2017安徽中考数学一轮复习卷

合集下载

备考2022年中考数学一轮复习-图形的变换_平移、旋转变换_平移的性质-单选题专训及答案

备考2022年中考数学一轮复习-图形的变换_平移、旋转变换_平移的性质-单选题专训及答案

备考2022年中考数学一轮复习-图形的变换_平移、旋转变换_平移的性质-单选题专训及答案平移的性质单选题专训1、(2017南山.中考模拟) 如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A . 2B . 3C . 4D . 52、(2017河西.中考模拟) 如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形ENCM的面积之比为()A . 9:4B . 12:5C . 3:1D . 5:23、(2019山西.中考模拟) 若将抛物线先向左平移1个单位长度,再向下平移2个单位长度,则所得抛物线的解析式为()A .B .C .D .4、(2017巴彦淖尔.中考模拟) 如图,将△ABE向右平移2cm得到△DCF,如果△ABE 的周长是16cm,那么四边形ABFD的周长是()A . 16cmB . 18cmC . 20cmD . 21cm5、(2019瑞安.中考模拟) 如图,在平面直角坐标系中,点A、B的坐标分别为(0,4)和(1,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A在直线y=x﹣1上,则点B与点O′之间的距离为()A . 3B . 4C . 3D .6、(2019鄞州.中考模拟) 如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A . 4,30°B . 2,60°C . 1,30°D . 3,60°7、(2017嘉兴.中考真卷) 如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A . 向左平移1个单位,再向下平移1个单位B . 向左平移个单位,再向上平移1个单位 C . 向右平移个单位,再向上平移1个单位 D . 向右平移1个单位,再向上平移1个单位8、(2017安徽.中考模拟) 把抛物线y=﹣经()平移得到y=﹣﹣1.A . 向右平移2个单位,向上平移1个单位B . 向右平移2个单位,向下平移1个单位C . 向左平移2个单位,向上平移1个单位D . 向左平移2个单位,向下平移1个单位9、(2015宁德.中考真卷) 如图,将直线沿着AB的方向平移得到直线,若∠1=50°,则∠2的度数是()A . 40°B .50°C . 90°D . 130°10、(2019惠民.中考模拟) 如图,一条抛物线与x轴相交于M、N两点(点M在点N 的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(一2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A . -1B . -3C . -5D . -711、(2017莱西.中考模拟) 如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF 的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A . 18cm2B . 21cm2C . 27cm2D . 30cm212、(2017青岛.中考模拟) 已知△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为()A . 6B . 9C . 12D . 1813、(2017冠.中考模拟) 已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′与点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A . (3,0)B . (3,﹣3)C . (3,﹣1)D . (﹣1,3)14、(2017天桥.中考模拟) 如图,△DEF是由△ABC通过平移得到,且点B,E,C,F 在同一条直线上.若BF=14,EC=6.则BE的长度是()A . 2B . 4C . 5D . 315、(2016济南.中考真卷) 如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A . 向右平移2个单位,向下平移3个单位B . 向右平移1个单位,向下平移3个单位C . 向右平移1个单位,向下平移4个单位D . 向右平移2个单位,向下平移4个单位16、(2018濮阳.中考模拟) 如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A点的对应点的坐标为( )A .B .C .D .17、(2017洛宁.中考模拟) 已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A . (1,2)B . (2,9)C . (5,3)D . (﹣9,﹣4)18、(2017城.中考模拟) 如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A . 5B . 10C . 15D . 2019、(2011茂名.中考真卷) 如图,⊙O1、⊙O2相内切于点A,其半径分别是8和4,将⊙O2沿直线O1O2平移至两圆相外切时,则点O2移动的长度是()A . 4B . 8C . 16D . 8或1620、(2018柳北.中考模拟) 如图,是由沿BD所在的直线平移得到的,AE,BF的延长线交于点C,若,则的度数是A .B .C .D .21、(2013海南.中考真卷) 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A . AB=BCB . AC=BC C . ∠B=60°D . ∠ACB=60°22、(2019乐山.中考真卷) 下列四个图形中,可以由下图通过平移得到的是()A .B .C .D .23、(2018宜宾.中考真卷) 如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A . 2B . 3C .D .24、(2020湖州.中考模拟) 如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是()A . 3B . 4C .D . 225、(2020津南.中考模拟) 如图,将沿方向平移得到,使点B 的对应点E恰好落在边的中点上,点C的对应点F在的延长线上,连接.下列结论一定正确的是()A .B .C .D . 平分26、(2020菏泽.中考真卷) 在平面直角坐标系中,将点向右平移3个单位得到点,则点关于x轴的对称点的坐标为()A .B .C .D .27、(2020龙华.中考模拟) 下列命题中,是真命题的是()A . 三角形的外心到三角形三边的距离相等B . 顺次连接对角线相等的四边形各边中点所得的四边形是菱形C . 方程x²+2x+3=0有两个不相等的实数根D . 将抛物线y=2x²-2向右平移1个单位后得到的抛物线是y=2x²-328、(2020温州.中考模拟) 在矩形ABCD中(AB<BC),四边形ABFE为正方形,G,H分别是DE,CF的中点,将矩形DGHC移至FB右侧得到矩形FBKL,延长GH与KL 交于点M,以K为圆心,KM为半径作圆弧与BH交于点P,古代印度利用这个方法,可以得到与矩形ABCD面积相等的正方形的边长。

备考2023年中考数学一轮复习-函数_二次函数_二次函数图象与系数的关系

备考2023年中考数学一轮复习-函数_二次函数_二次函数图象与系数的关系

备考2023年中考数学一轮复习-函数_二次函数_二次函数图象与系数的关系二次函数图象与系数的关系专训单选题:1、(2018哈尔滨.中考模拟) 如图是二次函数y=+bx+c图像的一部分,图像过点A(-3,0),对称轴是直线x=-1,给出四个结论,其中正确结论的个数为()①c>0;② 2a-b=0;③ <0. ④若点B(-,)、C(-,)在图像上,则<A . 1B . 2C . 3D . 42、(2017杭州.中考模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a﹣2b+c>0;④2c<3b;⑤当m≤x≤m+1时,函数的最大值为a+b+c,则0≤m≤1;其中正确的结论有()A . 1个B . 2个C . 3个D . 4个3、(2015南昌.中考真卷) 已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A . 只能是x=﹣1B . 可能是y轴C . 可能在y轴右侧且在直线x=2的左侧D . 可能在y轴左侧且在直线x=﹣2的右侧4、(2017岳阳.中考模拟) 如图,抛物线y=ax2+bx+c与两坐标轴的交点分别为A、B、C,且OA=OC=1,则下列关系中正确的是()A . a+b=﹣1B . a﹣b=﹣1C . b<2aD . ac<05、(2018汕头.中考模拟) 在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A .B .C .D .6、(齐齐哈尔.中考模拟) 如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac >0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A . ①②③B . ①②④C . ②③④D . ③④⑤7、(2020东丽.中考模拟) 如图,抛物线y=ax2+bx+c(a≠0对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①abc<0;②4ac<b2;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④3a+c>0;⑤当y≥0时,x的取值范围是﹣1≤x≤3.其中结论正确的个数是()A . 1个B . 2个C . 3D . 4个8、(2020皇姑.中考模拟) 已知二次函数的图象如图所示,以下列结论正确的是()① ;② ;③ ;④ (m为任意实数).A . 1B . 2C . 3D . 49、(2020重庆.中考模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b=0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是()A . 1B . 2C . 3D . 410、如图,二次函数图象的一部分与x轴的一个交点坐标为,对称轴为,结合图象给出下列结论:① ;② ;③关于x的一元二次方程的两根分别为-3和1;④若点,,均在二次函数图象上,则;⑤ (m为任意实数).其中正确的结论有()A . 1个B . 2个C . 3个D . 4个填空题:11、(2018徐汇.中考模拟) 已知抛物线C的顶点坐标为(1,3),如果平移后能与抛物线y= +2x+3重合,那么抛物线C的表达式是________.12、(2017松江.中考模拟) 已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是________.13、(2019荆门.中考真卷) 抛物线( 为常数)的顶点为,且抛物线经过点, ,.下列结论:① ,② ,③ ④ 时,存在点使为直角三角形.其中正确结论的序号为________.14、(2017株洲.中考真卷) 如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2, 0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为________.15、(2012玉林.中考真卷) 二次函数y=﹣(x﹣2)2+ 的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有________个(提示:必要时可利用下面的备用图画出图象来分析).16、(2018贵州.中考模拟) 二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)17、(2017泾川.中考模拟) 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;② ;③ac ﹣b+1=0;④OA•OB=﹣.其中正确结论的序号是________.18、(2021建邺.中考模拟) 已知二次函数(是常数,且)的图象的对称轴为直线,与轴的一个交点为,与轴的交点在和(不包括这两点)之间,则下列结论:① ;②一元二次方程有两个不相等的实数根;③函数可取得最大值;④ .其中所有正确结论的序号是. 解答题:19、(2013杭州.中考真卷) 已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A,B(点1= x+n的图A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2随着x的增大而减小时,求自变象上,线段AB长为16,线段OC长为8,当y1量x的取值范围.20、(2014杭州.中考真卷) 复习课中,教师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.21、(2019巴中.中考真卷) 如图,抛物线经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B 出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.22、(2017安徽.中考模拟) 若两个二次函数图象的顶点相同,开口大小相同,但开口方向相反,则称这两个二次函数为“对称二次函数”.(1)请写出二次函数y=2(x﹣2)2+1的“对称二次函数”;(2)已知关于x的二次函数y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2与y1互为“对称二次函数”,求函数y2的表达式,并求出当﹣3≤x≤3时,y2的最大值.23、(2015益阳.中考真卷) 已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)上是否存在点Q,使得以点Q、B、B′为顶点如图1,在第一象限内,抛物线E1的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由; (3)上与点A不重合的一点,连接OP并延长与如图2,P为第一象限内的抛物线E1抛物线E相交于点P′,求△PAA′与△P′BB′的面积之比.2二次函数图象与系数的关系答案1.答案:B2.答案:B3.答案:D4.答案:B5.答案:C6.答案:C7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:。

中考数学一轮复习练习:数据的收集,整理和描述 试卷

中考数学一轮复习练习:数据的收集,整理和描述 试卷

中考数学一轮复习练习:数据的收集,整理和描述一、选择题(本大题共10小题,每小题5分,满分50分)1. (2021·河北唐山)以下问题,不适合全面调查的是( )A.调查和一新冠肺炎感染者密切接触人群B.调查我市中学生心理健康现状C.检测长征运载火箭的零部件质量情况D.调查某中学在职教师的身体健康状况2. (2020•常德)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为.3. (2022·河北唐山)下列四个统计图中,用来表示不同品种的奶牛的日平均产奶量最为合适的是( )A. B. C. D.4. (2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A.①②③B.①③⑤C.②③④D.②④⑤5. (2022·安徽亳州)为了解某校八年级400名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x为:60≤x<80),则以下说法正确的是( )A.跳绳次数不少于100次的占80%B.大多数学生跳绳次数在140~160范围内C.跳绳次数最多的是160次D.由样本可以估计全年级400人中跳绳次数在60~80次的大约有48人6. (2022·安徽合肥)为了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类球的喜受情况,小鹏采用了抽样调查,在绘制扇形图时,由于时问仓促,还有足球、网球等信息没有绘制完成,已知喜欢网球的人数少于喜欢足球的人数,根据如图所示的信息,这批被抽样调查的学生中喜欢足球的人数可能是( )A.120人B.140人C.150人D.290人7. (2020•自贡)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号): .①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.8. (2022七下·浙江)随着智能手机的普及,“支付宝支付”和“微信支付”等手机支付方式倍受广大消费者的青睐,某商场对2021年7—12月中使用这两种支付方式的情况进行统计,得到如图所示的折线图,根据统计图中的信息,得出以下四个推断,其中不合理的是( )A.6个月中11月份使用手机支付的总次数最多B.6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多C.6个月中使用“微信支付”的消费总额比使用“支付宝支付”的消费总额大D.9月份平均每天使用手机支付的次数为0.314万次9. (2022·河北保定)抗击新冠肺炎疫情期间,保定十七中响应国家“停课不停学的号召”,动员学生家庭一起亲子阅读,根据《家庭亲子阅读消费调查报告》中的相关数据我们制成扇形统计图,由图可知,下列说法错误的是( )A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°10. (2022·河北邯郸·三模)刘老师从某校2000名学生每天体育锻炼时长的问卷中,随机抽取部分学生的答卷,将这部分学生的锻炼时长作为一个样本进行研究,并将结果绘制成如图的条形统计图,其中一部分被墨迹遮盖,已知每天锻炼时长为1小时的学生人数占样本总人数的36%,则下列说法正确的是( )A.样本容量小于200B.2000名学生是总体C.锻炼时长为1.5小时是这个样本的众数D.该校锻炼用时为2小时的学生约有200名二、填空题(本大共6小题,每小题5分,满分30分)11. (2022八上·丰顺月考)如图,阴影部分扇形的圆心角的度数是.12. (2022广西贺州)为了更好地落实“双减政策要求,某中学从全校共900名学生中随机抽取100名学生的每天课外作业负担情况进行调查,此次调查的样本容量是_____.13. (2022广西南宁)如图是某天游玩南宁青秀山的学生人数统计图.若大学生有360人,则初中生有_________人.14. (2022八上·乐清开学考)某校200名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,结合表的信息,可得测试分数在79.5~89.5分数段的学生有名.15. (2022·河北保定)如图是某厂2018~2021年生产总值和年增长率的统计图.该厂年生产总值净增量最多的是___年,生产总值年增长率最大的是 _____年.16. (2022九上·永嘉月考)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和2个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为.三、解答题(本大题共5道小题,每小题6-12分)17. (6分)(2022·安徽黄山)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有2000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?18. (6分)(2022·安徽合肥·)某校为了解疫情期间学生自习课落实“停课不停学、学习不延期”在线学习的效果,校长通过网络学习平台,随机抽查了该校部分学生在一节自习课中的学习情况,发现共有四种学习方式(每人只参与其中一种):A.阅读电子教材,B.听教师录播课程,C.完成在线作业,D.线上讨论交流.并根据调查结果绘制成如下两幅不完整的统计图,根据图中信息解答下列问题:(1)填空:校长本次调查的学生总人数为______,并补全条形统计图;(2)求扇形统计图中“D.线上讨论交流”对应的圆心角的度数;(3)若该校在线学习学生共有4000人,请你估计“B.听教师录播课程”有多少人?19. (6分)(2021八上·渭滨期末)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;C:7棵;将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(并在图中画出)(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这260名学生共植树多少棵?20. (10分)(2022·安徽·合肥38中)为充分发挥“小手拉大手,垃圾分类齐动手”的推广效应,实现“教育一个孩子,影响一个家庭,带动一个社区,推动整个社会”的目标,某中学对全校1200名学生进行“垃圾分类,从我做起”的教育活动,从1200名学生中随机抽取部分学生进行垃圾分类知识竞赛活动,成绩评定按从高分到低分排列为A,B,C,D四个等级,绘制了图1,图2两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)本次被抽查的学生共有多少人?(2)将条形统计图补充完整并直接写出m,n的值;(3)求扇形统计图中A所在的扇形圆心角的度数;(4)估计全校D等级的学生有多少人.21. (12分)(2021·河北保定)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是,类别D所对应的扇形圆心角的度数是度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时。

中考数学第一轮复习测试卷 方程和方程级

中考数学第一轮复习测试卷 方程和方程级

立新中学中考数学第一轮复习测试卷方程与方程组班级 姓名一、选择题(每小题4分,共40分)1、方程1-3x=0的解是( C ) A.x= -3 B.x=3 C.x=31-D.x=31 2、二元一次方程组⎩⎨⎧=+-=+522y x y x 的解是( B )A.⎩⎨⎧==61y xB.⎩⎨⎧=-=41y xC.⎩⎨⎧=-=23y xD.⎩⎨⎧==23y x3、方程(x +1)(x -2)=0的根是( D )A .x =-1B .x =2C .x 1=1, x 2=-2D .x 1=-1,x 2=2 4、关于x 的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是0,则a 的值为( B )A.1B.-1C.1或-1D.215、用配方法解方程x 2+6x+7=0,变形正确的是( C )A.(x+3)2=―2B.(x+3)2=16C.(x+3)2=2D.(x+3)2=―166、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速后,火车由天津到上海的时间缩短了7.42小时,若天津到上海的路程为1326千米,提速前火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式是( C )A.x – y =42.71326B. y – x =42.71326C. x1326–y 1326= 7.42D.y 1326–x1326= 7.42 7、在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( B )A .x 2+130x -1400=0B .x 2+65x -350=0C .x 2-130x -1400=0D .x 2-65x -350=08、某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折。

安徽中考数学复习专题全辑 专题二 几何图形最值问题

安徽中考数学复习专题全辑 专题二 几何图形最值问题
20.(2019·广元)如图,△ABC 是⊙O 的内接三角形,且 AB 是⊙O 的直径,点 P 为⊙O 上的动点,且∠BPC=60°,⊙O 的半径为 6,则点 P 到 AC 距离的最大值 是________.
21.(2019·黄冈)如图,AC,BD 在 AB 的同侧,AC=2,BD=8,AB=8,点 M 为 AB 的中点,若∠CMD=120°,则 CD 的最大值是________.
而且点移动到不同的位置,我们要研究的图形可能会改变.当一个问题是确定 图形的变量之间关系时,通常建立函数模型求解,当确定图形之间的特殊位置 关系或一些特殊值时,通常建立方程模型求解.在解题时,常常需要作辅助线 帮助理清思路,然后利用直角三角形或圆的有关知识解题.如本题,作辅助线, 利用轴对称的性质将问题转化为三角形中两边之和大于第三边,当 P 点在 A1B 上 时,PA+PB 取得最小值.
A.3 2-1
B.2
C.2 2
D.3 2
2.如图,在 Rt△ABC 中,∠B=90°,AB=3,BC=4,点 D 在 BC 上,以 AC 为
对角线的所有平行四边形 ADCE 中,DE 最小的值是( )
A.2
B.3
C.4
D.5
3.(2019·合肥 42 中一模)如图,AB 是半⊙O 的直径,点 C 在半⊙O 上,AC=8cm,
专题二 几何图形最值问题
类型一 线段最值问题
(2017·安徽)如图,在矩形 ABCD 中,AB=5,AD=3.动点 P 满足 S = △PAB
1
S 矩形 ABCD,则点 P 到 A,B 两点距离之和 PA+PB 的最小值为(
)
3
A. 29
B. 34
C.5 2
D. 41

2017年安徽省中考数学试题及答案

2017年安徽省中考数学试题及答案

2017年安徽省初中毕业学业考试数学一、选择题(本题共10小题,每小题4分,满分40分)1.-2,0,2,-3这四个数中最大的是( ) A .-1 B .0 C .1 D .22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )A .3804.2×103B .380.42×104C .3.842×106D .3.842×1053. 下图是五个相同的小正方体搭成的几体体,其左视图是( )4.设1a ,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4 和5 5.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是( )A .事件M 是不可能事件B . 事件M 是必然事件 CC .10D . 117. 如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC =36°, 则劣弧BC 的长是( )A .5πB . 25πC . 35πD . 45π8.一元二次方程()22x x x-=-的根是( )A .-1B . 2C . 1和2D . -1和29.如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD=CD,点P 在四边形ABCD上,若P 到BD 的距离为32,则点P 的个数为( )A .1B .2C .3D .410.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )二、填空题(本题共4小题,每小题5分,满分20分)11.因式分解:=_________.12.根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:10nE =,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是_________.14.定义运算()1a b a b ⊗=-,下列给出了关于这种运算的几点结论:①()226⊗-= ②③若0a b +=,则())(2a b b a ab⊗+⊗= ④若0a b ⊗=,则a =0. 其中正确结论序号是_____________.(把在横线上填上你认为所有正确结论的序号)三、(本题共2小题,每小题8分,满分16分)15.先化简,再求值:21211x x ---,其中x =-2(解)16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量. (解)四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2;⑴把△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;⑵以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2. (解)18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 1(____,_____),A 3(____,_____),A 12(____,____); (2)写出点A n 的坐标(n 是正整数); (解)(3)指出蚂蚁从点A100到A101的移动方向.(解)五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.(解)20.一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.(解)六、(本题满分12分)21. 如图函数11y k x b=+的图象与函数2k y x =(x >0)的图象交于A 、B 两点,与y 轴交于C点.已知A 点的坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点坐标;(解)(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分)22.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A ′B ′C ′.(1)如图(1),当AB ∥CB ′时,设AB 与CB ′相交于D.证明:△A ′CD 是等边三角形; (解)(2)如图(2),连接A ′A 、B ′B ,设△ACA ′和△BCB ′的面积分别为S △ACA ′和S △BCB ′. 求证:S △ACA ′∶S △BCB ′=1∶3; (证)(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. (解)八、(本题满分14分)23.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证h1=h3;(解)(2) 设正方形ABCD的面积为S.求证S=(h2+h3)2+h12;(解)(3)若12312h h+=,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况.(解)2011年安徽省初中毕业学业考试数学参考答案1~5 ACACB 6~10 DBDBC11. ()21+a b ; 12. 100; 13. 5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为x 千克,根据题意,得 x +(3x +2000)=10000.解得 x =2000.答:粗加工的该种山货质量为2000千克. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0) ⑵A n (2n ,0) ⑶向上19. 简答:∵OA350033150030t an 1500=⨯=⨯= , OB =OC =1500,∴AB =635865150035001500=-≈-(m ).答:隧道AB 的长约为635m .20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x y又A 点在函数x k y 22=上,所以 212k=,解得22=k 所以 解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x所以点B 的坐标为(1, 2)(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x =1或x =2时,y 1=y 2.22.(1)易求得 60='∠C D A , DC C A =', 因此得证. (2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证.(3)120°, a2323.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G ,证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF ,且两直角边长分别为h 1、h 1+h 2,四边形EFGH。

2017年安徽中考数学试题及答案

2017年安徽中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填在题后的括号内。

)1. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 大于0B. 小于0C. 等于0D. 不确定2. 下列各组数中,是同类项的是()A. 3x²y 和 2xy²B. 2x²和 3x²C. 3x²y 和 2x²yD. 3x²y 和 2xy3. 计算(x-1)(x+1)的结果是()A. x²-1B. x²+1C. x²-2xD. x²+2x4. 已知一个三角形的两边长分别为3和4,第三边长为x,则x的取值范围是()A. 1 < x < 7B. 4 < x < 7C. 1 < x < 5D. 0 < x < 75. 一个数的平方根是2,则这个数是()A. 4B. -4C. 2D. -26. 一个正数的倒数是()A. 正数B. 负数C. 0D. 17. 函数y=2x+1的图象是()A. 一条直线B. 一条曲线C. 一个点D. 一个圆8. 计算(-2)³的结果是()A. -8B. 8C. -6D. 69. 一个数的绝对值是3,则这个数可能是()A. 3B. -3C. 3或-3D. 010. 一个数的平方是9,则这个数是()A. 3B. -3C. 3或-3D. 9二、填空题(本题共5小题,每小题4分,共20分。

请将答案填在题后的横线上。

)11. 一个数的相反数是-5,则这个数是______。

12. 一个数的立方是-27,则这个数是______。

13. 一个数的平方是25,则这个数是______。

14. 已知一个直角三角形的两条直角边长分别为3和4,则斜边长是______。

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_频数(率)分布直方图

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_频数(率)分布直方图频数(率)分布直方图专训单选题:1、(2016北京.中考真卷) 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A . ①③B . ①④C . ②③D . ②④2、(2017西城.中考模拟) 某大型文体活动需招募一批学生作为志愿者参与服务,已知报名的男生有420人,女生有400人,他们身高均在150≤x<175之间,为了解这些学生身高的具体分别情况,从中随机抽取若干学生进行抽样调查,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:组别身高(cm)A 150≤x<155B 155≤x<160C 160≤x<165D 165≤x<170E 170≤x<175根据图表提供的信息,有下列几种说法①估计报名者中男生身高的众数在D组;②估计报名者中女生身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计身高在160cm至170cm(不含170cm)的学生约有400人其中合理的说法是()A . ①②B . ①④C . ②④D . ③④3、(2018福清.中考模拟) 下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A . 该学校教职工总人数是50人B . 年龄在40≤x<42小组的教职工人数占该学校总人数的20%C . 教职工年龄的中位数一定落在40≤x<42这一组D . 教职工年龄的众数一定在38≤x<40这一组4、(2017慈溪.中考模拟) 一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为()A . 9环与8环B . 8环与9环C . 8环与8.5环D . 8.5环与9环5、(2014温州.中考真卷) 如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A . 5~10元B . 10~15元C . 15~20元D . 20~25元6、(2016温州.中考真卷) 如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A . 2~4小时B . 4~6小时C . 6~8小时D . 8~10小时7、(2017宿州.中考模拟) 某单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制成如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵以上的人数占总人数的()A . 40%B . 70%C . 76%D . 96%8、(2017安徽.中考真卷) 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A . 280B . 240C . 300D . 2609、(2017阜康.中考模拟) 某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A . 样本中位数是200元B . 样本容量是20C . 该企业员工捐款金额的平均数是180元D . 该企业员工最大捐款金额是500元10、为了减轻学生课外作业负担,数学老师准备按照学生每天课外作业完成量(完成题目个数)实行分档布置作业.作业量分档递增,计划使第一档、第二档和第三档的作业量覆盖全校学生的70%,20%和10%,为合理确定各档之间的界限,随机抽查了该校500名学生过去一个阶段完成作业量的平均数(单位:个);绘制了统计图.如图所示,下面四个推断合理的是( )A . 每天课外作业完成量不超过15个题的该校学生按第二档布置作业B . 每天课外作业完成量超过21个的该校学生按第三档布置作业C . 该校学生每天课外作业完成量的平均数不超过18D . 该校学生每天课外作业完成量的中位数在15﹣18之间填空题:11、(2017静安.中考模拟) 为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为________人.12、(2017浙江.中考模拟) 九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是________.13、(2015黄石.中考真卷) 九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是________ .14、(2011河池.中考真卷) 某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图,则仰卧起坐次数在20~25次之间的频数是________.15、(2020温州.中考真卷) 某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生猪有________头。

中考数学一轮二轮复习重点知识点练习纠错试卷455256

中考数学一轮二轮复习重点知识点练习纠错试卷学校:__________考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.三条直线两两相交于不同的三点,可构成的内错角的对数是( )A .4B . 6C . 8D .122.如图,将左边图形按逆时针旋转90°得到的图形是( )3.二元一次方程的一个解是( ) A .两个数值B .任意一对未知数的值C .一对未知数的值D 4.25%,运行时间缩短了2h .已知北京到上海的铁路全长为1462km .设火车原来的速度为xkm/h ,则下面所列方程正确的是( )A .2)251(14621462=+-%x xB .21462)251(1462=--x x %C .21462251462=-x x %D .22514621462=-x x % 5.下列分式中是最简分式的是( )A .22xB .4C .12-xD .1-x 6.下列各式中,不能..继续分解因式的是( ) A .22862(43)xy x xy x -=-B .113(6)22x xy x y -=-C .3224844(+21)x x x x x x ++=+D .221644(41)x x -=- 7. 有四张不透明的卡片,每一张卡片除正面数据不同外,其余都相同,将它们背面朝上洗匀后,从中任意抽取一张,抽到正面数据能构成三角形边长的卡片的概率是()A.14B.13C.12D.348.在△ABC中,如果∠A—∠B= 90°,那么△ABC是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.锐角三角形或钝角三角形9.将一个三形平移后得到另一个三角形,则下列说法中,错误的是()A.两个三角形的大小不同B.两个三角形的对应边相等C.两个三角形的周长相等D.两个三角形的面积相等10.若两个数的和为 3,积为-1,则这两个数的平方和为()A.7 B.8 C.9 D. - 1111.小明家的坐标为(1,2),小丽家的坐标为(一2,一l),则小明家在小丽家的()A.东南方向B.东北方向C.西南方向D.西北方向12.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E的度数为()A. 70 B. 80°C. 90°D. 100°13.小明的运动衣号在镜子中的像是,则小明的运动衣号码是()A. B. C. D.14.一个三角形的两条边分别为1和2,若要使这个三角形成为直角三角形,则应满足下列各个条件中的()A.第三边长为3 B.第三边的平方为3C.第三边的平方为5 D.第三边的平方为3或515.如图,在Rt△ABC中,CD是斜边AB上的中线,则图中与CD相等的线段有()A.AD与BD B.BD与BC C.AD与BC D.AD,BD与BC16.将左边的立方体展开能得到的图形是()。

2017年中考数学一轮图形折叠问题复习试卷(带答案)

2017年中考数学一轮图形折叠问题复习试卷(带答案)2017年中考数学一轮复习专题图形折叠问题综合复习一选择题:1.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=() A.40° B.35° C.20° D.15° 2.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于() A.50° B.55° C.60° D.65° 3.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是() A.12 B.24 C.12 D.16 4.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为() A.3 B.4 C.5 D.6 5.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为() A.1 B.2 C. D.6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为() A.12 B.10 C.8 D.67.如图,矩形ABCD 中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是() A.7 B.8 C.9 D. 108.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为() A.78° B.75° C.60° D.45°9.如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.若CE的长为7cm,则MN的长为() A. 10 B. 13 C. 15 D. 12 10.如图,将矩形纸片ABCD的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12厘米,EF=16厘米,则边AD的长是 ( ) A.12厘米 B.16厘米 C.20厘米 D.28厘米 11.如图,在矩形 OABC 中,OA=8,OC=4,沿对角线 OB 折叠后,点 A 与点 D 重合,OD 与 BC 交于点 E,则点 D 的坐标是() A.(4,8) B.(5,8) C.(,) D.(,) 12.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为() A. B. 2 C. 3 D. 13.如图,矩形纸片ABCD中,AD=3cm,点E在BC上,将纸片沿AE折叠,使点B落在AC上的点F处,且∠AEF=∠CEF,则AB的长是( ) A.1 cm B. cm C.2 cm D. cm 14.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为() A.3或4 B.4或3 C.3或4 D.3 或415.如图,在矩形ABCD中,点E、F分别在边AB,BC上,且AE= AB.将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF 于点Q.对于下列结论:①EF=2BE,②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( ) A.①② B.②③ C.①③ D.①④ 16.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN 翻折后点C恰好与点A重合,若此时 = ,则△AMD′ 的面积与△AMN 的面积的比为( ) A.1:3 B.1:4 C.1:6 D.1: 9 17.图,矩形ABCD 中,点E是AD的中点,将△ABE折叠后得到△GBE,延长B G交CD于点F,若CF=1,FD=2,则BC的长为( ) A.3 B.2 C.2 D.2 18.如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于(). A.2 B.3 C.4 D.5 19.如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD 时,的值为() A. B. C. D. 20.如图,在矩形纸片ABCD中,AB=3,AD=5.折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P,Q也随之移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017安徽中考一轮复习卷·数学(四)一、选择题(本题共10题,每题4分,共40分)1. 已知三角形的两边长分别是4和10,则此三角形第三边的长可能是( )。

A: 5 B: 6 C: 11 D: 162、如图,在ABC ∆中,D 、E 分别是AB 、AC 的中点,若cm BC 2=,则=DEcm A 5.0、 cm B 1. cm C 5.1. cm D 2.第2题图 第3题图 第4题图3、如图,在△ABC 中, C=90°,若BD ∥AE , DBC=20°,则 CAE 的度数是()A.40°B.60° C .70° D.80°4、如图,已知在ABC ∆中,CD 是AB 边上的高线,BH 平分ABC ∠,交CD 于点E, 2,5==DE BC ,则BCE ∆的面积等于( )A. 4B. 5C. 7D. 105、 如图所示,一个 60角的三角形纸片,剪去这个 60角后,得到一个四边形,则21∠+∠的度数为( )。

A: 120 B: 180 C: 240 D: 300第5题图 第6题图 第7题图6. 如图,在四边形ABCD 中,BD AC ⊥,CD CB AD AB ==,,若连接BD AC 、相交于点O ,则图中全等三角形共有( )。

A: 1对 B: 2对 C: 3对 D :4对7. 轮船从B 处以每小时50海里的速度沿南偏东 30方向匀速航行,在B 处观测灯塔A 位于南偏东 75方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位 于北偏东 60方向上,则C 处与灯塔A 的距离是( )。

A: 325海里 B: 225海里 C: 50海里 D: 25海里8、如果三角形的一个内角是另一个内角的 2 倍 , 那么称这个三角形为“倍角三角形”。

例如 , 在 △ABC 中 , 如果∠A = 50∘, ∠B = 100∘ ,那么 △ABC 就是一个“倍角三角形”。

对于∆ABC ,下列条件不能说明它是“倍角三角形”的是( )A 、三边之比为 321::B 、 120=∠+∠B AC 、三边之比为 211::D 、三角之比为3:2:1 9. 如图,在△ABC 中,∠ABC=50°,∠ACB=60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与 ∠ACE 的平分线CD 相交于点D ,连接AD ,则 ∠ADB 为( )A.55°B.25°C.30°D.35°第9题图 第10题图10、 如图,已知在ABC Rt ∆中, 90=∠ABC ,点D 是BC 边的中点,分别以CB 、为圆心,大于线段BC 长度一半的长为半径画弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:① BC ED ⊥;②EBA A ∠=∠;③EB 平分AED ∠;④AB ED 21=中,一定正确的是( )。

A: ①②③ B: ①②④ C: ①③④ D: ②③④二、填空题(本题共4小题,每题5分,共20分)11. 王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是 .12. 如图所示,CBE ABD DB AB ∠=∠=,,请你添加一个适当的条件_____ ,使DBE ABC ∆≅∆。

(只需添加一个即可)13. 如图,在ABC Rt ∆中, 90=∠ACB , 30=∠B ,3=BC 。

点D 是BC 边上的一动点(不与C B 、重 合),过点D 作BC DE ⊥交AB 于点E ,将B ∠沿直线DE 翻折,点B 落在射线BC 上的点F 处。

当AEF ∆为直角三角形时,BD 的长为_____ 。

第12题 第13题 第14题14.如图,在ABC ∆中,AC BM ⊥于点M,AB CN ⊥于点N,P 为BC 边的中点,连接PM,PN,则下列结论:若 60=∠A ,PN PM = ;若 60=∠A ,PNM ∆为等边三角形;③当 45=∠ABC 时,PC BN 2=;④当 45=∠ABC 时, 45=∠MPN .其中正确的是 .三、(本题共2小题,每小题8分,共16分)15. 已知:如图,点C A E 、、在同一直线上,AB ∥CD ,CD AC CE AB ==,,。

求证:ED BC =。

16. 三角板由两个特殊直角三角形组成,采用不同的方法摆放可以画出很多角,(1)若按图1摆放,则得到=∠α (直接写出结果)(2)若按图2摆放,求出∠1的度数四、(本题共2小题,每小题8分,共16分)17.如图,M是ABC∠,ANBN⊥于点N,∆的边BC的中点,AN平分BAC延长BN交AC于点D,已知10=BC,3MN。

==AB,15(1)求证:DN∆的周长BN=;(2)求ABCA1 2DNB M C18. 如图,点NBM=,M、分别是正五边形ABCDE的边CDBC、上的点,且CN AM交BN于点P。

(1)求证:BCN∠的度数。

(4分)∆。

(4分)(2)求APNABM∆≅五(本题共2小题,每小题10分,共20分)19、如图,在△ABC中,AB=AC,D是BA延长线上的一点,E是AC的中点.(1)利用尺规按下列要求作图,并在图形中标明相应字母(保留作图痕迹,不写作法);①作∠DAC的平分线AM;②连接BE并延长交AM于点F;(2)试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.20. 定义:将一个等腰三角形分割成n个等腰三角形,我们称为该等腰三角形的n阶剖分。

例:一个等腰直角三角形,如图可以分割成2个等腰三角形(2阶剖分),可以分割为3个等腰三角形(3阶剖分),也可以分割成4个等腰三角形(4阶剖分),…。

按要求作出图形(每题只作一种图形即可,标出每个等腰三角形的顶角度数,不需说明作图理由和过程)(1)如图1,将等边三角形进行3阶剖分;(2)如图2,将顶角是36°的等腰三角形2阶剖分;(3)如图3,将顶角是45°的等腰三角形3阶剖分。

六、(本题满分12分)21. 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.可是在很多情况下,它们会全等。

如①当这两个三角形均为直角三角形时,显然他们全等;②当这两个三角形均为钝角三角形时,我们可以证明他们两个全等(证明略);③当这两个三角形均为锐角三角形时,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl, C= Cl.求证:△ABC≌△A1B1C1.证明:分别过点B,B1作BD⊥CA于D,B 1D1⊥C1A1于D1.则∠BDC= ∠B1D1C1=90°,(1)请你将下列证明过程补充完整;(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.(3)请你画图并说明“两边及其中一边的对角分别对应相等的两个三角形不全等”。

(保留作图痕迹,不用写作法)七、(本题满分12分)22. 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中 90=∠DAB ,求证:222c b a =+ 证明:连接DB,过点D 作BC 边上的高DF,则a b EC DF -==.=+=∆∆ABC ACD ADCB S S S 四边形又=+=∆∆DCB ACD ADCB S S S 四边形∴∴ 222c b a =+解决问题:请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中 90=∠DAB ,.求证:.222c b a =+八、(本题满分14分)23. (1)问题发现如图1,ACB ∆和DCE ∆均为等边三角形,点A,D,E 在同一直线上,连接BE,求AEB ∠的度数.(2)拓展探究如图3,ACB ∆和DCE ∆均为等腰三角形,顶角α=∠=∠DCE ACB ,点A 、D 、E 在同条一直线上,求AEB ∠的度数(3)如图2,ACB ∆和DCE ∆均为等腰直角三角形, 90=∠=∠DCE ACB ,点A 、D 、E 在同条一直线上,CM 为DCE ∆中DE 边上的高,连接BE.①AEB ∠的度数为 ;②线段CM,AE,BE 之间的数量关系为 。

2017安徽中考一轮复习卷·数学(四)答案一、选择题1、C本题主要考查三角形的三边关系。

根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,设第三边的长为,则,得,可知仅有C项符合题意。

故本题正确答案为C。

2、B解:D、E分别是AB、AC的中点.∆的中位线,DE是ABCDE1=BC2=,所以cmDEBC2=,又cm因此,本题正确答案是:B3、此题答案为:C.解:过点C作CF∥BD,则CF∥BD∥AE.∠BCF=∠ DBC=20°.∵ C=90°,∠FCA=90°-20°=70°.∵CF∥AE,∠CAE=∠ FCA=70°.故选C.4、B解:作于F,平分,,,,的面积.所以B选项是正确的5、C本题主要考查角的概念及其计算。

如图所示,根据三角形内角和定理可得,又因为,所以。

故本题正确答案为C。

6、C本题主要考查全等三角形的判定与性质。

在和中,,所以,有。

在和中,,所以,有。

在和中,,所以。

故图中全等三角形共有对。

故本题正确答案为C 。

7、D.根据题意,可知(海里);因为轮船从处以每小时海里的速度沿南偏东方向匀速航行,在处观测灯塔位于北偏东方向上,所以;因为在处观测灯塔位于南偏东方向上,所以,所以,所以(海里)。

所以处与灯塔的距离是海里。

答案为D 9、答案为C 因为、分别是、的平分线,所以是的外角平分线,所以()()30557025180180=++-=∠+∠+∠-=∠CAD BAC ABD ADB10、B本题主要考查直角三角形。

①项,依据题意可知,为的垂直平分线,故。

故①项正确。

②项,因为为的垂直平分线,所以,则。

因为,,所以。

故②项正确。

③项,因为,由①知,,故,所以,但根据已知条件无法证明 ,所以不一定平分。

故③项错误。

④项,因为,所以。

由①知,,故为的中点。

因为是的中垂线,所以是的中位线,则。

故④项正确。

综上所述,正确的结论是①②④。

故本题正确答案为B。

二、填空题11、三角形具有稳定性12、本题主要考查全等三角形的判定与性质。

因为,,,所以,在和中,,所以。

故本题正确答案为。

13、或本题主要考查图形变换的应用。

根据题意得,,,因为,所以,,,因为在中,,,,所以,。

相关文档
最新文档