透明导电薄膜 (TCO)之原理及其应用发展 ppt课件
石墨烯透明导电薄精品文档30页

= 380— 780nm
1.1透明导电薄膜概念及应用
透明导电薄膜(TCFs transparent conducting films)是
指在可见光区( = 380— 780nm)有较高的透光率
3.1CVD-用Cu作为基底
Srivastava等采用CVD法在Cu箔上沉积石墨烯 膜,得到连续的单层和多层的石墨烯膜,与其 它小组不同的是他们采用的前体不是气体而是 液相前体乙烷,如下图所示。基于液相前体的 方法开创了一种便宜、方便的制备石墨烯薄膜 的方法。采用含有各种掺杂的有机溶剂作前体 可以制备掺杂的石墨烯薄膜。
(例如可弯曲的LCD、有机太阳能电池)的性能要求。 (3)ITO的制备方法(例如喷镀、蒸发、脉冲激
光沉积、电镀)费用高昂。
2.1石墨烯的优良特性
自2019年第一次制备得到独立的单层石墨烯 以来,吸引了众多科学家对石墨烯的研究,石 墨烯已经成为材料及凝聚态物理领域一颗闪耀 的新星。
石墨烯独特的二位晶体结构,赋予了它独特的 性能,研究发现,石墨烯具有优良的机械性能, 杨氏模量约1000GPa,同时由于其特殊的能 带结构,石墨烯也表现出许多优良的的电学性 质。
(Tavg大于80%),并且有优良的导电性,电阻率可以 达到一下10-5*m的薄膜材料。 透明导电薄膜是许多光电子器件的重要组成部分,例如 液晶显示器(LCD),有机太阳能电池,有机发光二极 管(OLCD)等。 常用的透明导电薄膜包括金属膜、氧化物膜(主要是指 铟锡氧化物(ITO))、有机高分子膜、复合膜等
2.2石墨烯优良的光电性质
一、优良的电学性质:
1、研究表明,石墨烯电子传导速率可8*105m*s-1
达
,
透明导电膜玻璃TCO

一、玻璃导电的机理众所周知,不同种类的物质,其导电的机理是不同的。
金属导体导电,是由于在金属导体中有可以自由移动的自由电子的作用;半导体导电,是靠半导体中空穴的移动作用而使电子传导得以实现;电解质水溶液导电,是由于在电解质水溶液中有可以自由移动的离子的作用;离子化合物的晶体导电是在具有晶格缺欠的情况下,虽然是固体,但由于离子的迁移而导电。
那么,玻璃导电的机理是什么呢?在室温条件下,玻璃是相当好的绝缘体。
一般来说,玻璃的电阻率在1010Ω/m~1015Ω/m之间。
但是,温度升高,玻璃就要被软化,处于熔融状态中玻璃的电阻可降到几个欧姆,导电性能增强。
即,玻璃从固体变成液体状态时可以导电。
玻璃导电的能力由玻璃结构中离子的移动程度决定。
玻璃是离子化合物晶体。
玻璃的种类不同,其离子的种类以及比例含量都不同。
以最常见的苏打石灰玻璃为例,其主要成分为SiO2,通常由于结构中存在晶格缺欠,晶体中的Na+在温度升高时由一个空穴迁移到另一个空穴而导电。
由此可见,玻璃导电是属于离子导电二、透明导电膜玻璃(TCO Coating Glass)透明导电膜玻璃(TCO Coating Glass)是指在平板玻璃表面通过物理或化学镀膜方法均匀的镀上一层透明的导电氧化物薄膜(Transparent Conductive Oxide)而形成的组件。
对于薄膜太阳能电池来说,由于中间半导体层几乎没有横向导电性能,因此必须使用TCO玻璃有效收集电池的电流,同时TCO薄膜具有高透和减反射的功能让大部分光进入吸收层。
TCO玻璃的生产工艺TCO玻璃工艺主要分为超白浮法玻璃生产、TCO镀膜。
超白浮法玻璃生产工艺难度较高,目前世界上主要供应商有日本旭硝子、美国PPG、法国圣戈班等,国内供应厂家有限,目前仅金晶科技、南玻、信义能够供货。
透明导电膜玻璃(TCO Coating Glass)的种类主要为氧化铟锡透明导电膜玻璃(ITO Coating Glass)、掺Al氧化锌透明导电膜玻璃(AZO Coating Glass)和掺F氧化锡(FTO Coating Glass)三种;ITO透明导电膜玻璃广泛的使用于大面积平板显示领域,国内ITO导电膜玻璃生产厂家主要有深圳南玻显示事业部、深圳莱宝光学、蚌埠华益导、芜湖长信,深圳天泽等众多厂家,技术也能与日本与欧美厂家竞争;而FTO透明导电膜和AZO透明导电膜的主要生产商有日本旭硝子(Asahi)、板硝子(NSG)与美国AFG,国内非晶硅薄膜电池厂因需求不大、尺寸规格特殊,所以议价空间小,进货价格高,甚至有钱也不一定买的到货。
透明导电薄膜(TCO)之原理及其应用发展课件

透明导电薄膜
金属化合物薄膜(TCO)
泛指具有透明导电性之氧化物、氮化物、氟化物
a.氧(氮)化物:In2O3、SnO2、ZnO、CdO、TiN b.掺杂氧化物:In2O3:Sn (ITO)、ZnO:In (IZO)、ZnO:Ga (GZO) ZnO:Al (AZO)、SnO2:F、TiO2:Ta
c.混合氧化物:In2O3-ZnO、CdIn2O4、Cd2SnO4、Zn2SnO4
透明导电氧化物(Transparent Conductive Oxide, TCO)
2.TCO的导电原理
3.TCO的光学性质
4. TCO薄膜之市场应用及未来发展
什么是透明导电薄膜?
在可见光波长范围内具有可接受之透光度
������ 以flat panel display而言透光度愈高愈好 ������ 以solar cell而言太阳光全波长范围之透光度及热稳定性
透明导电薄膜(TCO) 之原e
1.ITO及各种透明导电氧化物材料的介绍
透明导电氧化物(Transparent Conductive Oxide, TCO)
2.TCO的导电原理
3.TCO的光学性质
4. TCO薄膜之市场应用及发展
1.ITO及各种透明导电氧化物材料的介绍
特点:1.ZnO矿产产能大。 2.价格比ITO便宜(> 200% cost saving) 。 3.部分AZO靶材可在100%Ar环境下成膜,制程控制容易。 4.耐化性比ITO差,通常以添加Cr、Co于ZnO系材料中来 提高其耐化性。
1.ITO及各种透明导电氧化物材料的介绍
透明导电氧化物(Transparent Conductive Oxide, TCO)
������ 2000年代,主要的透明导电性应用以ITO材料为主,磁控溅镀ITO成为 市 场上制程的主流.
透明导电氧化物薄膜精品PPT课件

透明导电薄膜结构
透明导电氧化物薄膜的基本特性
• 透明导电氧化物薄膜的基本特性之一是良好的导 电性。
透明导电薄膜发展历史
• 20世纪初,透明性与导电性可以共存首次在Cd的氧化物中 发现。
• 60年代ITO成为透明导电材料的主。 • 70年代光学多层膜研究开辟了透明导电多层膜的研究领域
。 • 80年代掺杂ZnO作为ITO的最佳替代材料而广泛研究。 • 到90年代随着光电子产业的快速发展,对透明导透明导电薄膜制备中采用最 为广泛的技术。
• 脉冲激光沉积(PLD)工艺是薄膜制备中常见方法之 一,
• 溶胶一凝胶工艺是一种制备多元氧化物薄膜的常 用方法。
• 喷射热分解法是由制备太阳能电池透明电极而发 展起来的薄膜制备方法。
• 其它一些薄膜制备技术,如化学气相沉积等也被 应用于制备透明导电薄膜
透明导电氧化物薄膜的应用及市场 前景
• 透明导电氧化物薄膜目前主要的应用领域有平面液晶显示 (LCD)、电致发光显示(ELD)、电致彩色显示(ECD)、太阳能光伏电池透明电
极[22,231;它对光波的选择性(对可见光的透射和对红外光的反射)可 用作热反射镜,用于寒冷地区的建筑玻璃窗起热屏蔽作用,节省能源 消耗;还可用作透明表面发热器,在汽车、飞机等交通工具的玻璃窗 上形成防雾除霜玻璃;同理,可用在防雾摄影机镜头、特殊用途眼镜 、仪器视窗上L24j;利用TCO薄膜对微波的衰减性,可用在电子设备 、计算机房、雷达屏蔽保护区等需要屏蔽电磁波的地方,以防止外界 电磁波对电子设备的干扰与破坏嘲;利用TCA3薄膜光电导随表面吸附 的气体种类 和浓度不同会发生变化的特点,可用来制作表面型气敏器件,通 过掺入不同元素检测不同的气体[2朝;柔性衬底TCO薄膜的开发使它的潜 在用途扩大到制造柔性发光器件、塑料液晶显示器、可折叠太阳能电 池以及作为保温材料用于塑料大棚、玻璃粘贴 膜等。表1总结了透明导电薄膜的主要应用及其相应的性能要求。
透明导电膜介绍PPT课件

ZnO 晶體結構及特性(6/6)
製造氧化鋅薄膜的方法很多,在薄膜的製 程方面有相當多的方法可以成長ZnO 膜, 如有機金屬化學氣相沉積法(MOCVD)、 分子束磊晶法(MBE)、脈衝雷射沉積法 (PLD)、熱分解法(Spray pyrolysis)以及濺 鍍法(Sputtering)等等;隨著製程條件的不同, ZnO 薄膜也呈現出不同的材料特性。
光電陶瓷-
透明導電膜
指導教授:劉依政 教授 學生:籃耿晃 學號:G950K020
透明導電膜介紹(1/4)
隨著光電產業的快速發展,各種材料不斷 被開發,而透明導電膜是近年來產業應用 最多的新材料,它可以應用在液晶顯示器 (liquid crystal display,LCD)、電漿顯示器 (plasma display panel,PDP)、LED、OLED、 光偵測器、太陽能電池等。
濺鍍製程(1/3)
利用濺鍍系統製作IZO 薄膜,此系統由電 源供應器產生射頻信號(13.56MHz)傳送至 靶材與基板所在的真空系統中,藉由解離 真空系統中的氣體,而使解離的陽離子轟 擊靶材(target),靶材的原子於是被濺鍍而出, 附著在基板上完成鍍膜的動作。
濺鍍系統示意圖
濺鍍製程(2/3)
濺射(RF sputtering)原理(1/2)
氣體在特殊環境的條件下,會由氣體分子 分解為原子,再解離為帶電離子或者電子團, 且維持電中性的狀態,而這些離子化的氣 體就稱為電漿(Plasma)。射頻電漿的產生, 當交流電壓加於電極時,在較高的頻 率下電極將隨時處於非飽和狀態,使得電 極間主要粒子的撞擊反應得以進行,電漿 因此而產生並得以維持。
在上述製程中牽涉到的變數相當廣,包 括通入的氣體種類、氣體流量、混合的 氣體比例、系統壓力、濺鍍功率⋯ 等。 所以在鍍膜時需對這些參數同時監控, 以維持在穩定的條件。
石墨烯透明导电薄膜课件

4.以天然石墨为原料的方法
4.1 微机械剥离法 英国曼彻斯特大学的 Geim教授研究组在2004年采用简单的胶带撕拉 方法,得到单层的石墨烯,这是人类第一次找到单层石墨烯,并证实了 二维晶体的存在。 该研究组将机械剥离法得到的含有单层石墨烯的单质硅晶片表面通 过电子束刻蚀沉积一层金属网格,然后再把样品浸入到氢氧化四甲基铵 溶液中溶解单质硅并从底部剥离金属网格使石墨烯薄膜悬空在金属架上, 最后用氢氟酸溶解 SiO2 层,成功得到悬空的单层石墨烯。 总的来说,这种方法由于操作步骤比较繁琐,产率比较低,尺寸不 易控制,难以实现大规模的生产,因而只适用于石墨烯的实验室研究, 不能满足工业需求。
3. 化学气相沉积法( CVD)
化学气相沉积法是应用最广泛的一种大规模工业化制备半导体薄膜 材料的方法,一般是将过渡金属,如 Co,Ni,Cu,Ir,Pt,Ru 等的薄 片或者薄膜置于碳氢化合物气体中 ,在高温(高于1000 ℃ )下催化裂解, 通过加热温度和冷却速度来控制石墨烯的层数,最后用PMMA转移到目标 基底上,得到大面积且性能优良的石墨烯薄膜。 改进的CVD方法如微波等离子体增强 CVD能大量制备,但是该方法原 料利用率不高,并且产物中会有很多的无定形碳和其他杂质。而射频催 化CVD法能大量制备并且能明显阻止无定形碳的形成。
2.外延生长法
外延生长法一般是热解SiC,在高温处理过程中硅原子从SiC表面解吸 附,碳原子积累形成一个富含碳的表面层。 首先将样品表面经过氧化或者H2刻蚀后在高温高真空下,经电子轰击 和高温下除去氧化物,当用俄歇电子能谱监测到氧化物被完全去除后, 继续升高温度,形成石墨烯层,其厚度与加热温度有关,并可以通过检 测Si的俄歇电子峰强度测定石墨烯的厚度。 总体来说,高真空、高温以及单晶基底这些苛刻条件将限制外延生长 法的实际应用。
透明导电膜材料

1
目录
一、膜材料的简介 二、ZnO:Al(TCO)薄膜的基本性质 三、TCO的实验制备方法 四、TCO的检测
2
一、薄膜材料简介
薄膜材料: 薄膜材料: 应用领域:材料科学、能源、信息 、微电子工业等;尤其 应用领域 宽禁带半导体光电功能材料,已成为各国研究的重点。 研究目的:利用新材料制备具有最佳性能的器件 研究目的 提高 生产率,降低成本; 发展方向:透明导电薄膜、具有低电阻、 高透射率等 发展方向 可作为透明导电窗口.
9
三、实验方法
目前生长ZnO薄膜的方法很多,包括脉冲激光沉积(PLD), 分子束外延(MBE),金属有机物化学气相沉积(MOCVD), 射频/直流溅射(RF/DCSputtering),电子束反应蒸 (Spray Pyrolysis)和溶胶一凝胶法(sol—gel)等。目前用 于太阳电池及其组件的ZnO薄膜制备中,国际上主要是 磁控溅射和MOCVD技术.利用磁控溅射法制备薄膜太阳 电池ZnO薄膜,通常采用AL掺杂得到较低电阻率(~10-4 欧姆.厘米)的镜面结构;为应用于太阳电池前电极,溅射 后的ZnO薄膜须采取湿法刻蚀才能形成绒面结构,以期 获得良好光散射能力
SZ-82 型数效子式四探针测试仪是运用四探针测量原理 的多用途综合测量装置。它可以测量片状、块状半导体 材料径向和轴向电阻率,测量片状半导体构材料的电阻 率和扩散层的薄层电阻(方块电阻)。换—上特制的四探针 测试夹,还可以对金属导体的低、中值电阻进行测量。 仪器由电气箱、测试架等部分组成,测试结果由数字直 接显示。电气箱主要由高灵敏度直流数字电压表和高稳 定恒流源组成。测试架探头采用宝石导向轴套和高耐磨 碳化钨探针。故定位准确、游移率小、寿命长。
石墨烯透明导电薄膜课件

4.2 石墨氧化-还原法 天然石墨片首先经过化学强氧化得到边缘含有羧基、羟基而层间含有 羰基和环氧等含氧基团的氧化石墨 (Graphite Oxide,GO),这些基团的 存在增大了石墨层间距同时也增强其亲水性能,再通过超声波分散,得 到单原子层厚度的GO,最后用化学还原将石墨烯氧化物还原成石墨烯。 这种方法可以得到独立的单层石墨烯片悬浮液,产量高,目前应用广泛。 (1)单层石墨烯氧化物的制备 石墨的氧化方法主要包括Hummers、Brodie和Staudenmaier 3种方Байду номын сангаас, Hummers 氧化法相对其他两种方法安全性较高,因此也是目前最常用的 制备氧化石墨的方法。它们都是将强酸的小分子插入石墨层间来增加层 间距,然后再用强氧化剂(如KMnO4等)对其进行氧化,表面的功能基团可 以降低层与层之间的范德华力,最后通过超声分散,得到单层或少数几 层的石墨烯氧化物。
(2) 石墨烯氧化物的还原 石墨烯氧化物的还原方法可归纳为化学还原法、热还原法、电化学还 原法等。 化学还原法中常用的还原剂有肼、硼氢化钠、苯肼、氢碘酸、对苯二 酚、二元胺、氨基酸等,该方法基于溶液相操作,反应条件温和,但在 氧化过程中由于化学键断裂产生的缺陷难以恢复,因而其导电性能难以 达到理论值。 热还原法是在氮气或氩气等惰性气氛中,对石墨烯氧化物进行快速高 温热处理,需要高温还原,使部分含氧基团热解生成CO2释放,最后得到 石墨烯。 电化学还原方法是将涂覆有石墨烯氧化物的基底置于磷酸盐缓冲溶液 中,将工作电极直接与石墨烯氧化物膜接触,控制扫描电位,即可将石 墨氧化物还原成石墨烯。
(3) 单层石墨烯的分散 由于石墨烯本身的强疏水作用,还原石墨烯氧化物后得到的产物 (R GO)容易发生团聚而影响进一步的应用。为了破环石墨层间的范德华作用 力,更好地实现剥离,提高RGO的分散性,研究者通常先对石墨烯氧化 物进行修饰,然后再进行还原。 其中化学修饰主要可归纳为3种:共价键修饰、非共价键修饰和离子修 饰。 共价键修饰:以石墨烯氧化物边缘的羧基为活性基团,与带氨基的化 合物如脂肪胺、芳香胺或氨基酸等反应,最后可得到功能化的石墨烯氧 化物,能很好的分散到有机溶剂(THF)、极性非质子性溶剂(如DMF、NMP、 DMAc)中,并且有较好的热稳定性。 非共价键修饰:因为石墨烯具有大的π 共轭体系,可与具有共轭体系 的小分子或高分子通过π -π 相互作用增强其溶解性或者分散性。 金属颗粒及金属离子修饰 :用贵金属离子或者纳米粒子修饰石墨烯, 金属粒子作为阻隔物,可降低石墨烯层间的π -π 堆积作用,而金属离子 之间的静电排斥作用也可以阻止石墨烯的团聚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电阻比(resistivity) 愈小愈好,通常ρ <10-4 Ωּ cm
➢一般而言,导电性提高,透光度便下降,反之亦然。可见光 范围具有80 % 以上的透光率,其比电阻低于1×10-4 Ωּcm, 即是良好透明导电膜。
PPT课件
4
透明导电薄膜
➢纯金属薄膜
✓Au、Ag、Pt、Cu、Al、Cr、Pd、Rh,在< 10nm厚度的薄膜, 均有某种程度的可见光透光度
透明导电薄膜 (TCO) 之原理及其应用发展
Outline
1. ITO及各种透明导电氧化物材料的 Nhomakorabea绍透明导电氧化物(Transparent Conductive Oxide, TCO)
2. TCO的导电原理 3. TCO的光学性质 4. TCO 薄膜之市场应用及发展
PPT课件
2
1. ITO及各种透明导电氧化物材料的介绍
PPT课件
8
ITO是什么?
➢ITO=Indium Tin Oxide(In2O3+SnO2) ➢ITO的成分=90wt% In2O3与10wt% SnO2混合物
PPT课件
9
Why choose ITO ?
➢在TCO材料中有最佳的导电性(电阻比低) ➢在可见光波段有良好的透光度 ➢良好的耐候性,受环境影响小 ➢大面积镀膜制程容易(成熟) ➢蚀刻制程容易(成熟) ➢成本低?
ZnO:Ti
特点:1. ZnO矿产产能大。
2. 价格比ITO 便宜(> 200% cost saving) 。
3. 部分AZO靶材可在100% Ar环境下成膜,制程控制容易。
4. 耐化性比ITO 差,通常以添加Cr、Co 于ZnO系材料中来
提高其耐化性。
PPT课件
14
1. ITO及各种透明导电氧化物材料的介绍
1970年代,以Evaporation 及Sputtering 方式沉积InOx及ITO.
1980年代,磁控溅镀﹙magnetron sputtering﹚开发,使低温沉膜制程, 不
论在玻璃及塑胶基板均能达到低面阻值、高透性ITO薄膜.
1990年代,具有导电性之TCO陶瓷靶材开发,使用DC 磁控溅镀ITO, 使
✓早期使用之透明电极 ✓缺点:光的吸收度大、硬度低、稳定性差
PPT课件
5
透明导电薄膜
➢金属化合物薄膜(TCO)
泛指具有透明导电性之氧化物、氮化物、氟化物
a. 氧(氮)化物:In2O3、SnO2、ZnO、CdO、TiN b. 掺杂氧化物:In2O3:Sn (ITO)、ZnO:In (IZO)、ZnO:Ga (GZO)
PPT课件
10
ITO之组成及特性
ITO 组成在In2O3/SnO2 = 90/10时 ➢最低的电阻比及最高的光穿透率
PPT课件
11
ITO之组成及特性
ITO 组成在In2O3/SnO2 = 90/10时 ➢最快的蚀刻速率
ITO成膜时基板温度:200ºC PPT课件 ITO成膜时基板温度:RT 12
沉积制程之控制更趋容易,各式TCO材料开始广泛被应用.
2000年代,主要的透明导电性应用以ITO 材料为主,磁控溅镀ITO成为
市
场上制程的主流.
PPT课件
7
透明导电薄膜主角-- ITO
中文名称:铟锡氧化物
英文全名:Indium Tin Oxide(ITO)
成分:掺杂锡之铟氧化物(Tin-doped Indium Oxide)
PPT课件
Band gap (Eg) > 3.5eV Crystallized at T > 150 ºC
16
TCO薄膜的导电原理
➢材料之导电率σ
σ = neμ
其中n = 载子浓度 (就TCO材料包括电子及电洞)
e:载子的电量 μ:载子的mobility
载子由掺杂物的混入及 离子的缺陷生成
TCO中导电性最好的ITO,载子浓度约1018~1019 cm-3 ﹙金属载子浓度约1022 ~10~23 cm-3﹚
透明导电氧化物(Transparent Conductive Oxide, TCO)
2. TCO的导电原理
3. TCO的光学性质
4. TCO 薄膜之市场应用及未来发展
PPT课件
15
TCO薄膜的导电原理
(n-type TCO)-- ITO
➢In2O3为氧化物半导体,加入SnO2作为杂质参杂,可以产生一个导电电子 ➢In2O3晶格中之氧缺陷(Oxygen vacancy)一个氧空缺,可以产生两个导电电子
ZnO:Al (AZO)、SnO2:F、TiO2:Ta c. 混合氧化物:In2O3-ZnO、CdIn2O4、Cd2SnO4、Zn2SnO4
PPT课件
6
History of TCO
1907年最早使用CdO材料为透明导电镀膜,应用在photovoltaic cells.
1940年代,以Spray Pyrolysis及CVD 方式沉积SnOx于玻璃基板上.
透明导电氧化物(Transparent Conductive Oxide, TCO)
2. TCO的导电原理 3. TCO的光学性质 4. TCO 薄膜之市场应用及未来发展
PPT课件
3
什么是透明导电薄膜 ?
➢在可见光波长范围内具有可接受之透光度
以flat panel display 而言透光度愈高愈好 以solar cell 而言太阳光全波长范围之透光度及热稳定性
PPT课件
17
TCO薄膜的导电原理
➢载子的mobility (μ)
μ = eτ/εom*
τ:relaxation time (载子移动时由此次散射到下一次散射的时间) m*:载子的有效质量 εo:真空中之介电常数
年代:1934年被美国铟矿公司最早合成出来
世界最大ITO薄膜制造国:日本
选用率:在TCO材料中,75%应用在平面显示器
主要应用:平面显示器、透明加热元件、抗静电膜、电
磁、防护膜、太阳能电池之透明电极、防反
光涂布及热反射镜(heat reflecting mirror)等
电子、光学及光电装置上。
铟(In)矿的主要应用
资料来源:工研院经资中心
PPT课件
13
各种TCO材料-ZnO系透明导电膜
主要成员:ZnO (3~5 ×10-4 Ω-cm) ZnO:In (IZO) (2~4 ×10-4 Ω-cm )、 ZnO:Ga(GZO) (1.2×10-4 Ω-cm)、 ZnO:Al (AZO) (1.3×10-4 Ω-cm)、