石灰石-石膏湿法脱硫系统的设计计算解析

合集下载

石灰石石膏湿法脱硫化学分析方案

石灰石石膏湿法脱硫化学分析方案

石灰石石膏湿法脱硫化学分析方案脱硫系统简易化学分析手册盐城市兰丰环境工程科技有限公司2015年12月目录第一章试样采集及制备 (1)第二章仪表及仪器测量 (3)第三章脱硫石膏主要成分分析 (5)第四章循环浆液成分分析 (8)附表1脱硫系统浆液密度与百分比浓度关系表 (11)附表2脱硫系统化学分析常用物质的分子量 (14)附表3PH标准溶液的配制 (15)第一章试样采集及制备一、试样采集1. 石灰石采样1.1采样位置石灰石块样品在石灰石运输车或卸料场上定期采集;石灰石的液相样品在其新鲜浆液槽或新鲜浆液的输送管道上定期采集。

1.2采样方法1.2.1入仓块料样品的采集(1)直接在石灰石块运输车上或卸料场上进行采集。

要求:每辆运输车抽取5份样品,根据其输送时间进行五等分,每间隔一等分时间取一次样,每份样不少于300g,取得的样品应立即装入密闭、防潮的容器中。

(2)将采集的样品充分混合,然后采用四分法将样品缩分到300-400g,并将缩分后的混合样立即放入密闭、防潮的磨口广口瓶中。

(3)瓶上标签应注明运输车编号、采样时间、采样人员及采样点。

(4)若对每天入库的样品作为一个批量进行分析,就将上述采集的每辆运输车的缩分样再进行混合,并再次根据四分法缩分到300-400g,保存方法不变,标签上注明采样日期、采样人员、采样点。

1.2.2石灰石浆液的采集(1)采集容器必须是洁净的硬质玻璃瓶或塑料制品。

采样前应用浆液冲洗2-3次,采样后应迅速盖上瓶盖。

(2)在新鲜浆液槽中采样时,应在液面下50cm处采样;在浆液管道中采样时,应在石灰石供给泵出口或流动部位采样,且必须先放掉500-1000mL,浆液冲洗采样瓶后再采样,每次采样不小于500mL。

(3)若每半天分析一个样,则间隔0.5-1h采集一份样品;若每天分析一个样,则间隔1-1.5h采集一份样品,共采集五份,将采集的五份样混合。

1.3检测参数(1)成分分析:石灰石主要包括碳酸钙和水分等。

石灰石石膏湿法脱硫计算

石灰石石膏湿法脱硫计算

2S Y *106 = Qs

CSO2=
851.0638 mg/m³ 852 mg/m³
SO2浓度的校准
基准氧含量为
CSO2,at4.6% =
CSO2,at4.6% =
C * CC CC SO2 ,at4.6%
O2 ,air O2 ,air
O2 ,4.6% O2 ,6%
931.52 mg/m³ 取
CSO2,at4.6% =
mgypsum=
1466.4 kg/h

mgypsum=
1466 kg/h
mwater=mfrom,absorbor-mgypsum=
9814 kg/h
Vfrom,absorbor=
m from,absorbor
=
s

Vfrom,absorbor=
10.45412 m³/h 10.45 m³/h
18 石灰石浆液供给
mhydrocyclone,underflow s,hydrocyclone,underflow
=
2400 kg/h 1.721664 m³/h

Vhydrocyclone,underflow=
1.72 m³/h
17.5 吸收塔来石膏浆液计算
mfrom,absorbor=mhydrocyclone,underflow+mhydeocyclone,overfloe
0.077
mwater,vapourised=
21200 kg/h
V m water,saturation
water,vapourised water,saturation
=

Vwater,saturation=

石灰石-石膏法脱硫数据计算

石灰石-石膏法脱硫数据计算
脱硫产物中飞灰含量
M5
t/h
m2*2/3
引风机出口飞灰总量
m2
t/h
Vtgy-o2*mh
未反应的CaCO3
M6
t/h
M3/(ca/s)*((ca/s)-1))
CaCO3带入的杂质
M7
t/h
M3'*(1-P/100)
脱硫产物总量
M8
t/h
M4+M5+M6+M7
皮带机出口石膏产量
M9
t/h
M8/
石膏纯度
Vy'
Nm3/kg
Vy0+(alfa'-1)V0+(alfa'-1)V0
4
干烟气量
Vgy'
Nm3/kg
VRO20+VN20+(alfa'-1)V0
烟气含氧量和含湿量计算:
序号
名称
符号
单位
计算公式或数值来源
1
烟气中的水分
VH2O'
Nm3/kg
VH2O0+(alfa'-1)V0
2
烟气中的氧量
VO2'
Nm3/kg
石灰石-石膏法脱硫数据计算
烟气量计算:
序号
名称
符号
单位
计算公式或数值来源
1
理论空气量
V0
Nm3/kg
(Car++
燃烧产物理论体积
Vy0
Nm3/kg
VN20+VRO20+VH2O0
1)
氮气
VN20
Nm3/kg
+
2)
二氧化物

石灰石-石膏法烟气脱硫湿法系统设计讲义

石灰石-石膏法烟气脱硫湿法系统设计讲义

烟气脱硫技术专题研修班培训教材石灰石-石膏法烟气脱硫湿法系统设计讲义编制:北京****有限公司2005年12月北京目录1.概述 (1)2.典型的系统构成 (1)3反应原理 (2)4 系统描述 (5)5.FGD系统设计条件的确认 (14)6.物料平衡计算、热平衡计算 (19)7.设备选型计算 (26)7.1 设备选型依据 (26)7.2 增压风机 (26)7.3 GGH(略) (28)7.4 吸收塔 (28)7.5 除雾器 (31)7.6 吸收塔浆液循环泵 (33)7.7 氧化风机 (34)7.8 石灰石卸料装置 (36)7.9 湿式球磨机 (37)7.10 真空皮带脱水机 (37)7.11 石膏输送皮带 (38)7.12 空气压缩机 (39)7.13 箱, 坑 (40)7.14 泵 (40)7.15 搅拌器 (41)8.脱硫岛平面布置一般要求 (42)9.浆液管道布置要求 (43)1.概述石灰石-石膏法烟气脱硫技术已经有几十年的发展历史,技术成熟可靠,适用范围广泛,据有关资料介绍,该工艺市场占有率已经达到85%以上。

由于反应原理大同小异,本培训教材总结了一些通用的规律和设计准则,基本适用于目前市场上常用的各种石灰石-石膏法烟气脱硫技术,包括喷淋塔、鼓泡塔、液柱塔等。

2.典型的系统构成典型的石灰石/石灰-石膏湿法烟气脱硫工艺流程如图2-1所示,实际运用的脱硫装置的范围根据工程具体情况有所差异。

图2-13反应原理3.1 吸收原理GGH烟囱废水旋流石膏旋流器真空皮带脱水机除雾器进口挡板旁路挡板出口挡板滤液水箱废水排放废水排出泵滤液泵吸収塔吸收塔排出泵吸收塔循环泵石灰石浆液泵石灰石浆液箱氧化风机增压风机锅炉排烟石灰石筒仓石灰石副产品石膏副产品深加工工序最终产典型的工艺流程工业用水脱硫系统(石灰石-石膏法)吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。

这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCl 、HF被吸收。

(完整word版)石灰石-石膏湿法脱硫系统的设计计算

(完整word版)石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统设计(内部资料)编制:xxxxx环境保护有限公司2014年8月1.石灰石-石膏法主要特点(1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。

(2)技术成熟,运行可靠性高。

国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。

无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。

(4)吸收剂资源丰富,价格便宜。

石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。

(5)脱硫副产物便于综合利用。

副产物石膏的纯度可达到90%,是很好的建材原料。

(6)技术进步快。

近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。

(7)占地面积大,一次性建设投资相对较大。

2.反应原理(1)吸收剂的反应购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。

(2)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2(气)+H2O→H2SO3(吸收)H2SO3→H+ +HSO3-H+ +CaCO3→ Ca2+ +HCO3-(溶解)Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶)H+ +HCO3-→H2CO3(中和)H2CO3→CO2+H2O总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2(3)氧化反应一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下:CaSO3+1/2O2→CaSO4(氧化)CaSO4+2H2O→CaSO4·2H2O(结晶)(4)其他污染物烟气中的其他污染物如SO 3、Cl -、F -和尘都被循环浆液吸收和捕集。

石灰石-石膏法脱硫数据计算

石灰石-石膏法脱硫数据计算
t/h
估计
泵与风机冷却用水
Mwq
t/h
估计
单套脱硫装置耗水量
Mw
t/h
Mgyc+Mgys+Mww+Mwe+Mgyw+Mwq
总的脱硫装置耗水量
Mw'
t/h
n*Mw
氧化空气量计算:
序号
名称
符号
单位
计算公式或数值来源
需氧量
Vo2
kg/h
SO2---1/2O2
kmol/h
Vo2/32
需空气量
Vk
Nm3/h
Vo2/32*22.41/0.21
2)
二氧化物
VRO20
Nm3/kg
0.01866(Car+0.375Sar)
3)
水蒸汽
VH2O0
Nm3/kg
0.111Har+0.0124Mar+0.0161V0
3
燃烧产物实际体积
Vy'
Nm3/kg
Vy0+0.0161(alfa'-1)V0+(alfa'-1)V0
4
干烟气量
Vgy'
Nm3/kg
VRO20+VN20+(alfa'-1)V0
烟气比热kcal/Nm3.℃100℃
kcal/Nm3.℃200℃
i1kcal/Nm3.℃插值法: tpy
i2插值法求85℃比热
t℃t=126-i2*(85-50)/i1
i3kcal/Nm3.℃插值法: t
塔内烟气放热量
Q1
kJ/h
V ' * i3*4.18*(t-50)

湿式石灰石-石膏法烟气脱硫 设计方法及过程

湿式石灰石-石膏法烟气脱硫  设计方法及过程

烟气出口 循环浆液入口 除雾器冲洗水入口 人孔
h1-3 DN100 PN1.6 突面 HG20593-97 浆液回流口
j1-2 DN100 PN1.6 突面 HG20593-97 出料口
k1-n DN100 PN1.6 突面 HG20593-97 氧化风进口
m1-3 DN80 PN1.6 突面 HG20593-97 仪表接口
燃煤烟气成分
• SO2-content
cSO2 mVSdO r2y cSO21.020.02.0000[0k[Ng/m h³ ]/h]dry 0,002[kg/Nm3砞2.000[mg/Nm砞dry
• Input data assumed data
• O2 content in dry gas
→ 7 [%]
Note atomic mass:
→ 95 [%] → 0,79 [%] → 127 [t/h]
S = 32 [g/mol] O = 16 [g/mol] Ca = 40 [g/mol] C = 12 [g/mol] H = 1 [g/mol]
燃煤烟气成分
• SO2 production & removal
燃煤烟气成分
• 烟气密度
assumed data
• Density flue gas → 1,35 [kg/Nm³] • 质量流量
m flue gas,dry Vdry,inlet flue gas,dry m flue gas,dry 1.002 .200 [ Nm ³/ h] 1,35 [k g / Nm 砞 m flue gas,dry 1.352 .000 [k g / h]
0
内部审核
修改

石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统设计(内部资料)编制:xxxxx环境保护有限公司2014年8月1.石灰石-石膏法主要特点(1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。

(2)技术成熟,运行可靠性高。

国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。

无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。

(4)吸收剂资源丰富,价格便宜。

石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。

(5)脱硫副产物便于综合利用。

副产物石膏的纯度可达到90%,是很好的建材原料。

(6)技术进步快。

近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。

(7)占地面积大,一次性建设投资相对较大。

2.反应原理(1)吸收剂的反应购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。

(2)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2(气)+H2O→H2SO3(吸收)H2SO3→H+ +HSO3-H+ +CaCO3→ Ca2+ +HCO3-(溶解)Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+ (结晶)H+ +HCO3-→H2CO3(中和)H2CO3→CO2+H2O总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2(3)氧化反应一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下:CaSO3+1/2O2→CaSO4(氧化)CaSO 4+2H 2O →CaSO 4·2H 2O(结晶)(4)其他污染物烟气中的其他污染物如SO 3、Cl -、F -和尘都被循环浆液吸收和捕集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石灰石-石膏湿法脱硫系统设计(内部资料)编制:xxxxx环境保护有限公司2014年8月1.石灰石-石膏法主要特点(1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。

(2)技术成熟,运行可靠性高。

国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。

无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。

(4)吸收剂资源丰富,价格便宜。

石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。

(5)脱硫副产物便于综合利用。

副产物石膏的纯度可达到90%,是很好的建材原料。

(6)技术进步快。

近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。

(7)占地面积大,一次性建设投资相对较大。

2.反应原理(1)吸收剂的反应购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。

(2)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2(气)+H2O→H2SO3(吸收)H2SO3→H+ +HSO3-H+ +CaCO3→ Ca2+ +HCO3-(溶解)Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶)H+ +HCO3-→H2CO3(中和)H2CO3→CO2+H2O总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2(3)氧化反应一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下:CaSO3+1/2O2→CaSO4(氧化)CaSO4+2H2O→CaSO4·2H2O(结晶)(4)其他污染物烟气中的其他污染物如SO 3、Cl -、F -和尘都被循环浆液吸收和捕集。

SO 3、HCl 和HF与悬浮液中的石灰石,按以下反应式发生反应:SO 2+H 2O→2H ++SO 32-Ca CO 3 +2HCl<==>CaCl 2 + H 2O+ CO 2Ca CO 3 +2HF <==>CaF 2 +H 2O+ CO 23.工艺流程3.1工艺说明经过除尘器处理后的烟气由引风机接入脱硫吸收塔,在主烟道上设置旁路挡板门,当锅炉启动、进入FGD 的烟气超温和FGD 装置故障停运时,烟气由旁路挡板经烟囱排放。

烟气经吸收塔进气口进入塔内,折转向上运动(入口处装有紧急喷淋装置),烟气进入首层喷淋层与吸收浆液进行传质吸收,随之进入多层喷淋层进行烟气脱硫洗涤,发生复杂的化学反应,利用脱硫塔底部循环池储存脱硫液进行循环使用。

脱硫渣浆液经曝气氧化后送入脱水系统进行处理,经脱水后的滤液返回至循环池。

脱硫后的净烟气通过除雾装置除去烟气中的水分,然后通过脱硫塔顶部排出口排至烟道,在经烟道排至烟囱排入大气。

4.脱硫系统的设计4.1 脱硫系统设计的初始条件在进行脱硫系统设计时,所需要的初始条件一般有以下几个: 脱硫循环池池工业水 烟 囱 经除尘器除尘后的烟气 引风机 脱硫塔石灰石浆池脱硫液 石灰石浆液CaCO 3出气阀门旁路阀门 进气阀门 塔内氧化系统脱水系统 脱硫液工艺水池 脱硫废弃物滤液循环利用 经炉内脱硫将SO 2浓度降至3000mg/m 3 事故水池(1)处理烟气量,单位:m3/h 或Nm3/h ;(2)燃料的含S 率及消耗量,单位:%、t/h(2)进气温度,单位:℃;(3)SO 2初始浓度,单位:mg/m3或mg/Nm3;(4)SO 2排放浓度, 单位:mg/m3或mg/Nm3;(5)锅炉蒸汽量,单位:t/h ;4.2 初始条件参数的确定4.2.1 处理风量的确定处理烟气量的大小是设计脱硫系统的关键,一般处理烟气量由业主方给出或从除尘器尾部引风机风量大小去确定。

若只知道锅炉蒸汽量,可由以下经验系数去计算:(1) 针对循环流化床锅炉,煤粉锅炉等烧煤锅炉,可按1t 蒸汽对应2500m3风量计算;(2) 针对蔗渣锅炉、生物质锅炉等烧生物质燃料锅炉,可按1t 蒸汽对应3333m3风量计算;所计算出来的处理风量最终圆整数,例如:75×2500=187500m3/h,圆整后取值188000m3/h(3)处理风量还存在标况状态(mg/m3)和工况状态(mg/Nm3)的换算,换算采用理想气体状态方程:PV = nRT (P 、n 、R 均为定值)V1/T1=V2/T2V1: mg/Nm3,T1:273K ; V2: mg/m3,T2:t+273K(t 为进气温度);4.2.2燃料的含S 率及消耗量当没有SO 2初始浓度设计值时,可用燃料中的含S 率及消耗量去计算SO 2初始浓度。

4.2.3 进气温度的确定进气温度为经过除尘后进入脱硫塔的烟气温度值,进气温度大小关系到脱硫系统烟气量的换算和初始SO 2浓度换算。

4.2.4 SO 2初始浓度的确定SO 2初始浓度一般由业主方给出,并且由此计算脱硫系统中各项设备参数,也是系统选择液气比的重要依据。

SO 2初始量计算公式如下:S+O 2→SO 232 64C SO2=2×B ×S ar /100×ηso2/100×109C SO2-SO 2初始量,mg ; B-锅炉BMCR 负荷时的燃煤量,t/h ;S ar -燃料的含S 率,%; ηso2-煤中S 变成SO 2的转化率,%,一般取0.85;4.2.4 SO 2排放浓度的确定一般根据所在地区环保标准确定。

4.3脱硫系统的设计计算4.3.1 参数定义(1)液气比(L/G ):即单位时间内浆液喷淋量和单位时间内流经吸收塔的烟气量之比.单位为L/m3; )/3()/(h m h L 的湿烟气体积流量单位时间内吸收塔入口单位时间内浆液喷淋量液气比= (2)钙硫比(Ca/S ):理论上脱除1mol 的S 需要1mol 的Ca ,但在实际反应设备中,反应条件并不处于理想状态,一般需要增加脱硫剂的量来保证一定的脱硫效率,因此引入了Ca/S 的概念。

用来表示达到一定脱硫效率时所需要钙基吸收剂的过量程度,也说明在用钙基吸收剂脱硫时钙的有效利用率。

液气比、钙硫比选择依据根据《工业锅炉及炉窑湿法烟气脱硫工程技术规范》HJ462-2009(3)脱硫效率:单位时间内烟气脱硫系统脱除SO 2的量与进入脱硫系统时烟气中的SO 2量之比。

%100212C ⨯-=C C 脱硫效率 C1—脱硫后烟气中SO 2的折算浓度(mg/m 3或mg/Nm 3)C2—脱硫前烟气中SO 2的折算浓度(mg/m 3或mg/Nm 3)(4)系统可利用率:指脱硫装置每年正常运行时间与发电机组每年总运行时间的百分比。

可用率 = (A – B)/ A ×100%A:发电机组每年的总运行时间,hB:脱硫装置每年因脱硫系统故障导致的停运时间,h4.3.2 脱硫系统的组成及主要设备选型石灰石-石膏湿法脱硫系统主要由以下几部分组成:4.3.2.1 SO 2吸收系统该系统包含:脱硫塔(喷淋层)、浆液循环泵(卧式单吸离心泵)、氧化风机(罗茨风机)、除雾器、浆液搅拌装置、监测控制仪表等设备。

(1)脱硫塔的设计计算脱硫塔分为循环氧化区和喷淋除雾区两部分。

a.喷淋除雾区直径设计:首先设定喷淋区烟气流速v ,则喷淋区直径D1 14.3360021⨯⨯⨯=v QDQ-进脱硫塔的烟气流量,m3/h ;v-喷淋区烟气流速,m/s,一般设定为3-3.5m/s注意:D1计算出来后取整数(保留前2位数字)后,再反算出最终流速值v1。

b.喷淋除雾区高度设计:喷淋除雾区总高度H1=h1+(n-1)×h2+h3+h4+h5+h6+h7 mmh1:第一层喷淋层中心到脱硫塔进气口顶面距离,一般为2000-2500mm ; h2:每一层喷淋层的中心高度,一般为1700mm ;n-喷淋层数量;h3:最上层喷淋层中心到除雾器第一层冲洗层中心高度,一般为2500-3000mm ;h4:除雾器第一层冲洗层到最上层除雾板顶面高度,由除雾器厂家确定。

h5:除雾器最上层除雾板顶面到喷淋除雾区直筒段顶端高度,一般为1500mm ;h6:喷淋除雾区收口段高度,一般为1000mm ;h7:脱硫塔出口烟道衔接直筒段高度,直筒段直径D3=D4+0.2m(D4脱硫出气口直径);c. 循环氧化区有效容积设计:主要由循环浆液在该区的停留时间所确定,首先必须先确定脱硫浆液循环总量G=Q ×液气比(m3)÷1000循环氧化区有效容积V 循=G ÷60×T 停 m3T 停-循环浆液在该区的停留时间,石膏颗粒在循环浆池中足够长的停留时间对于晶体化和晶体的生长是非常有必要的。

只有这样,FGD 的副产物石膏才能得到更好的利用。

一般设计4min(最低不小于2.5min),浆液浓度维持在20-25wt%。

得出循环氧化区有效容积V 循后,则需确定循环氧化区直径D2和高度。

直径D2略大于喷淋除雾区直径D1(一般大2m,D2=D1+2)需具体考虑。

取定循环氧化区直径D2后可计算出循环÷3.14÷(D2)2×4 (m)氧化区有效高度H2=V循循环氧化区总高度H3=H2+h8+h9 mmh8:循环氧化区有效高度(即循环液液面)到脱硫塔进气口底面距离,一般为1000mm。

h9:脱硫塔进气口底面到进气口顶面距离。

(2)浆液循环泵(卧式单吸离心泵)选型单台循环泵流量G泵=Q×液气比(m3)÷1000÷n (m3/h)单台循环泵扬程H泵=H喷淋层+ H喷嘴(m)单台循环泵轴功率Ne=G泵×H泵×9.81×ρ浆÷3600÷η泵÷η机=2.725×G泵×H泵×ρ浆÷η泵÷η机÷106 (KW)H喷淋层:每一层喷淋层的总高度;H喷嘴:每一层喷淋层喷嘴出口压力;我公司所通用的大流量碳化硅蜗口型喷嘴所需出口压力为0.1MPa(相当于10m扬程)ρ浆:石膏浆液比重,1130kg/m3(含固量20%)η泵:循环泵效率,一般为80%η机:机械传动效率,取值98%单台循环泵额定轴功率P=K×Ne (KW)K:泵的裕量系数 NE≤22 K=1.25; 22<NE≤55 K=1.15;55<NE K=1.00 (3)脱硫塔氧化区搅拌和氧化系统吸收塔反应池装有多台侧入式搅拌机。

相关文档
最新文档