不良品率、缺陷数等。

1.3 控制线的设定控制图通常包括中心线、上限线和下限线。

中心线代表过程的平均值,上限线和下限线则用于判断过程变异是否在可接受的范围内。

控制线的设定需要根据过程的稳定性和要求进行调整。

二、SPC控制图的判定方法2.1 过程是否稳定在绘制控制图之前,首先需要判断过程是否稳定。

稳定的过程指的是过程产生的变异性仅来自于随机误差,而不是系统性的因素。

判断过程是否稳定可以通过以下几种方式进行:(1)过程能否满足规范要求:通过对过程数据进行规范性能指标的计算与分析,判断过程是否满足要求。

(2)过程的输入是否稳定:观察过程的输入数据,如材料的质量、设备的稳定性等,判断输入是否稳定。

(3)过程是否存在特殊因素:通过了解和分析过程中的特殊因素,如人为因素、设备故障等,判断过程是否稳定。

2.2 控制图的规则绘制了控制图后,可以通过判断数据点的分布情况,在控制图上标示出不同的规则。

常用的规则有以下几种:(1)单点超出控制限:单个数据点超出上限线或下限线。

(2)连续点在中心线同一侧:三个或更多连续的数据点在中心线的同一侧。

(3)多点连续递增或递减:连续五个或更多数据点递增或递减。

(4)趋势:六个或更多连续递增或递减的数据点。

控制图讲稿1

控制图讲稿1

控制图的控制限分别位于中心线的两侧3σ距离处。3σ控制限表明,若过程处于统计控制状态,则大约有99.7%的子组值将落在控制界限之内。换句话说,当过程受控时,大约有0.3%的风险,或每点绘1000次中,平均有3次,描绘点会落在上控制限或下控制线之外。 许多场合,在控制图上另外加上2σ控制限是有益的。这样,任何落在2σ界限外的子组值都可以作为失控状态即将来临的一个警示信号,因此,2σ控制限有时也称作“警戒限”。在对控制图进行判断的是否,会用到1 σ,2 σ,3 σ限,这在后面会讲到。
X-s图制作范例
s控制限的计算: UCLs=B4*s CLs=s LCLs=B3*s B3,B4为常数,通过查表可得。
X图控制限的计算: UCLX=X+A3*s CLX=X LCLX=X-A3*s A3为常数,通过查表可得。
(3)Me-R控制图 Me-R控制图与X-R图也很相似,只是用中位数(Me)代替均值(X)。由于中位数的计算比均值简单,所以多用于现场需要把测定数据直接记入控制图进行控制的场合,这是,为了简便,自然规定为奇数个数据。现在多用电脑进行绘图,计算平均值已经不成问题,故Me-R图的应用逐渐减少。
P控制图
不合格品数控制图
np控制图
计点值
泊松分布
单位不合格数控制图
U控制图
不合格数控制图
C控制图
控制图中常用符号的解析: n 子组大小,单个子组中子组观测值的个数 k 子组数 X 质量特性的观测值 X 子组的平均值 Me 子组中位数。对于一组升序或降序排列的n个子组观测值X1,X2…..,当n为奇数时,中位数等于该组数中间的那个数;当n为偶数时,中位数等于该组数中间两个数的平均值。 R 子组极差。子组观测值中极大值与极小值之差。 注:在单值图的情况下,R代表移动极差,即两个相邻观测值的差值的绝对值。 S 子组标准偏差 s=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPC控制图的分类
控制图选用原则
在质量管理工作中,通常用到各种控制图,用于分析或控制制程,本文在此对如何选用控制图简单归纳如下表,请大家参与讨论
计量型数据控制图
极差图 x--R 平均值—
1、通常子组样本容量小于9,一般为4或5
2、此控制图,因使用方便,效果也好,故使用最普遍
X --S 平均值—标准差图
1、因标准差比极差描述产品或过程变异更优,故在有计算机时用此种图形更好
2、当子组样本容量大于9时,人工计算极差较困难时,常用计算机计算
3、通常用于分析制程用
X~-R 中位数图
1、通常用于现场操作者进行控制制程用
2、使用此图时,子组数通常为奇数,分析所得结果偏差比上两者都大
X-MR 单值移动极差图
1、通常在测量费用高时使用
2、测量数据输出比较一致时常用(如溶液的浓度)
3、检查过程的变化不如其它计量型控制图敏感
计数型数据控制图
p 不合格品率图
适用于测量在一批检验项目中不合格品项目的百分数,是一个比率,故各子组样本容量不一定要一样
np 不合格品数图
用来度量一个检验中的不合格品的数量,是一个数值,故各样本容量应固定 c 不合格数图
用来测量一个检验批内不合格的数量,它要求样本容量恒定或受检数量恒定 u 单位产品不合格数图
用来测量具有容量不同的样本的子组内,每检验单位之内的不合格数量 SPC控制图的分类
按控制图测量性质不同,控制图可分为计量型控制图和计数型控制图两大类。

前者反映产品或过程特性的计量数据,后者反映计数数据。

计量型控制图又可分为:
1)均值-极差(X-R)图:适用于长度,重量,时间,强度,成分以及某些电参数的控制
2)均值-标准差(X-S)图:适用于样本较大的过程控制
3)单值-移动差(X-Rs)图:只能获得一个测量值或测量成本较高的情形.
4)中位数-极差(X-R)图
计数型控制图:
1)缺陷数(C)控制图:计数检验的个数相对于被检验对象的总体很少时适用.
2)百分率(P)图:适用于计数的值所占的比例较大时.
2、按控制图用途不同,控制图可分为分析用控制图与控制用控制图。

常规控制图的作用
制造业的传统方法有赖于制造产品的生产,有赖于检验最终产品并筛选出不符合规范的产品的质量控制。

这种检验策略通常是浪费和不经济的,因为它是当不合格品产生以后的事后检验。

而建立一种避免浪费、首先就不生产无用产品的预防策
略则更为有效。

这可以通过收集过程信息并加以分析,从而对过程本身采取行动来实现。

控制图是一种将显著性统计原理应用于控制生产过程的图形方法,由休哈特(Walter Shewhart)博士于1924年首先提出。

控制图理论认为存在两种变异。

第一种变异为随机变异,由“偶然原因:(又称为"一般原因")造成。

这种变异是由种种始终存在的、且不易识别的原因所造成,其中每一种原因的影响只构成总变异的一个很小的分量,而且无一构成显著的分量。

然而,所有这些不可识别的偶然原因的影响总和是可度量的,并假定为过程所固有。

消除或纠正这些偶然原因,需要管理决策来配置资源、以改进过程和系统。

第二种变异表征过程中实际的改变。

这种改变可归因于某些可识别的、非过程所固有的、并且至少在理论上可加以消除的原因。

这些可识别的原因称为"可查明原因"或"特殊原因"。

它们可以归结为原材料不均匀、工具破损、工艺或操作的问题、制造或检测设备的性能不稳定等等。

利用从可重复过程所得到的数据,控制图有助于检测出变差的异常模式,并提供统计失控的检验准。

当过程变异仅由偶然原因造成时,过程处于统计控制状态。

这种变差的可接受水平一经确定,则对此水平的任何偏离都假定由可查明原因造成,对这些可查明原因应加以识别、消除或减轻。

统计过程控制的目的,就是要建立并保持过程处于可接受的并且稳定的水平、以确保产品和服务符合规定的要求。

要做到这一点,所应用的主要统计工具就是控制图。

控制图是一种图形方法,它给出表征过程当前状态的样本序列的信息,并将这些信息与考虑了过程固有变异后所建立的控制限进行对比。

控制图法首先用来帮助评估一个过程是否已达到、或继续保持在具有适当规定水平的统计控制状态,
然后用来帮助在生产过程中,通过保持连续的产品质量记录,来获得并保持对重要产品或服务的特性的控
制与高度一致性。

应用控制图并仔细分析控制图。

可以更好地了解和改进过程。

相关文档
最新文档