[频响] 频响分析方法总结

合集下载

频响频响分析方法总结

频响频响分析方法总结

频响频响分析方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法:直接稳态动力学分析(direct solution steady state dynamic analysis)模态稳态动力学分析(mode based steady state dynamic analysis)子空间稳态动力学分析(subspace projection steady state dynamic analysis)1)直接稳态动力学优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。

如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。

缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。

因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。

2)模态稳态动力学分析模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。

因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal前加一步step frequency。

另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。

模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。

频率响应分析法

频率响应分析法

频率响应分析法5.1 频率特性的基本概念 5.1.1频率特性的定义5.1.2频率特性和传递函数的关系 5.1.3频率特性的图形表示方法 5.2 幅相频率特性(Nyquist 图) 5.2.1典型环节的幅相特性曲线 5.2.2开环系统的幅相特性曲线 5.3 对数频率特性(Bode 图) 5.3.1典型环节的Bode 图 5.3.2开环系统的Bode 图5.3.3最小相角系统和非最小相角系统 5.4 频域稳定判据 5.4.1奈奎斯特稳定判据5.4.2奈奎斯特稳定判据的应用 5.4.3对数稳定判据 5.5 稳定裕度5.5.1稳定裕度的定义 5.5.2稳定裕度的计算5.6 利用开环频率特性分析系统的性能5.6.1)(ωL 低频渐近线与系统稳态误差的关系 5.6.2)(ωL 中频段特性与系统动态性能的关系5.6.3)(ωL 高频段对系统性能的影响 5.7 闭环频率特性曲线的绘制 5.7.1用向量法求闭环频率特性 5.7.2尼柯尔斯图线5.8 利用闭环频率特性分析系统的性能 5.8.1闭环频率特性的几个特征量 5.8.2闭环频域指标与时域指标的关系 引言频率响应法的特点1)由开环频率特性→闭环系统稳定性及性能 2)二阶系统频率特性↔时域性能指标 高阶系统频率特性↔时域性能指标3)物理意义明确许多元部件此特性都可用实验法确定工程上广泛应用 4)在校正方法中,频率法校正最为方便 5.1频率特性的基本概念1.定义1: ()sin ()()2. ()()3. ()()ss r t A t c t r t G s s j G j c t r t ωωω=⎧⎪=⎨⎪⎩时,与的幅值比,相角差构成的复数中,令得出为频率特性的富氏变换与的富氏变换之比一、 地位:三大分析方法之一二、 特点:1)2)()3)⎧⎪→⎨⎪⎩图解法,简单不直接解闭环根,从开环闭环特征特别适用于校正,设计近似法,不完全精确以右图R -C 网络为例:r cc r c c u iR u i Cu q u CuR u =+↓===+ ()(1)r c U s CRs U =+⋅ ()1()()1T CR c r U s G s U s Ts ===+ 设()sin r u t A t ω=求()c u t22()1tT c A T u t e t t T ωωωω-⎡⎤∴=-⎥+⎦22)1tT A T e t arctg t T ωωωω-=+-+ 瞬态响应稳态响应网络频率特性()()()()()ss ss c r c t G j G j r t G j arctgT ωωωϕϕω⎧⎪⎪===⎨⎪⎪∠=-=-⎩幅频特性:相频特性频率特性定义一:——频率特性物理意义:频率特性()G j ω是当输入为正弦信号时,系统稳态输出(也是一个与输入同频率的正弦信号)与输入信号的幅值比,相角差。

频响频响分析方法总结

频响频响分析方法总结

[频响]频响分析方法总结(总1页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法:直接稳态动力学分析(direct solution steady state dynamic analysis)模态稳态动力学分析(mode based steady state dynamic analysis)子空间稳态动力学分析(subspace projection steady state dynamic analysis)1)直接稳态动力学优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。

如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。

缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。

因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。

2)模态稳态动力学分析模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。

因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal前加一步step frequency。

另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。

模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。

频响分析理论讲解

频响分析理论讲解

Copyright © 2020 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
10
频响函数的时域含义
m
x1 H11

x2 x3

=

H
21
H 31

Inverse FRF: F(orce)/R
Dynamic Stiffness动刚度 Mechanical Impedance机械阻抗
Apparent Mass
(Source: “Modal Testing: Theory, Practice and Application,” by D. J. Ewins)
Copyright © 2020 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
3
时域到频域的转换
⚫ 载荷用谐波表示
Mx(t) + Cx(t) + Kx(t) = f (t)
取某一特定激励频率
20
模态阻尼OptiStruct数值计算案例
99.875298 14.83414 102.96423 21.093685 106.05316 15.001724
输入阻尼 g=0.06
536.28412 552.87024 569.45636
4.6593304 6.6819339 4.8037124
模态法 Modal approach
18
频率激励/输出设置
⚫ FREQ定义离散频率点
‒ 以下例子定义20,100,200,500,1000Hz共5个输出频率

5 第五章 频率响应分析法

5 第五章 频率响应分析法

(1)比例环节 (2)惯性环节 (3)振荡环节 (4)积分环节 (5)其他典型环节与最基本环节的关系
16
(1) 比例环节的幅相频率特性曲线
传递函数: G ( s ) K ( K 0 )
由传递函数得频率特性表达式: j ( ) G ( j ) K A ( ) e 由频率特性得幅相频率特性:
以上两个结论是绘制开环幅相曲线的依据
以上两个结论的公式表示分别为:
A ( ) A 1 ( ) A 2 ( )... A n ( ) ( ) 1 ( ) 2 ( ) ... n ( )
24
5.2.3. 开环幅相曲线绘制的三个重要因素

21
5.2 典型环节与开环系统频率特性
1. 典型环节 2. 典型环节的频率特性 3. 开环幅相曲线绘制 4. 开环对数频率特性曲线 5. 延迟环节和延迟系统 6. 传递函数的频域实验确定
22
5.2.3. 开环幅相曲线绘制
若已知标准因子形式的开环传递函数为
K ( h s 1) ( k s 2 k k s 1)
对数相频特性曲线的纵坐标为相频特性的函数值 Φ(w)= -arctg(wT) ,单位是[°]。
9
3. 对数幅相特性曲线(尼科尔斯图)
它是将对数幅频特性和对数相频特性合起来绘制成一条曲线
横坐标为相频特性的函数值
纵坐标为对数幅频特性的函数
( ) G( j ) tg (T )
L ( ) | 2 0 lg A ( ) -1 0 lg T ( ) a rctg T
对数频率特性

2
1

频响分析

频响分析

频响分析是一种用来计算结构在稳态振动激励下的响应。

比如旋转的机器,不平衡的旋转的轮胎,或者直升机的机翼。

例如:旋转的机器,旋转的速度不同,频率不同;同时速度不同,力的幅值也不同,既力的幅值虽频率变化,频响分析的作用就是求出机器在不同的转速的状态下的响应。

在频响分析中,激励是频率的函数,在特定的频率下力已知。

激励力可以是载荷或者强迫振动(位移、速度或者加速度)。

力是时间的正弦函数F=A sin(ѡt+ф)
所有频响分析的激励都是这个形式,其中,A为幅值,是频率的函数;ф为初相位。

频响分析我们需要定义的就是这两个。

频响分析中使用复数描述力和响应。

位移的复数
力、速度、加速度等量的描述同上。

欧拉函数:e iѡt=cosѡt+i sinѡt
Natran中激励力的定义
RLOAD1 P(f)=A[C(f)+iD(f)]e i(θ−2πfτ)
RLOAD2 P(f)=AB(f)e i[ф(f)+θ−2πfτ]
比如,RLOAD1 A=1 C(f)=1 D(f)=0 τ=θ=0 那么就定义了一个幅值为1,不随频率而变
的激励力,F=sinѡt。

航空航天领域的结构动力学分析方法

航空航天领域的结构动力学分析方法

航空航天领域的结构动力学分析方法在航空航天领域中,结构动力学是一门关键的学科,它研究了飞行器或航天器在飞行过程中受到的各种载荷以及结构的振动响应。

结构动力学分析方法的发展和应用对于设计和优化飞行器结构,提高其可靠性和耐久性具有重要意义。

本文将介绍航空航天领域中常用的结构动力学分析方法。

一、模态分析方法模态分析是结构动力学中最基本和常用的方法之一。

它通过计算结构的固有频率、振型和振幅等参数,来了解结构的振动特性。

在航空航天工程中,模态分析被广泛应用于预测和控制结构的振动问题。

通过模态分析,可以有效地识别结构的主要振型,并设计出相应的控制策略,以减小结构振动引起的破坏。

二、频响分析方法频响分析是指在结构受到谐波激励时,计算结构的频率响应。

在航空航天领域,频响分析被广泛应用于结构在飞行过程中受到的各种载荷的分析。

根据不同频率下的振动响应,可以评估结构的稳定性和性能。

频响分析方法可以帮助工程师确定结构的固有频率、共振频率以及传递函数等参数,从而对结构的设计和优化提供指导。

三、有限元分析方法有限元分析是一种数值分析方法,能够模拟结构的复杂力学行为。

在航空航天工程中,有限元分析广泛应用于各种结构的强度、刚度和振动等方面的分析。

有限元方法将结构划分为多个小区域,通过建立节点和单元之间的关系,建立结构的数学模型。

然后通过求解得到节点的位移、应力等信息,从而分析结构的力学行为。

有限元分析方法可以提供多种载荷情况下结构的响应,为工程师提供了设计和优化结构的依据。

四、瞬态分析方法瞬态分析是指在结构受到突发载荷或者非稳态载荷时,计算结构的响应。

在航空航天领域,由于飞行器或航天器在飞行过程中受到的载荷是时变的,因此瞬态分析方法被广泛应用于结构的疲劳性能和振动响应的分析。

通过瞬态分析,工程师可以了解结构在不同时刻的响应情况,从而对结构的材料和几何参数进行调整,提高结构在复杂载荷下的工作性能。

综上所述,航空航天领域的结构动力学分析方法包括模态分析、频响分析、有限元分析和瞬态分析等多种方法。

频响分析的研究

频响分析的研究

频响分析的研究频响分析是一种测量信号在系统中传播的特性的方法,即在给定的输入信号下,输出信号的幅度和相位随频率变化的情况。

频响分析广泛应用于许多领域,如电子、通信、音频工程等。

本文将从频响分析的基本原理、应用场景和方法等方面进行讨论。

一、频响分析的基本原理频响分析的本质是对系统的传递函数进行分析,其中传递函数描述了系统对于输入信号的响应。

该函数包括幅频响应、相频响应和群延迟。

在频域下,输入信号的频率和相位会影响输出信号的幅度和相位。

通过测量输出信号的频率和相位响应,可以确定系统的传递函数和其它性能指标。

二、频响分析的应用场景频响分析可以用于许多领域,包括但不限于电子、通信、音频工程等。

在电子领域中,频响分析可以用于测试电子元件的性能,例如滤波器和放大器。

通过测量输入和输出信号之间的频率响应,可以确定元件的特性。

在通信领域中,频响分析可以用于约束系统的频率范围,并测试信号在系统中传播的特性。

这对于组成一个高性能通信系统至关重要。

在音频工程中,频响分析可以用于改进音响系统,以确保声音的清晰度,消除混响和噪声等问题。

三、频响分析的方法一般来说,频响分析的方法可以分为两大类别:时域方法和频域方法。

时域方法包括脉冲响应测试和步进响应测试两种。

脉冲响应测试是将短脉冲信号发送到系统中,然后通过观察输出信号的反应来确定系统的传递函数。

步进响应测试是将一个宽度为T的方波信号发送到系统中,然后通过观察输出信号的反应来确定系统的传递函数。

频域方法包括傅里叶变换(FFT)、反褶积和相关测试。

其中FFT是将时域信号转换为频域信号的一种方法,它可以将一段连续的信号分解为一系列单一的正弦波。

反褶积方法将系统的输出信号和输入信号卷积后再除以输入信号的傅立叶变换,以获得系统的传递函数。

相关测试则是将输入信号与输出信号之间的关系进行比较,来确定系统的传递函数。

四、总结频响分析是一种测量信号在系统中传播的特性的方法。

它可以用于许多领域,例如电子、通信、音频工程等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法:
直接稳态动力学分析(direct solution steady state dynamic analysis)
模态稳态动力学分析(mode based steady state dynamic analysis)
子空间稳态动力学分析(subspace projection steady state dynamic analysis)
1)直接稳态动力学
优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。

如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。

缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。

因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。

2)模态稳态动力学分析
模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。

因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal 前加一步step frequency。

另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。

模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。

3)子空间稳态动力学分析
子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。

我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。

直接法在定义边界条件时通过选项*boundary的amplitude参数来引用频变幅值,但这里默认的好像是位移,如果我有的是加速度或者速度数据,想用直接法进行分析应该如何设定呢,希望知道的大神能相告。

模态法和子空间法不能使用*boundary选项定义边界条件的运动,而只能通过选项*base motion来定义边界条件的运动。

相关文档
最新文档