石灰石石膏湿法脱硫工艺流程
石灰石-石膏湿法烟气脱硫原理及工艺流程

石灰石-石膏湿法烟气脱硫原理及工艺流程摘要:文中主要对目前火力发电厂普遍使用的石灰石-石膏湿法烟气脱硫工艺的化学反应原理及工艺流程进行了阐述。
为运行及检修提供理论基础。
关键词:火力发电厂石膏湿法烟气脱硫目前,我国的电力供应仍以燃煤的火力发电厂为主,并因此产生的大量SO2的排放而产生的酸雨对我国的生态环境造成了极大的危害,因此,减少SO2的排放是我国大气治理的一个重要方面。
当前,我国火力发电厂减少SO2排放主要采用的为烟气脱硫技术,其中石灰石—石膏湿法FGD技术由于最为成熟、可靠而被广泛采用。
一、石灰石-石膏湿法烟气脱硫工艺介绍石灰石-石膏湿法烟气脱硫工艺属于煤燃烧后脱硫,脱硫系统位于除尘器之后,脱硫过程在溶液中进行,脱硫剂及脱硫生成物均为湿态,脱硫过程的反应温度低于露点,故脱硫后的烟气一般需要经再加热后排出,或提高烟囱的防腐等级。
1 工艺流程介绍其工艺流程为:从锅炉出来的烟气首先经过电除尘器进行除尘,去除烟气中的大部分粉尘颗粒,经除尘后的烟气进入到吸收塔中,同时,浆液循环泵由吸收塔下部抽取浆液并提升到一定高度后,通过喷淋层内设置的喷嘴喷射到吸收塔中。
在吸收塔内烟气向上流动,浆液向下流动,两种物料在吸收塔内进行逆流接触混合,此时,SO2与浆液中的碳酸钙相接触,在空气作用下进行化学反应,并最终形成石膏(CaSO4•2H2O)。
为保证有足量空气使亚硫酸根离子的充分氧化,还需设置氧化风机进行强制氧化。
整个过程中,吸收塔内浆液被循环泵连续不断的向上输送到喷淋层,浆液通过喷嘴喷出,在喷嘴的雾化作用下,气液两相物质充分混合。
每个循环泵与各自的喷淋层相连接,形成多层浆液喷嘴,根据锅炉烟气量及烟气含硫量开启相应的喷嘴层数。
随着烟气中SO2的不断被吸收,在吸收塔中不断的产生石膏,因此必须将石膏排出,以维持物料平衡,故在吸收塔底部设置石膏浆液泵,将二氧化硫与石灰石浆液反应生成的石膏浆液输送至石膏脱水系统,形成可被利用的工业石膏。
石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺

本文主要讲述了工业石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺,认真分析了该工艺的工艺路线(基本原理)、工艺系统、以及影响该工艺的具体因素和脱硫石膏的运用与发展。
①工艺路线(基本原理):CaCO3+SO2+1/2H2O=CaSO3·1/2H2O+CO2CaSO3·1/2H2O+SO2+1/2H2O=Ca(HSO3)22CaSO3·1/2H2O+O2+3H2O=2CaSO4·2H2OCa(HSO3)2+1/2O2+H2O=CaSO4·2H2O+SO2②工艺流程方框图如下:③工艺系统:主要分析了吸收剂制备系统、烟气及SO2吸收系统、石膏处理系统、FGD装置用水系统、脱硫废水处理系统、压缩空气系统等系统。
④影响因素:主要分析了吸收塔洗涤浆液的PH、吸收塔内的液气比、烟速和烟气温度、钙硫比、石灰石浆液颗粒细度、石膏过饱和度、浆液停留时间等影响因素。
⑤脱硫石膏的运用与发展:主要介绍了石膏在各方面在一些用途,以及石膏用于制硫酸的思路。
1.1前言二氧化硫是主要大气污染物之一,严重影响环境,威胁人们的生活健康。
削减二氧化硫的排放量,保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。
目前,国内外处理低浓度二氧化硫烟气的方法有许多,如氨法、钙法、钠法、铝法、氧化法、吸附法、催化法及电子束法等。
但由于受到技术可靠性、经济合理性、及行业生产特点等限制,当前比较成熟且广泛运用的方法主要有三种,即氨法、钙法和钠法。
氨法是烟气脱硫方法中较传统的工艺,该法采用液氨或氨水作为吸收剂,吸收效率高、脱硫彻底。
钙法是采用石灰水或石灰乳洗涤含二氧化硫的烟气,技术成熟,生产成本低,但吸收速率慢、吸收能力小、装置运行周期短。
钠法是使用碳酸钠或氢氧化钠等碱性物质吸收含二氧化硫的烟气,具有吸收能力大、吸收速率快、脱硫效率高、设备简单、操作方便等优势,但最大的问题是原料钠碱较贵,生产成本高。
石灰石——石膏湿法烟气脱硫技术

石灰石——石膏湿法烟气脱硫技术石灰石——石膏湿法烟气脱硫技术石灰石——石膏湿法烟气脱硫技术是已经开发和推广的烟气脱硫技术中的主流技术,占国内外安装烟气脱硫装置总容量的85%以上。
特点是商业应用时间长,工艺技术成熟,配套设备完善,工作稳定,操作简单,脱硫效率可达到95%以上,可靠性高达95%以上。
吸收剂为石灰石粉,资源丰富,价格低廉,使用安全;副产品为脱硫石膏,可用作水泥添加剂、农业土壤调节剂,或进一步清洗、均化、除杂后,生产建筑用石膏板等。
石灰石——石膏湿法烟气脱硫技术广泛应用于火电厂、冶金、各种工业锅炉、窑炉、水泥工业、玻璃工业、化工工业、有色冶炼等行业大型燃烧设备烟气中SO2的排放控制。
一、工艺流程石灰石——石膏湿法烟气脱硫装置主要由烟气系统、石灰石浆液制备系统、烟气吸收及氧化系统、石膏脱水系统、烟气排放连续监测系统(CEMS)以及自动控制系统和公用工程系统等组成。
工艺流程如图示。
一定浓度的石灰石浆液连续从吸收塔顶部喷入,与经过增加风机增压后进入吸收塔的烟气发生接触。
在烟气被冷却洗涤的过程中,烟气中的SO2被浆液中的碳酸钙吸收生成亚硫酸钙而成为净化烟气,净化后的烟气经除雾器除去烟气中的小雾滴,从吸收塔上部排出,进入大气。
向吸收塔底部的溶液中鼓入空气,溶液中的亚硫酸钙被氧化成为硫酸钙结晶物——石膏。
吸收塔底部的溶液是石灰石、石膏组成的浆状混合物,其部分被强制在塔内循环,部分作为产物排出而成为脱水石膏。
二、工艺原理石灰石——石膏湿法烟气脱硫系统中主要的化学反应包括:1. SO2的吸收2.与石灰石的反应3.氧化反应4.CaSO4晶体生成总的反应方程式为:SO2(g)+ CaCO3(s)+2H2O(l)+1/2O2(g)→CaSO4·2H2O(s)+CO2(g)三、脱硫系统的主要设备1.烟气系统烟气系统由进口烟气挡板门、旁路烟气挡板门、钢制烟道、脱硫增压风机等组成。
原烟气经烟道、烟气进口挡板门进入增压风机,经增压风机升压后进入吸收塔。
石灰石石膏湿法烟气脱硫工艺

液柱与烟气进行两次接触 (上升 / 落下)
没有背压的直筒式喷嘴
自我冲洗(向上的喷嘴)
单层喷浆管/喷嘴 (结构简单1容8 易维修)
主要系统及设备介绍—浆液循环系统
循环浆泵用来将吸收塔浆池的浆液和加入的石灰石浆液循环不断的送到吸收塔喷淋
层,在一定压力下通过喷嘴充分雾化,与烟气反应。
根据防腐工艺不同,循环浆泵分为衬胶泵和防腐金属泵两种。
后橡Ba胶ck R衬ub套ber Liner B后ac盖k Split Casing
金属合金 叶MIemtaple轮Allellroy
Front Rubber
前Li橡ner胶衬套
F前ro盖nt Split
Casing
金M属et合al A金llo护y 套
Throatbush
((前fro磨nt w损ea盘r )
主要系统及设备介绍—吸收系统及设备
(一)吸收塔
吸收塔一般为钢制塔体,内衬玻璃鳞片,并具备烟气进出口烟道、人孔门、检查门、 钢制平台扶梯、法兰、液位控制、溢流管及所有需要的连接件等。 吸收塔除塔体外,还有搅拌器、喷淋层和两级除雾器(聚丙烯百叶窗式)。 此外,吸收塔还包括循环浆液泵和氧化空气风机。 脱硫塔从结构上来分主要有:填料塔、板式塔、液柱塔、喷淋塔(空塔)和鼓泡塔。
继续与回落的液滴进行同向传质。 烟气从逆流塔流出经过反应罐上部折转180°,自下而上通过顺流塔,与向上喷射的液
柱及向下回落的液滴再次进行气液接触。经除雾器除雾后排出。
净烟气 原(脏)烟气
主要系统及设备介绍—吸收系统及设备
液柱式喷淋塔的优势
净烟气
高密度的液滴层 (高密度的液滴层增大气液 接触面积)
原(脏)烟气
实际球)。
石灰石-石膏湿法脱硫工艺

●烟气(再热)系统:提高烟气压头克服系统阻力,将净烟气加热。
4.2SO2吸收系统(吸收塔):吸收SO2净化烟气。 4.3石膏脱水系统:回收吸收剂,再利用。
4.4工艺水和压缩空气系统系统:系统冲洗、补水等。
废水排放系统 其他系统
电气系统
热工自动化系统 脱硫废水处理系统
4.1石灰石浆液制备系统
石灰石浆液制备系统由: ☆石灰石粉仓 ☆ 流化风机 ☆旋转给料阀 ☆称重给料机 ☆石灰石粉制浆罐 ☆搅拌器 ☆石灰石浆液输送泵 ☆浆液密度计 ☆至石灰石供浆罐的管道以及 相关的辅助设备组成。
石灰石-石膏湿法脱硫工艺
环测1101 路玉明
主要内容 ★一、石灰石-石膏湿法脱硫工艺原理 ★二、石灰石-石膏湿法脱硫工艺流程图 ★ 三、石灰石-石膏湿法脱硫工艺的优点
★ 四、石灰石-石膏湿法脱硫装置的主要系统
★ 五、石灰石-石膏湿法脱硫工艺的主要设备
一、石灰石-石膏湿法脱硫工艺原理
石灰石-石膏湿法脱硫工艺是目前世界上应用最为广泛和最可靠的工艺。
4.3石膏脱水系统
石膏脱水系统主要由:
◆吸收塔排浆泵;
◆石膏浆液旋流站;
◆ 真空皮带脱水机;
◆ 石膏脱水区集水坑及其相关辅助设备构成。 ◆ 真空皮带脱水机将脱水后的石膏送入石膏临时储存库中,再经卡车运出 外销。
4.3回流水系统
回流水系统由: ◆回流水箱 ◆回流水泵 ◆脱水区集水坑 ◆相关的辅助设备组成。
(7)系统可用率可达98%以上,具有较高的可靠性; (8)对锅炉燃煤煤质变化适应性好,当燃煤含硫量增加时,仍可 保持较高的脱硫效率; (9)对锅炉负荷变化有良好的适应性,在不同的烟气负荷及SO2 浓度下,脱硫系统仍可保持较高的脱硫效率及系统稳定性。
石灰石石膏湿法脱硫工艺流程

石灰石石膏湿法脱硫工艺流程
《石灰石石膏湿法脱硫工艺流程》
石灰石石膏湿法脱硫工艺是一种常见的燃煤电厂脱硫设备。
它通过将石灰石和石膏溶解在水中,利用石膏吸收和固定煤烟中的二氧化硫,从而达到去除燃烧煤炭产生的二氧化硫的目的。
工艺流程主要包括石灰石破碎、制浆、搅拌、氧化、脱硫、絮凝、分离和结晶等主要环节。
首先,石灰石经过破碎、研磨后形成石灰石浆,然后与水混合搅拌,形成石灰石石膏浆。
在反应槽中,石膏浆与燃烧煤烟中的二氧化硫发生化学反应,生成硫酸钙,然后通过絮凝剂的作用,促使硫酸钙颗粒在反应槽中聚集形成絮体,并利用分离设备将絮体与反应槽内未反应的石灰石石膏浆分离。
最后,经过干燥和结晶处理,得到成品石膏。
整个工艺流程需要严格控制温度、pH值等参数,以确保工艺稳定运行,同时减少对环境的影响。
总的来说,石灰石石膏湿法脱硫工艺是一种有效的脱硫方法,能够有效地减少燃煤电厂排放的污染物,对保护环境起到重要作用。
但是在实际应用中,还需要根据具体情况对工艺流程进行优化和改进,以适应不同的工作条件和要求。
石灰石-石膏湿法脱硫技术的工艺流程、反应原理及主要系统

石灰石-石膏湿法脱硫技术的工艺流程如下图的石灰石-石膏湿法烟气脱硫技术的工艺流程图。
图一常见的脱硫系统工艺流程图二无增压风机的脱硫系统如上图所示引风机将除尘后的锅炉烟气送至脱硫系统,烟气经增压风机增压后(有的系统在增压风机后设有GGH换热器,我们一、二期均取消了增压风机,和旁路挡板,图二),进入脱硫塔,浆液循环泵将吸收塔的浆液通过喷淋层的喷嘴喷出,与从底部上升的烟气发生接触,烟气中SO2的与浆液中的石灰石发生反应,生成CaSO3,从而除去烟气中的SO2。
经过净化后的烟气在流经除雾器后被除去烟气中携带的液滴,最后从烟囱排出。
反应生成物CaSO3进入吸收塔底部的浆液池,被氧化风机送入的空气强制氧化生成CaSO4,结晶生成石膏。
石灰石浆液泵为系统补充反应消耗掉的石灰石,同时石膏浆液输送泵将吸收塔产生的石膏外排至石膏脱水系统将石膏脱水或直接抛弃。
同时为了防止吸收塔内浆液沉淀在底部设有浆液搅拌系统,一期采用扰动泵,二期采用搅拌器。
石灰石-石膏湿法脱硫反应原理在烟气脱硫过程中,物理反应和化学反应的过程相对复杂,吸收塔由吸收区、氧化区和结晶区三部分组成,在吸收塔浆池(氧化区和结晶区组成)和吸收区,不同的层存在不同的边界条件,现将最重要的物理和化学过程原理描述如下:(1)SO2溶于液体在吸收区,烟气和液体强烈接触,传质在接触面发生,烟气中的SO2溶解并转化成亚硫酸。
SO2+H2O<===>H2SO3除了SO2外烟气中的其他酸性成份,如HCL和HF也被喷入烟气中的浆液脱除。
装置脱硫效率受如下因素影响,烟气与液体接触程度,液气比、雾滴大小、SO2含量、PH值、在吸收区的相对速度和接触时间。
(2)酸的离解当SO2溶解时,产生亚硫酸,同时根据PH值离解:H2SO3<===>H++HSO3-对低pH值HSO3-<===>H++SO32-对高pH值从烟气中洗涤下来的HCL和HF,也同时离解:HCl<===>H++Cl-F<===>H++F-根据上面反应,在离解过程中,H+离子成为游离态,导致PH值降低。
石灰石石灰—石膏湿法脱硫技术工艺流程

从电除尘器出来的烟气通过增压风机(BUF)进入换热器(GGH),烟气被冷却后进入吸收塔(Abs),并与石灰石浆液相混合。
浆液中的部分水份蒸发掉,烟气进一步冷却。
烟气经循环石灰石稀浆的洗涤,可将烟气中95%以上的硫脱除。
同时还能将烟气中近100%的氯化氢除去。
在吸收器的顶部,烟道气穿过除雾器(Me),除去悬浮水滴。
离开吸收塔以后,在进入烟囱之前,烟气再次穿过换热器,进行升温。
吸收塔出口温度一般为50-70℃,这主要取决于燃烧的燃料类型。
烟囱的最低气体温度常常按国家排放标准规定下来。
在我国,有GGH的脱硫,烟囱的最低气温一般是80℃,无GGH的脱硫,其温度在50℃左右。
大部分脱硫烟道都配备有旁路挡板(正常情况下处于关闭状态)。
在紧急情况下或启动时,旁路挡板打开,以使烟道气绕过二氧化硫脱除装置,直接排入烟囱。
石灰石—石膏稀浆从吸收塔沉淀槽中泵入安装在塔顶部的喷嘴集管中。
在石灰石—石膏稀浆沿喷雾塔下落过程中它与上升的烟气接触。
烟气中的SO2溶入水溶液中,并被其中的碱性物质中和,从而使烟气中的硫脱除。
石灰石中的碳酸钙与二氧化硫和氧(空气中的氧)发生反应,并最终生成石膏,这些石膏在沉淀槽中从溶液中析出。
石膏稀浆由吸收塔沉淀槽中抽出,经浓缩、脱水和洗涤后先储存起来,然后再从当地运走。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
湿式石灰石石膏法脱硫工艺流程
湿式石灰石/石膏法FGD装置的工艺流程可以将脱硫岛系 统分为三个子系统:
烟气处理和SO2吸收子系统; 石膏脱水子系统; 反应剂制备子系统 也可以进一步细分为七个子系统:
3
石灰石-石膏湿法烟气脱硫工艺流程
石灰石-石膏湿法烟气脱硫系统原则上可由下列结构系统构 成: 由石灰石粉料仓和石灰石研磨及测量站构成的石灰石制 备系统; 由洗涤循环、除雾器和氧化工序组成的吸收塔; 由回转式烟气-烟气换热器、清洁烟气冷却塔排放或湿烟 囱排烟构成的烟气再热系统; 脱硫风机; 由水力旋流分离器和过滤皮带组成的石膏脱水装置; 石膏贮存装置; 废水处理系统。 下面分别予以介绍。
20
• 烟风系统-增压风机 • 通常为采用静叶可调轴流风机或动叶可调轴流风 机 • 外壳材质:Q235 • 叶片材质:16MnR • 轴材质:35
21
石膏脱水系统 石膏是强制氧化石灰石湿法烟气的副产物,脱硫石膏晶 体的粒径为1~250μm, 主要集中在30~60μm, 在脱硫装置正 常运行时产生的脱硫石膏颜色近白色, 采用石灰石-石膏法脱 硫石膏的纯度一般在90%~95%之间,二水石膏晶体 (CaSO4· 2H2O)。 脱硫石膏物理化学性质与天然石膏具有共同的特征, 但作 为一种工业副产品, 它具有再生石膏的一些特点, 和天然石膏 相比又有一定的差异, 其中二水石膏的含量较天然石膏还要高 许多。
22
该石膏一般作为制造墙板或水泥而出售。由于其稳定 性好,对环境无害,从而也可以用于土地回填。WFGD中, 石膏脱水系统如图所示。石膏脱水系统的主要设备是水力 旋流器和真空皮带过滤机。 水力旋流器为石膏脱水的主设备,也叫石膏旋流器, 它主要由进液分配器、旋流子、上部稀液储箱及底部石膏 浆液分配器组成。旋流子是利用离心分离的原理,其分离 效果可通过进液压力来控制。图1-18为水力旋流器结构示 意图。石膏旋流器的溢流含固量一般在1%~3%左右,固相 颗粒细小,主要为未完全反应的吸收剂、石膏小结晶等, 前者继续参与脱硫反应,后者作为浆池中结晶长大的晶核, 影响着下一阶段石膏大晶体的形成。旋流器的底流含固量 一般在45%~50%左右,固相主要为粗大的石膏结晶,真空 脱水皮带机的目的就是要脱除这些大结晶颗粒之间的游离 水。
23
24
水力旋流器
25
石膏脱水系统
26
• 石膏处理系统-石膏水力旋流器 •重的、粗的颗粒流入二次脱水 •较轻,细颗粒,包括飞灰,石灰石则溢流出去 •无传动件
27
真空皮带脱水机的脱水原理是将需要分离的液体(或气 体)混合物置于具有细微孔道过滤介质的一侧,在压差推 动力作用下,流体通过过滤介质的细孔道流到介质的另一 侧,流体中的固体颗粒则被截留,从而实现液体与固体颗 粒的分离。
9
烟气从喷淋区下部进入吸收塔与均匀喷出的吸收浆液流 接触,烟气流速为3~4m/s左右,液气比与煤含硫量和脱硫 率关系较大,一般在8~25L/m3之间。喷淋塔的优点是塔内 部件少,故结垢可能性小,压力损失小。逆气流运行有利于 烟气与吸收液充分接触,但阻力损失比顺流大。
吸收区高度为5~15m,如按塔内流速3m/s计算,接触反 应时间2~5s。区内设3~6个喷淋层,每个喷淋层都装有多个 雾化喷嘴,交叉布置,覆盖率达200%~300%。喷嘴入口压 力不能太高,在0.5×105~2×105Pa之间。喷嘴出口流速约 为10m/s.雾滴直径约1320~2950μm,大液滴在塔内的滞 留时间1~10s,小液滴在一定条件下呈悬浮状态。
旋流板除雾器示意图
16
• 吸收塔内的除雾器 • 通常为二级除雾器、安装在塔的顶部。 • 处理后的烟气残余水分不能超过75mg/m3,最好是不超过 50mg/m3 • 脱硫中主要采用折流板,其次是旋流板式。
17
18
脱硫系统氧化方式 在石灰石湿法烟气脱硫工艺中有强制氧化和自然氧化之分, 其区别在于脱硫塔底部的持液槽中是否充入强制氧化空气。 对于自然氧化工艺,吸收浆液中的HSO3-在吸收塔中被烟 气中剩余的氧气(电厂烟气含氧量一般在6%左右)部分氧化 成SO42-,其脱硫副产物主要是亚硫酸钙和亚硫酸氢钙。 自然氧化因锅炉和脱硫系统运行参数不同而氧化程度各异, 当氧化率在15~95%,钙的利用率低于80%范围内亚硫酸钙易 结垢,因为氧化率较高时(>15%),生成的硫酸钙不能与亚 硫酸钙一起沉淀析出;氧化率达不到一定程度(<95%),就 不能产生足够的石膏晶种而使石膏晶体迅速增长,导致石膏在 脱硫塔内结垢。
34
一次通过型石膏储仓
35
脱硫废水处理 产生废水是石灰石湿法脱硫的缺点。一些国家和地区政府 对废水处理有严格的规定。例如德国对废水排放有严格的规 定,限制微量金属和其他有害成分的排放浓度。在日本废水 处理还要降低COD(主要形式是连二硫酸根S2O62-)。
其处理过程为:通过加碱中和脱硫废水,并使废水中的大 部分重金属形成沉淀物;加入絮凝剂使沉淀浓缩成为污泥, 污泥被送至灰场堆放。废水的pH值和悬浮物达标后直接外排, 图是典型的废水处理系统。
1 2 3 4 5 6 滤布导轨 滤布张紧装置 滤液管 滤液总管 剖面部分 空气室 7 滤布清洗装置 8 降低机构 9 真空室 10 横向套筒和孔 11 给料器 12 框架
30
石灰石/石膏法各系统-石膏处理系统 (电镜图) 固相 CaSO4.2H2O 含 量为91.29% CaSO3.1/2H2O 含量4.63% 脱硫剂为电石渣 (放大200倍)
32
目前脱硫石膏的综合利用主要用做建筑石膏和水 泥添加剂两种方式。做建筑石膏时需要通过煅烧, 必要时在煅烧前还需要通过干燥,因此石膏含水 量的多少主要根据干燥设备的能耗确定,一般石 膏含水量宜小于10%以减少干燥能耗。用于水泥 添加剂时有两种情况,做高标号水泥时仍需要通 过煅烧、成型,要求和用建筑石膏时相同;另一 种情况是直接添加在水泥中,此时石膏的含水量 一般应控制在15%以下。
14
通常,折流板除雾器中两板之间的距离为20~30mm,对 于垂直安置的折流板气体的平均流速为2~3m/s;对于水平放 置的折流板,气体的流速可以高些,一般为6~10m/s。气速 过高会引起二次夹带。折流板除雾器结构与除雾原理见图所 示。
折流板除雾器结构与除雾原理
15
旋流板的结构如图所 示,气流在穿过板片间 隙时变成旋转气流,其 中的液滴在惯性作用下 以一定的仰角射出作螺 旋运动而被甩向外侧, 汇集留到溢流槽内,达 到除雾目的,除雾效率 可达到90%~99%。
6
石灰石储存和制浆系统
7
•石灰石浆制备系统 石灰石/石膏法各系统-石灰石浆制备系统 核心设备: 湿式球磨机 橡胶内衬和硬化钢球 石灰石罐
石灰石粉贮罐
球磨机 石灰石粉贮罐支架
球磨机浆液装置
8
石灰石加料箱
石灰石给料泵电机
吸收塔 吸收塔是烟气脱硫系统的核心装置,要求气液接触面积 大,气体的吸收反应良好,压力损失小,并且适用于大容量 烟气处理。吸收塔的数量应根据锅炉容量、吸收塔的容量和 可靠性等确定。300MW及以上机组宜一炉配一塔。200MW 及以下机组宜两炉配一塔。根据国外脱硫公司的经验,一般 二炉一塔的脱硫装置投资比一炉一塔的装置低5%~10%,在 200MW以下等级的机组上采用多炉一塔的配置有利于节省投 资。 吸收塔的设计在湿法FGD系统中是十分关键的。吸收塔 最主要的塔型是喷淋吸收塔,在世界的湿法FGD系统中占有 突出的地位,大多采用逆流喷淋塔。
36
脱硫废水处理
37
脱硫废水处理包括以下4个步骤: A、废水中和 反应池由3个隔槽组成,每个隔槽充满后自流进入下个隔槽。在脱硫废水 进入第1隔槽的同时加入一定量的10%左右的石灰浆液,通过不断搅拌,其 pH值可从5.5左右升至9.0以上。 B、重金属沉淀 Ca(OH) 2的加入不但升高了废水的pH值,而且使Fe3+、Zn2+、Cu2+、Ni2+、 Cr3+等重金属离子生成氢氧化物沉淀。一般情况下3价重金属离子比2价更容 易沉淀,当pH值达到9.0~9.5时,大多数重金属离子均形成了难溶氢氧化物。 同时,石灰浆液中的Ca2+还能与废水中的部分F-反应,生成难溶的CaF2;与 As3+ 络合生成Ca3 (AsO3)2等难溶物质。此时Pb2+ 、Hg2+仍以离子形态留在 废水中,所以在第2隔槽中加入有机硫化物药剂TMT-15,使其Pb2+、Hg2+反 应形成难溶的硫化物沉积下来。 TMT-15是一种三嗪类组分(C3N3S3Na3,三聚硫嗪酸三钠盐),能在常温下 与废水中的各种重金属离子(汞、铅、铜、镉、镍、锰、锌、铬等)迅速反 应,生成不溶于水,且具有良好的化学稳定性的螯合物,从而达到捕捉去除 重金属的目的,也可以除去已经转变成络合物的重金属。TMT-15是15% (wt%)的C3N3S3Na3溶液,即使用量很少,也表现出极高的重金属排除效 率。
19
控制氧化就是采用抑制氧化或强制氧化方式将氧化率控 制在<15%或>95%。抑制氧化通过在洗涤液中添加抑制性 物质,控制氧化率低于15%,使浆液SO42-浓度远低于饱和浓 度,生成的少量硫酸钙与亚硫酸钙一起沉淀。抑制氧化采用 的抑制有:单质硫、EDTA以及其他的有机物。 强制氧化通过向洗涤液中鼓入空气,并添加催化剂使氧 化反应趋于完全,氧化率提高到高于95%,并保持足够的浆 液含固量(12%),以提供石膏结晶所需的晶种,此时,石 膏晶体生长占优势,产生沉淀性能优良的石膏,从而避免在 塔内结垢
5
石灰石浆液制备系统 吸收剂制备系统的选择应根据吸收剂来源、投资、运行 成本及运输条件等进行综合技术经济比较后确定。当资源 落实、价格合理时,应优先采用直接购买石灰石粉方案; 当条件许可且方案合理时,可由电厂自建湿磨吸收剂制备 系统。当必须新建石灰石加工粉厂时,应优先考虑区域性 协作即集中建厂,且应根据投资及管理方式、加工方式、 厂址位置、运输条件等因素进行综合技术经济论证。 石灰石浆液制备系统主要由石灰石粉贮仓、石灰石粉 计量和输送装置、带搅拌的浆液罐、浆液泵等组成,如图 所示。将石灰石粉由罐车运到料仓存储,然后通过给料机、 计量器和输粉机将石灰石粉送入在浆配制罐。在罐中与来 自工艺过程的循环水一起配制成石灰石质量分数为15%~ 20%浆液。用泵将该浆液经由一带流量测量装置的循环管 道打入吸收塔底槽。