简明物理化学第二版标准答案-杜凤沛-高丕英-沈明
物理化学简明教程习题答案

第一章气体的pVT性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度。
解:将甲烷(Mw =16.042g/mol)看成理想气体: PV=nRT , PV =mRT/ Mw甲烷在标准状况下的密度为=m/V= PMw/RT=101.32516.042/8.3145273.15(kg/m3)=0.716 kg/m31.3 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ MwMw= mRT/ PV=(25.0163-25.0000)×8.314×298.15/(13330×100×10-6)M w =30.31(g/mol)1.4 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.5 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.6 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
试求该混合气体中两种组分的摩尔分数及分压力。
解:将乙烷(M w=30g/mol,y1),丁烷(M w=58g/mol,y2)看成是理想气体:PV=nRT n=PV/RT=8.3147⨯10-3mol(y1⨯30+(1-y1) ⨯58)⨯8.3147⨯10-3=0.3897y1=0.401 P1=40.63kPay2=0.599 P2=60.69kPa1.7 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
物理化学第二版习题答案

物理化学第二版习题答案【篇一:物理化学核心教程课后答案完整版(第二版学生版)】ss=txt>二、概念题1. 答:(d)热力学能是状态的单值函数,其绝对值无法测量。
2. 答:(c)气体膨胀对外作功,热力学能下降。
3. 答:(b)大气对系统作功,热力学能升高。
4. 答:(a)过程(1)中,系统要对外作功,相变所吸的热较多。
5. 答:(a)对冰箱作的电功全转化为热了。
7. 答:(c)对于理想气体而言,内能仅仅是温度的单值函数,经真空绝热膨胀后,内能不变,因此体系温度不变。
8. 答:(c)由气体状态方程pvm= rt+bp可知此实际气体的内能只是温度的函数,经真空绝热膨胀后,内能不变,因此体系温度不变(状态方程中无压力校正项,说明该气体膨胀时,不需克服分子间引力,所以恒温膨胀时,热力学能不变)。
9. 答:(b)式适用于不作非膨胀功的等压过程。
757,cv =rcp=r ,这是双原子分子的特征。
522?n2molv210. (b)1.40=??16. 答:由气体状态方程pvm= rt+bp可知此实际气体的内能与压力和体积无关,则此实际气体的内能只是温度的函数。
三、习题1. (1)一系统的热力学能增加了100kj,从环境吸收了40kj的热,计算系统与环境的功的交换量;(2)如果该系统在膨胀过程中对环境做了20kj的功,同时吸收了20kj的热,计算系统热力学能的变化值。
2. 在300 k时,有 10 mol理想气体,始态压力为 1000 kpa。
计算在等温下,下列三个过程做膨胀功:(1)在100 kpa压力下体积胀大1 dm3 ;p?nrtvp2 (?p2?nrtnrt?-) = - nrt?1??? p2p1p1??100)= -22.45 kj 1000= -nrtln(3)∵ w = -?pdv =-?v1nrtdvvv2p1= -nrtln v1p21000= -57.43 kj 1003. 在373 k恒温条件下,计算1 mol理想气体在下列四个过程中所做的膨胀功。
物理化学简明教程习题答案

第一章气体的pVT性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度。
解:将甲烷(Mw =16.042g/mol)看成理想气体: PV=nRT , PV =mRT/ Mw甲烷在标准状况下的密度为=m/V= PMw/RT=10116.042/8.314515(kg/m3)=0.716 kg/m31.3 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ MwMw= mRT/ PV=(25.0163-25.0000)×8.314×298.15/(13330×100×10-6)M w =30.31(g/mol)1.4 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.5 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.6 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
试求该混合气体中两种组分的摩尔分数及分压力。
解:将乙烷(M w=30g/mol,y1),丁烷(M w=58g/mol,y2)看成是理想气体:PV=nRT n=PV/RT=8.3147⨯10-3mol(y1⨯30+(1-y1) ⨯58)⨯8.3147⨯10-3=0.3897y1=0.401 P1=40.63kPay2=0.599 P2=60.69kPa1.7 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
物理化学核心教程第二版课后答案完整版

物理化学核心教程(第二版)参考答案第一章气体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。
采用的是气体热胀冷缩的原理。
2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等?答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K,右球的温度为293 K时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K,中间汞滴向哪边移动?(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动?答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K,汞滴仍向右边移动。
因为左边起始温度低,升高10 K所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。
请估计会发生什么现象?答:软木塞会崩出。
这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。
如果软木塞盖得太紧,甚至会使保温瓶爆炸。
防止的方法是灌开水时不要太快,且要将保温瓶灌满。
5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。
但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。
而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。
随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。
物理化学简明教程习题附答案

第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度。
解:将甲烷(M w=16.042g/mol)看成理想气体:PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516.042/8.3145273.15(kg/m3)=0.716 kg/m31.3 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)×8.314×298.15/(13330×100×10-6)M w =30.31(g/mol)1.4 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.5 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p -ρ图,用外推法求氯甲烷的相对分子质量。
1.6 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
试求该混合气体中两种组分的摩尔分数及分压力。
解:将乙烷(M w=30g/mol,y1),丁烷(M w=58g/mol,y2)看成是理想气体:PV=nRT n=PV/RT=8.3147⨯10-3mol(y1⨯30+(1-y1) ⨯58)⨯8.3147⨯10-3=0.3897y1=0.401P1=40.63kPay2=0.599P2=60.69kPa1.7 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
物理化学 第二版答案

第一章 练习题一.思考题1. 宏观流动性。
压缩性微观分子间作用力,分子自由运动性(热运动)2. 不存在;高温低压3. 严格意义上是;高温低压下近似适用4. 真实气体分子间引力作用,真实气体具有体积5. T >T c 不可能液化 T=T C P >P C T <T C P >P S6. 处于同一对比状态的不同真实气体,Z 数值不同 二.选择题 1. ρ=PM/RT ④2. T 真=PM M /ZR P r =P/P C <1 T r =T/T C 由压缩因子图知Z <1 ∴T 真>PV M /R PV M /R=T 理 T 真>T 理3. ②4.Z=V 真/V 理<15. ③ 临界温度下可液化6. ③ 钢瓶颜色,字体颜色 三.计算题1. 解:ρ=PM/RTρ1/ρ2=(P 1/T 1)/(P 2/T 2)ρ2=ρ1*(P 2/T 2)/(P 1/T 1)=ρ1*( P 2* T 1)/( P 1* T 2) ρ1=1.96㎏/m 3 P 2=86.66*103Pa P 1=101.325*103Pa T 1=273.15K T 2298.15Kρ2=1.96*(86.66/101.325)*( 273.15/298.15)=1.54㎏/m 3 2.解: PV=nRT V 同 n 同P 1/T 1=P 2/T 2T 1=500K T 2=300K P 1=101.325KPaP 2= P 1* T 2/ T 1=101.325*500/300=60.795 kPa 3.解: Y NH3=V NH3/V 总=(0.1-0.086)/0.1=0.14 n 总=P 总V 总/R 总T 总P=100 KPa T=273.15+27=300.15K V=0.1*10-3 m 3 R=8.314J/(mol*k )n 总=(100*103*10-4)/(8.314*300.15) n 总=0.004moln NH3= n 总* Y NH3=0.004*0.14=5.6*10-4 P NH3=P 总* Y NH3=100*0.14=14 KPa 4.解:n=m/Mn co2=0.1mol n N2=0.5MOL n o2=0.6mol y co2=0.1/0.2 y N2=0.5/1.2 y o2=0.5 P co2=P 总* y co2=2.026*1/12*105=1.69*104Pa P N2= P 总* y N2=2.026*5/12*105=8.44*104Pa P o2= P 总* y o2=2.026*0.5*105=1.103*1055.解:(P+an2/v2)(v-nb)=nRTa=6.57*10-1 b=5.62*10-5T=350K V=5.00*10-3m3n=m/M=0.142*103/71=2molP=nRT/(v-nb)-an2/v2P=11.907*105-1.501*105=1.086*1066.解:TC =190.7K PC=4.596MPaTr =T/TC=291.2/190.7=1.527Pr =P/PC=15/4.596=3.264由压缩因子图得:Z=0.83ρ=PM/ZRT=15*106*16*10-3/8.314*291.2*0.83=119㎏/m3第二章练习题一、思考题1、(1)加热烧杯中水水位系统则环境为大气、烧杯。
物理化学核心教程(第二版)课后习题答案

物理化学核心教程(第二版)参考答案第 一 章 气 体一、 思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。
采用的是气体热胀冷缩的原理。
2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等?答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K ,右球的温度为293 K 时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K ,中间汞滴向哪边移动? (2)若两球温度同时都升高10 K, 中间汞滴向哪边移动? 答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K ,汞滴仍向右边移动。
因为左边起始温度低,升高10 K 所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。
请估计会发生什么现象?答:软木塞会崩出。
这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。
如果软木塞盖得太紧,甚至会使保温瓶爆炸。
防止的方法是灌开水时不要太快,且要将保温瓶灌满。
5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。
但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。
而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。
随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。
物理化学完整版答案

物理化学核心教程(第二版)参考答案第一章气体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。
采用的是气体热胀冷缩的原理。
2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等?答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K,右球的温度为293 K时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K,中间汞滴向哪边移动?(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动?答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K,汞滴仍向右边移动。
因为左边起始温度低,升高10 K所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。
请估计会发生什么现象?答:软木塞会崩出。
这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。
如果软木塞盖得太紧,甚至会使保温瓶爆炸。
防止的方法是灌开水时不要太快,且要将保温瓶灌满。
5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。
但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。
而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。
随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章热力学第一定律习题解答
1. 1mol理想气体依次经过下列过程:(1)恒容下从 25℃升温至 100℃,(2)绝热自由膨胀
至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q、W、∆U及∆H。
解:将三个过程中Q、∆U及W的变化值列表如下:
过程Q∆UW
(1)C
V ,m
(T
1末
−T
1初
)
C
V ,m
(T
1末
−T
1
初
)
(2)000
(3)C p,m(T3末−T3初) C
v,m
(T
3末
−T
3
初
)
p(V3末−V3初)
则对整个过程:
T = T=298.1
5KT= T
= 37
3.15K
1初3末1末3初
Q=nCv,m(T1末-T1初)+0+ nC p,m(T3末-T3初)
=nR(T3末−T3初)
=[1×8.314×(-75)]J=-623.55J
∆U=nCv,m(T1末-T1初)+0+nC v,m(T3末-T3初)=0
W =-p(V3末−V3初)=-nR(T3末−T3初)
=-[1×8.314×(-75)]J=623.55J
因为体系的温度没有改变,所以∆H=0
2.0.1mol 单原子理想气体,始态为 400K、101.325kPa,经下列两途径到达相同的终态:
(1)恒温可逆膨胀到10dm3,再恒容升温至610K;
(2) 绝热自由膨胀到6.56dm3,再恒压加热至610K。
分别求两途径的Q、W、∆U及∆H。
若只知始态和终态,能否求出两途径的∆U及∆H?
解:(1)始态体积V1=nRT1/p1=(0.1×8.314×400/101325)dm3=32.8dm3
W =W恒温+W恒容=nRT ln V
V2+0
1
=(0.1×8.314×400×ln3210
.8+0)J
=370.7J
∆U=nC V,m(T2−T1)=[0.1×3
2 ×8.314 ×(610− 400)]
J=261.9J
1。