液压传动流体力学基础

合集下载

于治明主编液压传动课件第一章 流体力学基础

于治明主编液压传动课件第一章   流体力学基础

静止液体在单位面积上所受的法向力称为静压力。 静止液体在微小面积上所受的内法线方向的法向力, 该点的压力为。 (3-1) 静压力性质: 静压力垂直于承压面,其方向和该面的内法线方向一致。 静止液体内任意一点所受到的压力在各个方向上都相等。
• 压力及其性质: 质量力:力的作用反映在液体内部每一个质点上。如重力、惯性力、离心力等。质量力的大小 和液体的质量成正比。 表面力:力的作用反映在外部表面或内部截面上。表面力的大小和作用面积成正比。如液体边 界上的大气压力,液体内部各部分之间相互作用的压力、内摩擦力等。 单位质量力数值上等于加速度。 单位面积上作用的表面力称为应力。 法向应力和切向应力 液体在单位面积上所受的内法线方向的法向应力称为压力。
压力为p时液体的运动粘度
p
大气压力下液体的运动粘度
a
(1 9)
(5)气泡对粘度的影响
b 0 (1 0.015b)
b为混入空气的体积分数 混入b空气时液体的运动粘度
不含空气时液体的运动粘度
0
b
(三)、选用与维护
1、工作介质的选择 品种、粘度 2、工作介质的使用和维护 1)污染物种类及其危害 固体颗粒、水、空气、化学物质、微生物 污染能量。 2)污染原因 3)污染物等级 指单位体积工作介质中固体颗粒污染物的含 量,即工作介质中固体颗粒的浓度。 ISO4406:1987,1999
一、基本概念
(一)、理想液体、恒定流动和一维流动
既无粘性不可压缩的假想液体,称为理想液体。 液体流动时,液体中任意点处的压力、速度和密度都不随 时间而变化,液体作恒定流动。
只要压力、速度或密度有一个随时间变化,液体作非恒 定流动。当液体整体作线性流动时,称为一维流动。
(二)、流线、流束和通流截面

流体力学与液压传动

流体力学与液压传动

流体力学与液压传动流体力学是研究流体静力学和流体动力学的学科,涉及液体和气体在静止和流动状态下的力学行为。

而液压传动则是利用流体进行能量传递和控制的一种技术。

本文将介绍流体力学的基本原理、液压传动的应用及其在工程领域中的意义。

一、流体力学基本原理流体力学主要研究流体的运动规律和压力分布等基本性质。

在流体力学中,流体可以分为不可压缩流体和可压缩流体两类。

不可压缩流体通常指液体,如水、油等;可压缩流体则主要指气体。

在流体力学中,最基本的方程为连续性方程、动量方程和能量方程。

其中,连续性方程描述了流体在运动过程中质量守恒的关系;动量方程描述了流体受到外力作用时的运动规律;能量方程则研究了流体能量的变化。

二、液压传动的应用液压传动利用液体在封闭管路中传递能量,实现机械运动的控制和传递。

液压传动广泛应用于各种机械设备中,如农业机械、工程机械、船舶、飞机等。

液压传动具有传动效率高、可靠性强、运动平稳等优点。

液压传动系统由液压泵、液压阀、液压缸等组成。

通过液压泵将液压油压入系统,并由液压阀进行分配和控制,最终驱动液压缸进行工作。

液压传动通过调节液压阀的开启和关闭,以及控制液压泵的转速来实现对机械设备的精确控制。

三、液压传动在工程领域中的意义液压传动在工程领域中具有广泛的应用价值。

首先,液压传动能够实现大功率输出,满足重载工况下的需求。

其次,液压传动具有可靠性高的特点,适用于各种恶劣的工作环境。

此外,液压传动还具有灵活性强、动作平稳等优点,能够满足复杂工况下的控制要求。

在工程领域中,液压传动广泛应用于起重机械、挖掘机、注塑机、铁路设备等大型机械设备中。

液压传动不仅能够提高机械设备的工作效率,还能够降低设备的能耗和噪声,提升整体的操作性能。

总结:流体力学和液压传动是现代工程领域中重要的学科和技术。

流体力学研究了流体的运动规律和性质,为液压传动提供了理论基础。

液压传动利用流体进行能量传递和控制,应用广泛且具有重要意义。

第二章 液压传动流体力学基础

第二章  液压传动流体力学基础

第12张/共91张
11:55
2.2 液体动力学
实验
第13张/共91张
11:55
2.2 液体动力学
一维流动
当液体整个作线形流动时,称为一维流动;当作平面或 空间流动时,称为二维或三维流动。一维流动最简单,但是 严格意义上的一维流动要求液流截面上各点处的速度矢量完 全相同,这种情况在现实中极为少见。通常把封闭容器内液 体的流动按一维流动处理,再用实验数据来修正其结果,液 压传动中对工作介质流动的分析讨论就是这样进行的。
静止液体中的压力分布
例:如图所示,有一直径为d, 解:对活塞进行受力分析, 活塞受到向下的力: 重量为G的活塞侵在液体中, 并在力F的作用下处于静止状 F下 =F+G 态,若液体的密度为ρ,活 活塞受到向上的力: 塞侵入深度为h,试确定液体 d 2 在测量管内的上升高度x。 F上=g h x 4 F 由于活塞在F作用下受力平衡, d 则:F下=F上,所以:
第16张/共91张 11:55
2.2 液体动力学
通流截面、流量和平均流速
流束中与所有流线正交的截面称为通流截面,如图c中的A面 和B面,通流截面上每点处的流动速度都垂直于这个面。 单位时间内流过某通流截面的液体体积称 为流量,常用q表示 ,即:
q V t
式中
q —流量,在液压传动中流量
常用单位L/min; V —液体的体积; t —流过液体体积V 所需的时间。
1mmHg(毫米汞柱)=1.33×102N/m2
1at(工程大气压,即Kgf/cm2)=1.01972×105帕 1atm(标准大气压)=0.986923×105帕。
第9张/共91张 11:55
2.1 液体静力学
帕斯卡原理

液压流体力学基础

液压流体力学基础
第二章 液压流体力学基础
学习要点: 1、液压油(流体)的基本性质。 2、流体静力学基本规律。 3、流体动力学基本概念。 4、流体流量连续方程、流体能量平衡方程 (伯努利方程)方程、动量方程。 5、小孔及缝隙流量计算。 6、压力损失、液压冲击与空穴现象。
第一节 液压系统的工作介质
液压工作介质
第一节 液压系统的工作介质
第一节 液压系统的工作介质
二、液压工作介质的主要性能(续)
4、液体的热容量、比热
热容量: 液体与外界发生热量交换而使流体的温度变化,
热量交换对温度的变化率称为流体的热容量。 比 热: 单位质量液体的热容量成为比热。
第一节 液压系统的工作介质
5、液体的含气量、空气分离压和汽化压
◎ 含气量: 液体中所含空气的体积百分比数量叫含气量。两种形式:
温度高时选用粘度较高的液压油,减少容积损失。
第一节 液压系统的工作介质
5、液压油的污染与保养
液压油使用一段时间后会受到污染,常使阀内的阀芯 卡死,并使油封加速磨耗及液压缸内壁磨损。造成液压油 污染的原因有三方面:
1)污染: a 外部侵入的污物;b 外部生成的不纯物。
2)恶化: 液压油的恶化速度与含水量、气泡、压力、油温、金属
※ 液体的粘度会随温度、压力变化而变化。 液体的粘度对温度变化十分敏感,对液压系统的性能
有明显影响。温度升高,粘度将显著下降,造成泄漏、磨 损增加、效率降低等问题;温度下降,粘度增加,造成流 动困难及泵转动不易等问题,液压系统工作时发热较严重。 所以,一般控制系统中均要设计冷却装置,尽量保持油液 工作温度的稳定。 ※ 液体承受的压力增大,液体内聚力增大,粘度也随之增 大,但变化幅度不大,低压时一般不考虑。
二、液压工作介质的主要性能(续)

液压流体力学基础

液压流体力学基础

第一章 液压流体力学基础
第二节 液体静力学
四. 静压力对固体壁面的作用力 液体和固体壁面接触时,固体壁面将受到液体静压
力的作用 当固体壁面为平面时,液体压力在该平面的总作
用力 F = p A,方向垂直于该平面。 当固体壁面为曲面时,液体压力在曲面某方向上
的总作用力 F = p Ax , Ax 为曲面在该方向的投影面 积。
动力粘度μ和运动粘度ν的量纲计算:
ν=μ/ρ
ν:m2/s
μ:Ns/m2 ρ :Kg/m3
所以 m2/s = Ns/m2 ÷ Kg/m3 = Nsm/Kg
Kg =Nsm ÷ m2/s= Ns2/m
由于 Ft=mv 所以 Ns = Kgm/s Kg =Ns2/m
另外: μ:Ns/m2 或 Pas 由于P=pq 所以 Nm/s =Pa m3/s
二.静压力基本方程式 p=p0+ρgh 静压力分布特征: 1)压力由两部分组成:液面压力p0,自重形成的压 力ρgh。 2)液体内的压力与液体深度成正比。 3)离液面深度相同处各点的压力相等,压力相等的 所有点组成等压面,重力作用下静止液体的等压面 为水平面。
第一章 液压流体力学基础
第二节 液体静力学
第四节 管道流动
通过管道的流量 q =(πd 4/(128μl))Δp


dA 2rdr dq udA 2urdr
u p (R2 r 2 )
4l
q d 4 p 128 l
第一章 液压流体力学基础
第四节 管道流动
管道内的平均流速 v = (d2/32μl )Δp
第一章 液压流体力学基础
第二节 液体静力学
液体静力学 静压力及其特性 静压力基本方程式 帕斯卡原理 静压力对固体壁面的作用力

液压第二章液压流体力学基础

液压第二章液压流体力学基础
液压传动
主讲教师:张凡
第二章液压流体力学基础
液体是液压传动的工作介质。因此,了 解液体的基本性质,研究液体的静力 学、运动学和动力学规律;对于正确 理解液压传动原理,合理设计并使用 液压传动系统都是非常必要的。
教学目的
了解液压油的性质及作用 领会液体静力学的有关知识 综合应用三个方程解决液体动力学相关
——动量方程
应用动量方程解题的步骤:
a. 建立坐标系,一般坐标轴的方向与所 求的力的方向一致
b. 列方程、投影 c. 求解
例:P20求滑阀阀心所受的轴向稳态液动力。
课堂练习: P30 2-5 2-6 作业: P33 2-15 2-19
第四节液体流动时的压力损失
由于粘性摩擦而产生的能量
Pw
损失——沿程压力损失
由于管道形状、尺寸突变而产 生的能量损失——局部压力损 失
1.沿程压力损失(与液体的流动状态有关) 层流时沿程压力损失
p

l d
2
2
— 沿程阻力系数
金属圆管: 75
Re
橡胶圆管: 80
Re
紊流时沿程压力损失
p

l d
2
2
0.3164Re0.25
2.局部压力损失(与管道形状有关)
q CAT p
c—是由孔的形状、尺寸和液体性质决定
的系数
细长孔
c d2
32l
薄壁孔 短孔
c cq 2 /
—由孔的长度决定的指数
细长孔 1
薄壁孔
短孔 0.5
3. 结论: 1) 流过小孔的流量与孔径、和压力有关 2) 油液流经小孔时会产生压降(即两端
v22 )

第1章 液压流体力学基础

第1章 液压流体力学基础

作业:1-16
1-17
二、流体平衡微分方程 1 欧拉平衡方程 1755年 Euler
z(铅垂方向) dx
dy
p dx (p )dydz x 2
fz
fy fx z y
dz
y
p dx (p )dydz x 2
x
x
根据牛顿第二定理: Fx 0
1 p fx 0 x
1 p 0 类似地: f y y 1 p fz 0 z
3、进行压力损失计算时应注意哪些问题?
作业:
P48:1-14

q =K A
m △P
液压冲击动画演示
思考题:
1、在工程实际中,如何应用薄壁小孔、厚壁小
孔和细长孔?为什么? 2、在液压系统中,如何有效控制泄漏? 3、液体流经缝隙的流量与哪些因素有关? 3、液压冲击和气穴现象产生的原因,有何危害? 如何预防?
P
P
p
弹簧
液体(密闭)
注意:
*当油液中混有空气时,其压缩性会显 著地增加,并将严重影响液压系统的工 作性能。故在液压系统中尽量减少油液 中的空气含量。
牛顿内摩擦定律
思考题
1、试述油液粘性的定义和牛顿内摩擦定律。 2、液压油的牌号是怎样规定的?说明N32、N12 的含义。 3、影响油液粘度的主要因素是什么? 4、试述选用液压油的依据和原则,防止液压油污染 的措施。
一、液体静压力及其特性
1. 作 用 于 流 体 上 的 力
作用在液体上的力有两种,即质量力和表面力。 ① 质量力: 指与流体质量成正比的力。
直线:
如:重力、惯性力
离心:
F ma F mr
② 表面力: 指与流体的作用面积成正比的力。 如:固体壁面对液体的作用力,液体表面上气体的作用力等 外力

液压传动第三章 流体力学基础

液压传动第三章 流体力学基础

1、理想流体和恒定流动
理想流体:既无粘性,又无压缩性的假想液体。
实际流体:有粘性,又有压缩性的液体。
恒定流动:液体在流动时,通过空间某一点的压力、速度和密度等运
动参数只随位置变化,与时 间无关。
非恒定流:液体在流动时,通过空间某一点的压力、速度和密度等
运动参数至少有一个是随时 间变化的。
2、流线 流管、流束、通流截面
dqdt
u22 2
dqdt
u12 2
势能:ΔEP gdqh2dt gdqh1dt
外力做的功=能量变化:
W ΔE ΔEK ΔEP
p1
g
u12 2g
h1
p2
g
u22 2g
h2
1.理想流体的能量方程
p1
g
u12 2g
h1
p2
g
u22 2g
h2
2、实际流体伯努利方程
实际流体:有粘性、可压缩、非恒定流动 速度修正:动能修正系数
正确设计和使用液压泵站。 液压系统各元部件的连接处要密封可靠,严防
空气侵入。 采用抗腐蚀能力强的金属材料,提高零件的机
械强度,减小零件表面粗糙度值。
第六节 液 压 冲 击
一、管内液流速度突变引起的液压冲击
有一液位恒定并能保持 液面压力不变的容器如 图3-40所示。
二、运动部件制动所产生的液压冲击
第四节 孔口和缝隙液流
一、薄壁小孔
➢ 薄壁小孔是指小孔的长度和直径之比l/d<0.5的孔, 一般孔口边缘做成刃口形式,如图3-25所示。
➢薄壁小孔的流量计算
对于图所示的通过薄壁小孔的液体,取小孔前后截面1-1和2-2列伯努利方程
p1
g
v12 2g
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021/2/4
1
45
液体静压力特性
(1)垂直并指向于承压表面 ∵ 液体在静止状态下不呈现粘性 ∴ 内部不存在切向剪应力而只有 法向应力
(2)各向压力相等 ∵ 有一向压力不等,液体就会流动 ∴ 各向压力必须相等
2021/2/4
1
46
液体静力学基本方程
例:计算静止液体内任意点A处的压力p
P0
h
G
A
2021/2/4
1
13
动力粘度物理意义
液体在单位速度梯度下流动时,
接触液层间单位面积上内摩擦力 。
2021/2/4
1
14
动力粘度单位
国际单位(SI制)中: 帕·秒(Pa·S)或牛顿·秒/米2(N·S/m2);
以前沿用单位(CGS制)中: 泊(P)或厘泊(CP) 达因·秒/厘米2dyn·S/cm2)
作用在平面上的总作用力 P = p·A 如:液压缸,若设活塞直径为D,则
P = p·A = p·πD2/4
2021/2/4
1
56
作用在曲面上的总作用力
作用在曲面上的总作用力 Fx = p·Ax
结论:曲面在某一方向上所受的作用力,
等于液体压力与曲面在该方向的
垂直投影面积之乘积。
2021/2/4
1
57
2021/2/4
1
23
换算关系
恩氏粘度与运动粘度之间的换算关系 ν=(7、310E-6、31/0E)×10-6
2021/2/4
1
24
液体的可压缩性定义
液体受压力作用而发生体积缩小性质。
2021/2/4
1
25
液体的体积压缩系数定义
定义: 体积为v的液体,当压力增大 △p时,体积减小△v,则液体 在单位压力变化下体积的相 对变化量。
谢谢!
dA
P
∵ pdA = p0dA+G = p0dA+ρghdA ∴ p = p0+ρgh
2021/2/4
1
47
重力作用下静止液体压力分布特征
(1)静止液体中任一点处的压力由两部分
液面压力p0 组成 <
液体自重所形成的压力ρgh (2) 静止液体内压力沿液深呈线性规律分布 (3) 离液面深度相同处各点的压力均相等,
料有 良好的相容性。
2021/2/4
1
36
对液压油的要求
(5)对热、氧化水解都有良好稳定性,使用寿命长 ;
(6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小;
(7)比热和传热系数大,体积膨胀系数小,闪点和
燃点高,流动点和凝固点低。
(凝点—— 油液完全失去其流动性的最高温度)
(8)对人体无害,对环境污染小,成本低,
2021/2/4
1
7
粘性的物理本质
液体在外力作用下流动时,由于液体分子间的内 聚力和液体分子与壁面间的附着力,导致液体分子间相 对运动而产生的内摩擦力,这种特性称为粘性.
或: 流动液体流层之间产生内部摩擦阻力的性质.
2021/2/4
1
8
粘性的物理本质
内摩擦力表达式 F = μA du/dy
∵ 液体静止时,du/dy = 0 ∴ 静止液体不呈现粘性
价格便宜
2021/2/4
总之:1 粘度是第一位的
37
液压油的选择
1选择液压油品种
2 选择液压油粘度
2021/2/4
1
38
液压油的类型
机械油 精密机床液压油 气轮机油 变压器油等
2021/2/4
1
39
液压油选择
首先根据工作条件 (v、p 、T)和元件类型
选择油液品种,然后根据粘度选择牌号
慢速、高压、高温:μ大(以↓△q) 通常 <
2021/2/4
1
4
液压油
2、1、2 对液压油的要求及选用 2、1、1 液压油的物理性质
2021/2/4
1
5
2、1、1 液压油的物理性质
一 液体的密度 二 液体的粘性
三 液体的可压缩 四 其他性质
2021/2/4
1
6
液体的密度
密度—单位体积液体的质量
ρ=m/v kg/m3
密度随着温度或压力的变化而 变化,但变化不大,通常忽略, 一般取ρ=900kg/m 3的大小。
SI制: m2/S
CGS制: St(斯)、 CSt(厘斯) (Cm2/S) (mm2/S)
换算关系:1m2/S = 104St =106 CSt
2021/2/4
1
19
运动粘度单位说明
∵单位中只有长度和时间量纲类似运动学量。 ∴称运动粘度,常用于液压油牌号标注
2021/2/4
1
20
液压油牌号标注
老牌号——20号液压油,指这种油在50°C 时的平均运动粘度为20 cst。
根据帕斯卡原理: p = F/A
2021/2/4
1
53
液压系统压力形成
A
F
p = F/A F = 0 p = 0 F↑ p↑ F↓ p↓
2021/2/4

结论:液压系统的工作压力取决于负载
1
54
2、2、5 液体对固体壁面的作用力
作用在平面上的总作用力
作用在曲面上的总作用力
2021/2/4
1
55
作用在平面上的总作用力Biblioteka 2021/2/41
29
液体的体积弹性模数公式 k = 1/κ= - △p v /△v
2021/2/4
1
30
液体的体积弹性模数物理 意义
表示单位体积相对变化量所需要的压力增
量,也即液体抵抗压缩能力的大小。
一般认为油液不可压缩(因压缩性很小), 计算时取: k = (1、4-1、9)*109 N/m2 若分析动态特性或p变化很大的高压系统,则必须考虑。
2021/2/4
1
动画演示
9
牛顿液体内摩擦定律
液层间的内摩擦力与液层接触
面积及液层之间的速度成正比 。
2021/2/4
1
10
粘度
衡量粘性大小的物理量
2021/2/4
1
11
粘度
动力粘度μ
运动粘度ν 相对粘度0E
2021/2/4
1
12
动力粘度μ
公式: ∵τ=F/A=μ·du/dy(N/m2)
∴ μ=τ·dy/du (N·s/m2)
1
33
2、1、2 对液压油的要求 及选用
对液压油的要求
液压油的选择
2021/2/4
1
34
液压油的任务
工作介质—传递运动和动力 润滑剂 —润滑运动部件
2021/2/4
1
35
对液压油的要求
(1)合适的粘度和良好的粘温特性; (2)良好的润滑性; (3)纯净度好,杂质少; (4)对系统所用金属及密封件材
压力相等的点组成的面叫等压面.
2021/2/4
1
48
2、2、3 压力的表示方法 及单位
测压两基准
关系
2021/2/4
1
49
测压两基准
绝对压力—以绝对零压为基准所测
相对压力*—以大气压力为基 准所测
2021/2/4
1
50
关系
绝对压力 = 大气压力 + 相对压力
或 相对压力(表压)= 绝对压力 – 大气压力
液压传动流体力学基础
目的任务
了解油液性质、静压特性、方程、传递规律
掌握静力学基本方程、压力表达 式和结论
2021/2/4
1
2
重点难点
液压油的粘性和粘度 粘温特性 静压特性 压力形成
静力学基本方程
2021/2/4
1
3
提问作业
1、什么叫液压传动?液压传动的特点是什么?
2、液压传动系统的组成和作用各是什么?
注 液压传动系统中所测压力均为相对压力即表压力
真空度 = 大气压力 – 绝对压力
p > pa
p = pa
p < pa
2021/2/4
1 p=0
51
2、2、4 静压传递原理
帕斯卡原理(静压传递原理)
液压系统压力形成
2021/2/4
1
52
帕斯卡原理(静压传递原理 )
在密闭容器内,液体表面的压力 可等值传递到液体内部所有各点 。
2021/2/4
1
43
液体的静压力及特性
质量力(重力、惯性力)— 作用于液体 的所有质点
作用于液体上的力 < 表面力(法向力、切向力、其它物体或 容器对液体、一部分液体作用 于令一部分液体等)—作用于 液体的表面
2021/2/4
1
44
液体的静压力定义
液体单位面积上所受的法向力,物理
学中称压强,液压传动中习惯称压力 。
换算关系: 1Pa·S = 10P =103 CP
2021/2/4
1
15
运动粘度ν
动力粘度与液体密度之比值
2021/2/4
1
16
运动粘度公式
ν= μ/ρ (m2/S)
2021/2/4
1
17
运动粘度物理意义

(只是因为μ/ρ在流体力学中经常出现
∴ 用ν代替(μ/ρ)
2021/2/4
1
18
运动粘度单位
新牌号——L—HL32号液压油,指这种油在 40°C时的平均运动粘度为32cst。
2021/2/4
1
21
相对粘度0E
∵ μ、ν不易直接测量,只用于理论计算
∴ 常用相对粘度
相关文档
最新文档