高考数学答题技巧题型分析答题方法总结归纳集锦
高考数学各题型答题技巧

高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧高考数学各类题型的答题套路及技巧专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数〞的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx 的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h 的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1、解题路线图(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题1、解题路线图①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
2024年高考数学复习各题型解答方法总结

2024年高考数学复习各题型解答方法总结一、选择题解答方法:选择题是高考数学中常见的题型,解答时需要注意以下几点:1. 仔细阅读题目:选择题通常给出了多个选项,要在其中选择正确的答案,所以需要仔细阅读题目,理解题意。
2. 排除法:如果对某个选项确定是错误的,可以直接排除掉,这样可以缩小范围,提高解题效率。
通过排除法,可以找出正确答案。
3. 筛选法:某些选择题的选项中有多个是正确答案,这时可以通过筛选法找出所有正确答案。
首先找出其中一个正确答案,然后再观察其他选项,看是否满足条件,以确定所有正确答案。
4. 推理法:有些选择题需要通过推理来确定答案,需要将题目中给出的条件进行分析,并运用相关知识进行推理,找出正确答案。
二、填空题解答方法:填空题是高考数学中另一种常见的题型,解答时需要注意以下几点:1. 明确题目要求:填空题通常要求填入一个数值,有时也可以是一个表达式。
在填写答案前,要先弄清楚题目要求填什么。
2. 利用已知条件:填空题中常会给出一些已知条件,可以根据这些条件来确定答案。
通过将已知条件代入等式或运用相关关系,可以得到待填空的数值,或者用待填空的变量表达式表示答案。
3. 反推法:有些填空题通过反推法也可以确定答案。
通过比较题目中给出的条件和填空选项的关系,可以反推出待填空的数值或表达式。
4. 多种途径:填空题可以有多种解法,可以多角度思考和尝试。
如果一种方法无法确定答案,可以尝试其他方法,找出最适合的解答途径。
三、解答题解答方法:解答题是高考数学中相对较难的题型,解答时需要注意以下几点:1. 理清思路:解答题一般需要通过一系列的步骤来解决问题,首先要理清思路,明确步骤和方法,避免盲目性解题。
2. 规范书写:解答题需要写清楚解题过程和推理思路,并在重要的步骤和结论处用画线等方式标注出来,以便阅卷人员清晰地看到解题思路。
3. 合理估算:有些解答题中给出的数据量较大,可以通过合理估算或化简计算来简化解答过程,提高解题效率。
人教版高三数学解题技巧常考题型解析与答题方法

人教版高三数学解题技巧常考题型解析与答题方法高三数学是一门重要的学科,其中解题技巧更是关键。
在高三阶段,掌握解题方法对于学生们来说尤为重要。
本文将结合人教版教材,对高三数学常考题型进行解析,并提供一些解题技巧。
一、选择题解析与答题方法选择题是高中数学考试中常见的题型之一。
针对该题型,学生需要掌握以下几个答题方法:1. 仔细阅读题目:选择题中经常会夹杂一些陷阱选项,因此学生在答题前应该仔细阅读题目,理解题意,避免因为匆忙而选错选项。
2. 排除法:当不确定答案时,可以通过排除法来得出正确答案。
首先排除明显错误的选项,然后根据题目条件进行推理,逐步缩小范围,直至找到正确答案。
3. 考虑特殊情况:在解答选择题时,考虑一些特殊情况可能会帮助我们找到正确答案。
例如,可以将某些变量取特殊值进行代入,或者通过图形构造来观察答案的变化。
二、填空题解析与答题方法填空题是数学考试中常见的一种题型。
在解答填空题时,学生可以采取以下答题方法:1. 找准思路:填空题通常需要运用多个知识点和解题思路来解答,学生需要找准思路,将题目所给条件与所学知识结合起来。
2. 分析题目:对于填空题中的每个空,学生应该根据题目条件和题目要求,进行分析并找出适合填入的数值或表达式。
同时,要根据上下文关系进行相应的推理和判断。
3. 检查答案:在填空题做完后,学生应该对答案进行检查,确保每一个空都填写准确,符合题目要求以及所学知识点。
三、解答题解析与答题方法解答题是数学考试中需要较多计算和推理的一种题型,解答题需要具备一定的扎实的基础知识以及解题技巧。
学生可以采取以下答题方法:1. 分析问题:解答题通常会给出一些条件和要求,学生应该仔细阅读并分析问题,确定解题思路和方法。
2. 步骤清晰:在做解答题时,应该按照清晰的步骤逐步进行,不要跳跃性思维。
可以采用分析问题、列式、计算、得出结论的步骤来解答问题。
3. 表达准确:在解答题过程中,要保持解题思路的清晰,表达的准确。
高考数学题型分析及答题技巧

高考数学题型分析及答题技巧高考数学题型分析及答题技巧(一览)高考数学是题型固定的科目之一,而考点也是十分固定的。
无论成败与否,重要的还是要总结高考的得与失,以下是小编准备的高考数学题型分析及答题技巧,欢迎借鉴参考。
高考数学题型分析方法在审题时要注意题目中给出的条件,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。
所以,解题时,一切都从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时:步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”.步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。
步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。
然后在“新条件”与“新结论”之间再寻找关系。
一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!最后要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。
高考数学答题技巧“高分靠实力,满分靠运气”。
首先您得有这个心态,才能继续往下看。
先说说训练。
主要分两步走,如果实力可以做到除了后三道大题其余均会做,那么老师发的每一套卷子就先不做后三题,这样可以节约出大量的时间(因为后三道的任何一道都够做一套选择题了)训练准确度。
大约两周的时间吧,把这一关过了,最后三道题能剩将近一小时吧,而且做5套卷子能错1道题左右。
即使能做出的题目,或是难题中比较简单的前几小问也要比较认真地过一下答案,因为很多时候虽然能做出来但是可能方法不是最直接的,表述也不是最严密的,模仿标准答案的思路对于解决答题标准性问题帮助很大。
高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧高考数学必考题及解题技巧篇一1、解三角形常用知识:正余弦定理、面积公式、边角互换、均值不等式,注意角范围的叙述(三角形内角和定理);三角函数与解三角形,向量相结合:化一公式、诱导公式、二倍角公式、基本关系式,均值不等式、周期的求法。
2、数列求通项an的方法:公式法、累加法、累乘法、构造法、倒数法、同除法、an与S,和Sn-1的等量关系。
求Sn的常用方法:公式法、错位相减法、裂项相消法、分组求和法等。
3、立体几何证明平行:做辅助线(中位线,平行四边形,相似三角形等)可证面面平行,线面平行性质等。
证明垂直:勾股定理;等腰,等边三角形性质;菱形,正方形性质;基本图形的垂直;线面垂直得线线垂直;面面垂直性质,直径所对的圆周角等。
求距离:解三角形,等体积法等。
求空间角:做辅助线,建系,标出相应点的坐标,求出平面的法向量,写出相应的夹角公式,线面角公式等。
高考数学答题技巧篇二1、高考数学答题带着量角器进考场带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。
2、高考数学答题取特殊值法圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就可以了。
3、高考数学答题空间几何空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。
如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得。
4、高考数学答题图像法超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。
如果条件过多,用图像法秒杀。
不等式也是特值法图像法。
先易后难我们在答数学试卷的时候,一定要先选择自己会的有把握的,要按照这个顺序,确保自己会都正确,我们在做其他的题。
高考数学常考题型和答题技巧

高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
2024年高考数学无敌答题技巧总结模版(2篇)

2024年高考数学无敌答题技巧总结模版写作目的:为了帮助同学们在2024年高考数学考试中取得优异的成绩,我整理了一些无敌答题技巧,希望能帮助同学们顺利应对各种题型,提高答题效率。
以下是我总结的十个技巧,希望能对你有所帮助。
技巧一:熟悉考纲和教材高考数学考试的内容都是基于教材和考纲来设置的,所以熟悉考纲和教材非常重要。
仔细阅读考纲,了解每个知识点的要求及考查形式,针对性地进行复习,可以更有针对性地准备考试。
技巧二:掌握基本概念和公式数学是一个基础学科,掌握基本的概念和公式是做好数学题的基础。
在备考过程中,要逐个学习、理解和掌握各个概念和公式,并应用到解题中,培养自己的灵活性和逻辑思维能力。
技巧三:多做题,多总结做题是掌握数学知识的最佳方法之一。
通过多做题可以让同学们熟悉各种题型,加深对知识点的理解,提高自己的解题能力。
同时,做题后要及时总结,找出解题的规律和方法,并进行归纳总结,以备考时参考和巩固。
技巧四:合理安排时间高考数学考试时间紧张,因此在备考过程中要合理安排时间。
要根据自己的情况,将复习时间合理划分,将重点放在理解重点知识,掌握解题技巧和熟悉考题的分析方法上。
技巧五:掌握解题方法和技巧掌握解题方法和技巧是高考数学取得好成绩的关键之一。
要通过练习和总结,掌握各类题型的解题思路和解题方法,灵活运用到实际题目中。
同时,要善于分析题目,理清题目要求,准确把握解题方向。
技巧六:注重思维过程高考数学考试注重思维能力和解题过程,不仅要求得到正确答案,还要求清晰的逻辑推理和严密的论证过程。
因此,在解题过程中要注重思维过程,合理安排解题步骤,注意逻辑性和条理性。
技巧七:审题准确在答题过程中,要仔细审题,准确理解题意,不要随意猜测或主观臆断。
可以通过标记关键信息和关键词,分析问题的要点,帮助自己更好地理解和解答题目。
技巧八:注意单位转换和近似计算高考数学考试中,常常需要进行单位转换和近似计算。
在解题过程中要注意计算过程中的单位是否一致,并正确进行单位的转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学答题技巧题型分析答题方法总结归纳集锦同学们存在的一些小问题。
对解题的思路还有公式的不熟悉运用影响。
如果都熟悉这些解题技巧,保守的基本分是都可以拿到的。
在确保基础分的基础上去拿高分冲刺。
学习的问题,现在网络发达,很多网课,多途径获取资源,一位考生就是载到网课视频,把自己不足不会的弱缺项都补回来。
这些可以通过这样取得进步。
再者,数学,思维很重要,公式是基本,运用是方法,是解题的思路,很多题只要知道运用什么公式,一套就知道了。
有些需要变换变通的。
关于解题速度和熟练程度靠练,一个题型练那么几道一起,你就会熟悉这个题型的解题方法。
练多几个就会自然而然的知道怎么解。
主要问题:
一、不会解:想不到、分不清、思维定势
二、解题慢:速度慢、不熟练、记忆模糊
三、老出错:不细心、踩陷阱、毫厘之差
其实,将这些总结为一句话:成绩差,归根到底,没方法,缺少正确的引导!
针对这个令广大莘莘学子头疼的问题,我们提出模型解题法。
只要在科学方法的引导下,成绩一定会得到最大程度的提高。
模型三大步:看题型、套模型、出结果
第一步:熟悉模型,不会的题有清晰的思路
第二步:掌握模型,总做错的题不会错了
第三步:活用模型,大题小题都能轻松化解
一、选择题解答模型策略
注重多个知识点的小型综合,渗透各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间,获取高分的秘诀。
高考中考生“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
一般地,选择题解答的策略是:
熟练掌握各种基本题型的一般解法。
结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
二、填空题解答模型策略
填空题是一种传统的题型,也是高考试卷中又一常见题型。
高考
中共5个小题,每题5分,共25分,占全卷总分的16.7%。
根据填空时所填写的内容形式,可以将填空题分成两种类型:
一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。
由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。
二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。
在解答填空题时,基本要求就是:正确、迅速、合理、简捷。
一般来讲,每道题都应力争在1~3分钟内完成。
填空题只要求填写结果,每道题填对了得满分,填错了得零分,所以,考生在填空题上失分一般比选择题和解答题严重。
所以在解答时,更应该细心、认真。
三、解答题解答模型策略
1.三角变换与三角函数的性质问题
解题路线图
*** 不同角化同角。
*** 降幂扩角。
*** 化f(x)=Asin(ωx+φ)+h。
*** 结合性质求解。
构建答题模板
*** 化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形
式,即化为“一角、一次、一函数”的形式。
*** 整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x 的性质确定条件。
*** 求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
*** 反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
2、解三角函数问题
解题路线图
*** 化简变形;用余弦定理转化为边的关系;变形证明。
*** 用余弦定理表示角;用基本不等式求范围;确定角的取值范围。
构建答题模板
*** 定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
*** 定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
*** 求结果。
*** 再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
3、数列的通项、求和问题
解题路线图
*** 先求某一项,或者找到数列的关系式。
*** 求通项公式。
*** 求数列和通式。
构建答题模板
*** 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
*** 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
*** 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
*** 写步骤:规范写出求和步骤。
*** 再反思:反思回顾,查看关键点、易错点及解题规范。
4、利用空间向量求角问题
解题路线图
*** 建立坐标系,并用坐标来表示向量。
*** 空间向量的坐标运算。
*** 用向量工具求空间的角和距离。
构建答题模板
*** 找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
*** 写坐标:建立空间直角坐标系,写出特征点坐标。
*** 求向量:求直线的方向向量或平面的法向量。
*** 求夹角:计算向量的夹角。
*** 得结论:得到所求两个平面所成的角或直线和平面所成的角。
5、圆锥曲线中的范围问题
解题路线图
*** 设方程。
*** 解系数。
*** 得结论。
构建答题模板
*** 提关系:从题设条件中提取不等关系式。
*** 找函数:用一个变量表示目标变量,代入不等关系式。
*** 得范围:通过求解含目标变量的不等式,得所求参数的范围。
*** 再回顾:注意目标变量的范围所受题中其他因素的制约。
6、解析几何中的探索问题
解题路线图
*** 一般先假设这种情况成立(点存在、直线存在、位置关系存在等)。
*** 将上面的假设代入已知条件求解。
*** 得出结论。
构建答题模板
*** 先假定:假设结论成立。
*** 再推理:以假设结论成立为条件,进行推理求解。
*** 下结论:若推出合理结果,经验证成立则肯。
定假设;若推出矛盾则否定假设。
*** 再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
7、离散型随机变量的均值与方法
解题路线图
*** 标记事件;对事件分解;计算概率。
*** 确定ξ取值;计算概率;得分布列;求数学期望。
构建答题模板
*** 定元:根据已知条件确定离散型随机变量的取值。
*** 定性:明确每个随机变量取值所对应的事件。
*** 定型:确定事件的概率模型和计算公式。
*** 计算:计算随机变量取每一个值的概率。
*** 列表:列出分布列。
*** 求解:根据均值、方差公式求解其值。
8、函数的单调性、极值、最值问题
解题路线图
*** 先对函数求导;计算出某一点的斜率;得出切线方程。
*** 先对函数求导;谈论导数的正负性;列表观察原函数值;得到原函数的单调区间和极值。
构建答题模板
*** 求导数:求f(x)的导数f′(x),注意f(x)的定义域。
*** 解方程:解f′(x)=0,得方程的根。
*** 列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区
间,并列出表格。
*** 得结论:从表格观察f(x)的单调性、极值、最值等。
*** 再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
数学是许多高考学子头疼的科目,其实只要把握好基本方法,踏实地练几道题就会了。
只有将这些方法落到实处,才能够促进孩子们提分。
自己把知识点归纳和总结和是很有必要,用的公式也总结好。
这样临考不乱。
祝大家考试顺利。