机械原理课程设计--牛头刨床设计的分析与综合
机械原理课程设计---牛头刨床主体机构的分析与综合

机械原理课程设计---牛头刨床主体机构的分析与综合1 课程设计的目的和任务牛头刨床是常见的一种金属加工机床如图1所示。
其主体机构的机构运动简图有多种形式,图2所示的是常用的五种主体机构的示意图。
图 1 牛头刨床图2 牛头刨床的主体结构机构运动简图课程设计的内容包括:1)牛头刨床主传动系统总体传动方案的设计构思一个合理的传动系统。
它可将电机的高速转动(1440 转/分)变换为安装有刨刀的滑枕5 的低速往复移动(要求有三挡速度:60,95,150 次/分)。
其中,将转动变为移动的装置(主体机构)采用图2 所示的连杆机构。
在构思机构传动方案时,能做到思路清晰,各部分的传动比分配合理,最后在计算机上绘出主传动机构的原理示意图。
2)牛头刨床主体机构的尺度综合已知数据如表1所示图中的参数如图3所示。
图3参数表达形式表13)牛头刨床主体机构的运动分析根据已定出的主体机构的尺度参数,按曲柄处于最低转速、滑枕处于最大行程的工况对主体机构进行运动分析。
设各具有旋转运动的构件对x 轴的转角分别为i i θ , ( 为旋转构件的标号),相应的角速度和角加速度分别为ωi ,εi ;用解析法求出当曲柄转角θ1 从刨刀处于最右侧时起,沿逆时针方向转动每隔100 计算一组运动参数,其中包括:各杆的角位置、角速度、角加速度及刨刀的位置刀s (以最右点为零点)、速度刀v 和加速度刀a ,应用计算机在同一幅图中绘出刨刀的位移曲线、速度曲线和加速度曲线,并分析计算结果的合理性。
4)牛头刨床主体机构的受力分析杆的受力以及质量如表2所示。
已知数据其余构件的质量和转动惯量以及运动的摩擦忽略不计。
假定刨刀在空回行程不受力,在工作行程中所受的阻力为水平力,其大小见图3。
用解析法求出机构处于不同位置时应加在曲柄上的驱动力矩TN 以及各运动副的约束总反力的大小和方向。
图3 刨刀的有效阻力课程设计的主要内容包括:设计任务(包括设计条件和要求);②传动方案的确定;③机构综合的方法和结果;④运动分析的方法和结果;⑤受力分析的方法和结果;⑥结束语;⑦主要参考文献;⑧附件(计算机程序等)。
牛头刨床机械原理课程设计总结

牛头刨床机械原理课程设计总结牛头刨床是一种常见的木工机械设备,它可以用于对木材进行刨平和修整。
在牛头刨床的课程设计中,我们对其机械原理进行了研究和总结,以便更好地理解和应用该设备。
牛头刨床的机械原理主要包括传动原理、刨削原理和控制原理三个方面。
传动原理是牛头刨床正常工作的基础。
牛头刨床的传动系统主要由电动机、皮带和刀盘组成。
电动机通过皮带传动将动力传递给刀盘,使其高速旋转。
在传动过程中,皮带起到了缓冲和传递动力的作用,使得刀盘能够稳定地工作。
刨削原理是牛头刨床能够对木材进行刨削的关键。
牛头刨床的刨削机构主要由刀盘、刀具和刨床床身组成。
刀盘上装有多把刀具,当刀盘旋转时,刀具与木材接触,将木材表面的凸起部分刨平,从而实现刨削的效果。
刨床床身的作用是支撑木材,使其在刨削过程中保持平稳。
控制原理是牛头刨床能够实现工作过程的自动化控制。
牛头刨床的控制系统主要由电气控制部分和操作控制部分组成。
电气控制部分通过电路连接电动机和开关,实现对电动机的启动和停止控制。
操作控制部分则通过按钮和手柄等操作元件,使操作人员能够方便地控制牛头刨床的工作状态和刨削参数。
通过对牛头刨床的机械原理进行研究和总结,我们对其工作原理有了更深入的了解。
传动原理使得牛头刨床能够正常运转,刨削原理使得牛头刨床能够对木材进行刨削,控制原理使得牛头刨床能够实现自动化控制。
这些原理的相互配合和作用,使得牛头刨床成为一种高效、精确的木工机械设备。
在牛头刨床的课程设计中,我们还对其进行了相关参数的计算和优化。
通过合理的设计和调整,我们使牛头刨床在刨削过程中能够达到更好的刨削效果和工作效率。
同时,我们还对牛头刨床的安全性和可靠性进行了考虑,确保其在工作过程中不会产生意外事故和故障。
牛头刨床的机械原理是理解和应用该设备的重要基础。
通过对传动原理、刨削原理和控制原理的研究和总结,我们能够更好地理解牛头刨床的工作原理和工作过程。
同时,我们还可以通过优化设计和参数调整,提高牛头刨床的工作效率和刨削质量,使其更好地为木工加工提供支持和帮助。
牛头刨床课程设计

牛头刨床课程设计牛头刨床是一种常见的木工机械,用于加工木材表面,使其平整光滑。
在木工行业中,牛头刨床是必不可少的工具之一。
本文将介绍牛头刨床的基本原理、结构和使用方法,并提供一些课程设计的思路。
一、牛头刨床的基本原理牛头刨床的基本原理是利用刨刀在木材表面切削,使其表面平整光滑。
刨刀是由刨刀架和刨刀组成的,刨刀架固定在刨床上,刨刀则通过刨刀架与刨床相连。
当刨床启动时,刨刀开始旋转,同时向前推进,切削木材表面,使其平整光滑。
二、牛头刨床的结构牛头刨床的结构主要由以下几个部分组成:1.床身:床身是牛头刨床的主体部分,通常由铸铁或钢板制成。
床身上有一条长槽,用于固定刨刀架。
2.刨刀架:刨刀架是用于固定刨刀的部件,通常由铸铁或钢板制成。
刨刀架上有一个或多个刨刀槽,用于固定刨刀。
3.刨刀:刨刀是用于切削木材表面的部件,通常由高速钢制成。
刨刀有不同的形状和尺寸,可根据不同的加工需求进行选择。
4.进给机构:进给机构是用于控制刨刀前进速度的部件,通常由电机、减速器和传动装置组成。
进给机构的速度可根据加工需求进行调整。
5.调整机构:调整机构是用于调整刨刀高度和角度的部件,通常由手轮、螺杆和导轨组成。
调整机构的精度和稳定性对加工质量有重要影响。
三、牛头刨床的使用方法使用牛头刨床时,需要注意以下几点:1.选择合适的刨刀:根据加工需求选择合适的刨刀,刨刀的形状和尺寸应与木材的形状和尺寸相匹配。
2.调整刨刀高度和角度:根据加工需求调整刨刀高度和角度,确保刨刀与木材表面接触的角度和深度正确。
3.调整进给速度:根据加工需求调整进给速度,确保刨刀前进速度适当,不过快或过慢都会影响加工质量。
4.保持刨床清洁:定期清理刨床上的木屑和灰尘,保持刨床清洁,以免影响加工质量。
四、课程设计思路针对牛头刨床的课程设计,可以从以下几个方面入手:1.设计一个简单的木工制品,如木制书架或木制餐桌,要求学生使用牛头刨床进行加工。
2.设计一个刨床加工实验,要求学生使用不同的刨刀和进给速度进行加工,比较不同加工参数对加工质量的影响。
机械原理课程设计——牛头刨床

项目
刨刀冲程 H( mm)
刨刀越程量 ΔS( mm)
刨削平均速度 Vm( mm/s)
极位夹角 θ( ° )
行程速比系数 K
机器运转速度许用不均匀系
数[δ]
参数
320 16
1211.4
30
1.4
0.05
Page 11
八 、机构运动循环图
机构工艺动作分解
牛头刨床的主运动为: 电动机 →变速机构→摇杆机构 →滑枕往复运动; 牛头刨床的进给运动为: 电动机 →变速机构→棘轮进给 机构 →工作台横向进给运动。
Page 12
九 、主机构尺度综合及运动特性评定
机构位置划分图
以 7号和 14 号位置 作运动分析
Page 13
十 、 电动机功率与型号的确定
电动机的选择
传动比分配与 减速机构设计
确定电动机功率 总传动比
采用展开式二级圆柱齿轮减速器
工作台进给方案
Page 14
工作台横向进给运动 工作台垂直进给运动
其中 ,刨刀向左为工作行程 ,速度平稳 ,运动行 程大; 向右为工作回程,速度快,具有快速返回的 特性。
Page 8
六 、对方案二的பைடு நூலகம்能分析
(2)传递性能和动力性能分析
杆 1、2、3、6 所组成的曲柄摇杆机构中 ,传动 角是不断变化传动性能最好的时候出现在 A ,B, C ,D 四点共线与机构处于极位时两者传动角相等 该机构中不存在高副 , 只有回转副和滑动副 ,故能 承受较大的载荷 , 有较强的承载能力 , 可以传动 较大的载荷 。当其最小传动角和最大传动角相差不 大时 ,该机构的运转就很平稳 ,不论是震动还是冲 击都不会很大 。从而使机械又一定的稳定性和精确 度。
机械原理课程设计牛头刨床设计

机械原理课程设计牛头刨床设计机械原理课程设计牛头刨床设计随着科技不断的发展,机械英才的培养已受到各界的高度重视。
机械原理作为机械类专业的重点课程之一,对于学生的综合素质和能力的培养有着至关重要的作用。
为了提高学生的实践能力和专业技能,我在接受机械原理课程设计任务时,选择了一项具有挑战性和实用性的牛头刨床设计任务。
一、课程设计目标通过本次课程设计,主要目标如下:1.让学生了解牛头刨床的基本工作原理及其结构特点;2.提高学生的机械设计和制造能力;3.培养学生的合作精神和创新能力;4.促进学生的动手操作和实验能力的提高。
二、课程设计步骤1.课程设计前期准备在进行具体设计之前,我对牛头刨床的相关资料进行了大量的研究和归纳,学生们也需要认真学习刨床的相关知识。
同时,我还组织了互动的讲座和课堂讨论,以便于学生能够更加深入地理解牛头刨床的工作原理和结构特点。
2.机械设计在机械设计过程中,我们采取的是课堂授课和实际组装相结合的方法,进一步提高了学生的实践能力和设计能力。
课堂授课的内容主要包括刨床的设计思路、工作原理、传动方式等内容,通过实际操作和模拟实验,让学生从多个角度全面了解牛头刨床的结构和特点。
同时,我们还根据实际情况,对课程内容进行了针对性的调整和完善。
3.装配测试在机械设计完成后,我们对刨床进行了装配测试。
通过实际的组装和测试,提高了学生的实验能力和操作技能。
在测试过程中,我们严格按照安全操作规程进行操作,避免了误操作和安全事故的发生。
4.实践操作在实践操作中,我们对刨床的使用方法进行了详细的讲解和演示,让学生可以熟练地操作和使用刨床。
同时,我们组织了一些实践操作题目,让学生能够更好地理解和应用所学的知识。
三、收获通过本次课程设计,学生们都获得了很大的收获。
首先,他们对机械设计的基本原理和方法有了更深入的了解,同时也提高了他们的实践能力和实验能力。
其次,在团队协作方面,学生们也得到了很好的锻炼,提高了他们的合作精神和创新能力。
机械原理牛头刨床课程设计

机械原理牛头刨床课程设计牛头刨床课程设计本课程的目的是使学生理解牛头刨床的原理,掌握正确的操作方法,安全而且高效的操作机床,为以后的实验、制作做准备。
一、总述牛头刨床,是用来进行切铣或者刨削加工的机床,主要用于打凹槽、打丁、刨槽、切断、挤出、切透等工作。
由于它精度高,准确性好,可以用来在机械加工行业中制作同样形状的零件,因此十分流行。
二、物理原理牛头刨床是一种摩擦式加工机床,其工作原理是将工件把其用牛头刨刃进行切削,产生摩擦动力发生滑动现象,从而实现对工件的加工加工非常有效率。
它特点体现在机床的构造,通常由一个垂直的刨花杆,一个活动的刨刃和一个垂直的工件夹紧装置组成。
三、机床结构牛头刨床,基本包括:主轴系统,分度齿轮系统,臂节系统,工件夹紧系统,床身系统和润滑系统等结构。
主轴系统由主轴、轴夹等组成,分度齿轮系统由主齿轮、主动齿轮、位移齿轮和分度齿轮组成,臂节系统由夹紧臂、轨道臂、杠杆调整臂、弹簧臂和臂轮组成,工件夹紧系统由夹紧框、夹紧杆、紧固螺栓及液压夹紧装置组成,润滑系统由油箱、油泵和油管组成。
四、机床操作1、在夹紧上就好紧固螺丝杆调整压力,根据工艺要求选择合适锥度的刨刃,按照顺序从大到小的刨;2、翻转夹件夹紧装置夹紧工件,使其与机床的定位位置一致;3、调整切削深度,即调整刨刃夹紧臂的位置,当刨刃完全进入工件时,开机进行加工;4、加工中要注意机床及工件的热量,使其保持在一定范围内;5、加工完成后,去除刨刃,清理刨花,进行刀具检查,并更换新的刀具。
五、课程内容1、讲解物理原理及机床结构;2、讨论加工工艺;3、实操演示加工技术;4、实验室测试本课程学习的技能;5、指导并完成机床制作机械部件的实际操作。
六、学习成果1、理解牛头刨床的原理,掌握机床的结构及各部件;2、熟悉牛头刨床内所有工艺加工流程及其步骤;3、掌握各种加工技术,能够正确熟练地操作机床;4、能够正确配置工艺,以满足加工的要求。
机械原理 课程设计---牛头刨床设计

机械原理课程设计---牛头刨床设计1.设计目的本设计旨在设计一台能够切削各种金属材料的牛头刨床。
该牛头刨床应具备高效率、高稳定性、切削精度高的特点,便于操作和维护。
2.设计原理牛头刨床是一种高速旋转的加工设备。
其主要原理是通过旋转锯齿式的切削工具,将工件表面上的金属材料逐渐削除,使得工件表面变得更加平整,并且加工出所需的形状和尺寸。
牛头刨床是一种中等负荷,高精度的机床。
牛头刨床通常由牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。
牛头刨床的加工过程是由电机驱动削刀旋转,刀架在滑轨的带动下来回作直线摆动,使牛头刨床作工件表面直线切削运动,从而切出工件所需的形状和尺寸。
3.设计要求3.1工件加工精度应达到5μm。
3.2牛头刨床的加工速度应达到1000mm/min。
3.3牛头刨床的集成度要高,结构紧凑,使用方便,易于维护。
3.4牛头刨床应能满足加工各种金属材料的需求。
3.5牛头刨床应具有高稳定性,能够保证工件加工的精度和表面质量。
4.设计方案4.1结构设计根据以上的设计要求,本设计方案选择使用牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。
牛头床身是整个牛头刨床的主要支撑结构,可以承受切削力和副作用力,保持机床的稳定性。
床身导轨主要用于支撑剪刀架和平台,保证刀架的平直移动。
剪刀手柄和剪刀架负责牛头刨床的切削过程,加工刀具可根据需要更换。
4.2电气控制设计本设计方案使用单片机控制系统,实现对牛头刨床的控制。
单片机通过输入脉冲信号,控制螺旋传动装置,从而改变刀具的进给量,达到精确控制切削深度和速度的目的。
4.3软件设计本设计方案采用Unigraphics NX软件进行电脑辅助设计。
对机床各零件进行三维建模,并进行机床的装配和结构分析。
5.结论通过本次牛头刨床的设计,可以使得产生出一款结构紧凑、使用便捷、高效率和高精度的机床。
在未来的制造业中,牛头刨床的应用前景非常广阔。
牛头刨床的综合与分析(课程设计说明书)

牛头刨床的综合与分析(课程设计说明书) 牛头刨床的综合与分析(课程设计说明书) 目录一、设计题目与原始数据一、设计题目与原始数据- - 1 1 - - 二、牛头刨床示意图二、牛头刨床示意图- - 2 2 - - 三、导杆机构设计三、导杆机构设计- - 2 2 - - 四、机构的运动分析四、机构的运动分析- - 4 4 - - 五、机构动态静力分析五、机构动态静力分析- - 9 9 - - 六、飞轮设计六、飞轮设计- - 1313 - - 七、设计凸轮轮廓曲线七、设计凸轮轮廓曲线- - 1515 - - 八、齿轮设计及绘制啮合图八、齿轮设计及绘制啮合图- - 1515 - - 九、解析法九、解析法- - 1616 - - 1.导杆机构设计.- 16 - 2.机构运动分析.- 17 - 3.凸轮轮廓曲线设计.- 19 - 4. 齿轮机构设计.- 22 - 十、本设计的思想体会十、本设计的思想体会- - 2222 - - 参考文献参考文献- - 2222 - - 附附录录- - 2323 - - 辽宁工业大学课程设计说明书(论文)- 1 - 一、设计题目与原始数据1.题目:牛头刨床的综合与分析2.原始数据:刨头的行程H=550mm 行程速比系数K=1.6 机架长LO2O3=400mm 质心与导杆的比值LO3S4/LO3B=0.5 连杆与导杆的比值LBF/LO3B=0.3 刨头重心至 F 点距离XS6=160mm 导杆的质量m4=15 刨头的质量m6=58 导杆的转动惯量JS4=0.7 切割阻力FC=1300N 切割阻力至O2的距离YP=175mm 构件 2 的转速n2=80 许用速度不均匀系数[δ]=1/40 齿轮Z1、Z2的模数m12=15 小齿轮齿数Z1=18 大齿轮齿数Z2=46 凸轮机构的最大摆角φmax=16º 凸轮的摆杆长LO4C=140mm 凸轮的推程运动角δ0=60º 凸轮的远休止角δ01=10º 凸轮的回程运动角δ0 =60º 凸轮机构的机架长Lo2o4=150mm 凸轮的基圆半径ro=55mm 凸轮的滚子半径rr=15mm 辽宁工业大学课程设计说明书(论文)- 2 - 二、牛头刨床示意图如图1 所示图 1 三、导杆机构设计1、已知:行程速比系数K=1.6 刨头的行程H=550mm 机架长度LO2O3=400mm 连杆与导杆的比LBF/LO3B=0.3 2、各杆尺寸设计如下A、求导杆的摆角:辽宁工业大学课程设计说明书(论文)- 3 - ψmax =180°×(K-1)/(K+1)=180°×(1.6-1)/(1.6+1)=42°B、求导杆长:LO3B1=H/[2sin(ψmax/2)]=550/[2sin(42°/2)]=776mm C、求曲柄长:LO2A =LO2O3×sin(ψmax/2)=400×sin21°=142mm D、求连杆长:LBF=LO3B×LBF/LO3B=776×0.3=233mm E、求导路中心到O3的距离:LO3M =LO3B-LDE/2=LO3B{1-[1-cos(ψmax/2)]/2}=750mm F、取比例尺:μL=0.005m/mm 在1#图纸中央画机构位置图,机构位置图见1#图纸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计题目牛头刨床及减速
机构
机电系机械设计专业08机械一班
2010年6月26日
目录
一、课程设计的目的和任务
二.牛头刨床工作原理与结构组成
三.原动机的选择与比较
四.减速机构的选择与比较
五.执行机构的选择与比较
六.机械运动系统方案的确定并绘制机构运动简图
七.确定机构尺寸、参数、运动分析及参数计算
八. 收获体会
九.主要参考资料
牛头刨床设计的分析与综合
一、课程设计的目的和任务
1、目的
机械原理课程设计是培养学生掌握机械系统运动方案设计能力的技术基础课程,它是机械原理课程学习过程中的一个重要实践环节。
其目的是以机械原理课程的学习为基础,进一步巩固和加深所学的基本理论、基本概念和基本知识,培养学生分析和解决与本课程有关的具体机械所涉及的实际问题的能力,使学生熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,并进一步提高计算、分析,计算机辅助设计、绘图以及查阅和使用文献的综合能力。
2、任务
本课程设计的任务是对牛头刨床的机构选型、运动方案的确定;对导杆机构进行运动分析和动态静力分析。
二、牛头刨床工作原理与结构组成
牛头刨床是用于加工中小尺寸的平面或直槽的金属切削机床,多用于单件或小批量生产。
为了适用不同材料和不同尺寸工件的粗、精加工,要求主执行构件—刨刀能以数种不同速度、不同行程和不同起始位置作水平往复直线移动,且切削时刨刀的移动速度低于空行程速度,即刨刀具有急回现象。
刨刀可随小刀架作不同进给量的垂直进给;安装工件的工作台应具有不同进给量的横向进给,以完成平面的加工,工作台还应具有升降功能,以适应不同高度的工件加工。
三.原动机的选择与比较
传动系统的作用通常是实现减速、增速和变速,有时也用作实现运动形式的转换,并且在传递运动的同时,将原动机的输出功率和转矩传递给执行机构。
通常要把原动机的输出运动传给执行机构,仅选用一种传动装置或机构的情况较少见,大多数情况是选择若干种传动装置或机构合理地加以组合布置,构成一个传动系统,才能实现预期的工作要求。
在进行传动装置和机构的选择与设计时应注意以下问题:
(1) 设原动机的转速为n d ,执行机构原动件的设计转速为n r ,则传动装置系统的总传动比:r
d
n n i
如果传动装置系统由n 个传动装置或机构串联组成,其每个传动装置或机构的传动比分别为i 1,i 2,……i n ,则i =i 1.i 2.i 3.……i n
每种传动装置或机构的传动比的取值可参阅下表。
若i 大于推荐值时,通常应该用两级或两级以上的传动装置或机构串联组合来进行传动。
常用传动机构的合理取值范围
(2) 当系统为减速传动时,宜使i 1< i 2< i 3…… i n ,并使相邻两级传动比相差不要太大。
这样可使中间各级轴有相对较高的转速和较小的扭矩,转轴及轴上的零件可以设计得尺寸较小,从而获得较为紧凑的结构。
(3) 因为传动轴及轴上的传动零件的尺寸,主要取决于所传递的扭矩。
当系统传递的功率一定时,轴的转速愈高,其扭矩愈小,传动轴与传动零件的尺寸可以设计得愈小,故宜将传动能力小的机构安排在高速级。
如带传动和摩擦传动宜布置在高速级;需要密封的齿轮传动宜布置在高速级,这样因齿轮尺寸小,可减小密封箱体的外廓尺寸;生产成本高、加工困难的零件宜布置在高速级,如锥齿轮传动宜布置在高速级。
(4) 为了使机器运转平稳,减少震动冲击和噪音,宜将带传动布置在高速级,从而可利用传动带的弹性吸振、打滑,防止过载时损坏基它零件。
链传动冲击、振动大,宜布置于中、低速膜的形成,从而提高蜗杆传动的效率。
(5) 蜗杆传动宜布置在高速级,以便提高齿面的相对滑动速度,有利于液体动力润滑油膜的形成,从而提高蜗杆传动的效率。
(6) 为了减少能耗、减轻振动,宜将转换运动形式的机构,如凸轮机构、连杆机构、螺旋机构等布置在与执行机构相连的低速级一端。
(7) 选择尽可能短的传动链结构。
因为这样作可减少机械的构件、零件数目,降低制造成本,提高机械效率和系统的传动精度和可靠性,同时也关系到设备的使用、保养和维修的简便程度。
四.减速机构的选择与比较
1.带传动:
(1)因带有弹性,能缓冲、吸振、传动平稳;
(2)当传动过载时,带在轮上打滑可防止其他零件损坏,保护原动机;
(3)结构简单,成本低;
(4)可适用于中心距较大的场合。
(5)由于靠摩擦传动,带的使传动比不准确;
(6)带的尺寸较大,传动效率低(0.90—0.95);
(7)带的寿命较短,不适宜高温等环境作业;
2. 齿轮传动
(1)啮合性能好,传动平稳、噪声小。
(2)重合度大,降低了每对齿轮的载荷,提高了齿轮的承载能力。
(3)不产生根切的最少齿数少。
3.涡轮—涡杆传动减速
(1)由于涡杆的轮齿是连续不断的螺旋齿,故传动平稳,啮合冲击小。
(2)由于涡杆的齿数(头数)少,故单级传动可获得较大的传动比,且结构紧凑。
≤70。
在作减(3)速动力传动时,传动比的范围为5≤i
12
(4) 由于涡杆涡轮啮合轮齿间的相对滑动速度较大,摩擦磨损大,故需用减摩耐
磨材料来制造。
(5)当涡杆的导程角γ小于啮合齿轮间的当量摩擦角时,机构反行程具有自锁性。
最后,根据题目要求,应该选择齿轮结构来设计减速机构。
五.执行机构的选择与比较
案(a)采用偏置曲柄滑块机构。
结构最
为简单,能承受较大载荷,但其存在有较
大的缺点。
一是由于执行件行程较大,则
要求有较长的曲柄,从而带来机构所需活
动空间较大;二是机构随着行程速比系数
K的增大,压力角也增大,使传力特性变
坏。
方案(b)由曲柄摇杆机构与摇杆滑块机构串联而
成。
该方案在传力特性和执行件的速度变化方面
比方案(a)有所改进,但在曲柄摇杆机构ABCD
中,随着行程速比系数K的增大,机构的最大压
力角仍然较大,而且整个机构系统所占空间比方
案(a)更大。
(C)方案(c)由摆动导杆机构和
摇杆滑块机构串联而成。
该方案克服了
方案(b)的缺点,传力特性好,机构
系统所占空间小,执行件的速度在工作
行程中变化也较缓慢。
比较以上三种方案,从全面衡量得失来看,方案(c)作为刨削主体机构系统较为合理。
六.机械运动系统方案的确定并绘制机构运动简图
七. 确定机构尺寸、参数运动分析及参数计算
1.减速机构(齿轮减速器)
(齿轮减速器工作原理图)
(注明:以上两图均为AUTOcad 造型后的截图)
2.定轴轮系传动
(注释:以上4图均为Proe造型后的截图)
(以上两图为1-2,2-3齿轮啮合情况)
3.定轴轮系运动简图
4.定轴轮系基本参数
涉及到的计算:
齿跟圆直径d r=模数m×(齿数Z-2.5)
分度圆齿厚s=分度圆周长/齿数Z×2
5.曲柄滑块机构
⑴由K=1.5求得极位夹角θ;
⑵由导杆机构特性知道,导杆摆角等于极位夹角,即ψ
max
=θ;
⑶由行程H和θ可求出导杆长;
⑷由L
AC (例如为500mm)和θ可求出曲柄长L
AB
;
⑸由L
DE / L
CD
=0.2~0.3可求出连杆长L
DE
;
⑹为使RRP杆组的压力角较小,滑块5的导路与D'D 连线的距离应等于导路线与D'D弧水平切线的距离,以此确定L。
尺寸参数计算 极位夹角:1 1.6118018041.53851 1.61k k οθ︒
︒--===++ 导杆长度:41500170522sin 20.76925
sin 2
BO H l θ===mm 连杆长度:BC l =0.28 4BO l =197.4mm
曲柄长度:224sin 420*sin 20.769251492AO O O l l θ
===mm
6.导杆的运动分析
导杆机构的运动分析。
根据已定出的尺寸参数及原动件转速n,用解析法求出当曲柄转角θ从刨头处于最左侧起,沿转动方向没隔20度计算一组运动参数,其中包括各构件的角位置,角速度,角加速度以及刨头的位移(以最左侧为零点),速度和加速度;并用计算机辅助设计计算并在同一副图中绘出刨头的位移曲线,速度曲线和加速度曲线.
7.刨头运动模拟及位移曲线、速度曲线和加速度曲线.
部分计算数据输出
八. 收获体会
此次机械原理课程设计考察的知识点也很全面,有齿轮设计及结构分析,还有曲柄要摇杆机构设计及电动机的选择等,还有CAD制图,这不仅培养了我综合应用以前所学的理论知识和生产实际知识解决工程实际问题的能力,还使我深刻地认识到了自己在知识的理解和接受应用方面的不足。
这次设计,有很多地方还有不足,有待改进,今后的学习过程中,我会更加认真努力学习!
九.主要参考资料
1.《机械原理》(第七版)——孙恒,陈作模等主编
2.《机械设计课程设计图册》(第三版)——哈尔滨工业大学龚桂义,
潘沛霖等主编。