金属注射成型综述要点

合集下载

翻译-金属基复合材料注射成型工艺总结

翻译-金属基复合材料注射成型工艺总结

金属基复合材料注射成型工艺总结摘要金属注射成型(金属注射成型工艺)是一种成熟制造技术,是能够低成本高效益批量生产复杂零件的制造工艺。

这种独特处理方法能,使它对金属基复合材料的制造有吸引力。

在本文中,通过金属注射成型工艺制造金属基复合材料的研究和发展的状况进行总结,材料系统,制造方法,由此产生的材料特性和微观结构是主要的焦点。

此外,这种复合材料制造技术的不足在本文中也会介绍。

金属注射成型工艺工艺制备金属基复合材料的全部潜力有待探讨。

目录1. 介绍 (3)2. 金属基复合材料注射成型工艺 (4)2.1难熔金属基复合材料 (4)2.2 钛基复合材料 (6)2.3 金属化合物基复合材料 (6)2.4 钢基复合材料 (7)2.5双金属结构 (8)3.微注射成形 (9)4.总结 (10)1. 介绍粉末注射成型(PIM)是一种与塑料注塑成型相结合的成熟的制造技术。

粉末的能力冶金用于加工金属和陶瓷粉末(德国,1990年)。

PIM的过程通常包括四个步骤:混合,注塑成型,脱脂和烧结,如下图(图1)PIM技术的演变导致了许多变化,反映了不同的组合粉末,粘结剂,成型技术,脱脂路线,烧结做法。

金属注射成型,常用其简称金属注射成型工艺,是迄今为止使用最广泛的PIM的过程。

金属注射成型工艺吸引人的特点,非常有利于金属基复合材料的制造(MMC)或陶瓷基复合材料(CMC)。

虽然许多金属基复合材料具有独特的属性,但是无法正常实现制造工艺来实现材料,其商业用途往往受限于材料和制造成本。

通过采用金属注射成型工艺,使用复合材料的商业成本可显着降低。

在近年来,综合性的工作已进行到探索金属基复合材料的制造,并扩展到陶瓷基复合材料和部件。

金属注射成型工艺技术的复合材料制造公司甚至已建立并形成商业能力(德克尔,1989年,H. C. Starck的公司,2003年)。

最广泛的研究是PIM金属基复合材料,包括不锈钢钢,难熔金属,金属间化合物和钛合金。

金属粉末注射成型件的工艺及特点

金属粉末注射成型件的工艺及特点

金属粉末注射成型件的工艺及特点粉末注射成型工艺流程工艺中应着重说明的几点:1、金属粉末用细粉。

2、成型是用塑料模具成型,用的是塑料成型的原理。

3、烧结与传统粉末冶金烧结办法基本相同。

4、脱粘造成的工艺局限性。

* 粉末注射成型与其他工艺相比的特点1. 粉末注射成型与传统粉末冶金相比制造工艺 MIM工艺传统粉末冶金工艺粉末粒径(μ)2-15 50-100相对密度(%) 95-98 80-85产品重量(g)小于或等于5010-数百产品形状三维复杂形状二维简单形状机械性能优劣2. 粉末注射成型与精密铸造相比在金属成形工艺中,压铸和精密铸造是可以成形三维复杂形状的零件,但压铸仅限于低熔点金属,而精密铸造(IC)限于合金钢、不锈钢、高温合金等高熔点金属及有色金属,对于难熔合金如硬质合金、高密度合金、金属陶瓷等却无能为力,这是IC的本质局限性,而且IC 对于很小、很薄、大批量的零件生产是十分困难或不可行的。

IC产业化已成熟,发展的潜力有限。

MIM是新兴的工艺,将挤入IC大批量小零件的市场。

3. 粉末注射成型与传统机械加工相比较。

传统机械加工法,近来靠自动化而提升其加工能力,在效率和精度上有极大的进步,但是基本的程序上仍脱不开逐步加工(车削、刨、铣、磨、钻孔、抛光等)完成零件形状的方式。

机械加工方法的加工精度远优于其他加工方法,但是因为材料的有效利用率低,且其形状的完成受限于设备与刀具,有些零件无法用机械加工完成。

相反的,MIM可以有效利用材料,形状自由度不受限制。

对于小型、高难度形状的精密零件的制造,MIM工艺比较机械加工而言,其成本较低且效率高,具有很强的竞争力。

4. 粉末注射成型与其他成型工艺比较总表加工法比较项目 MIM 精密铸造传统粉末冶金冷间锻造机械加工压口形状自由度45 2 2 4 4精度4 3 45 5 3机械强度 4 4 2 5 5 1材质适用自由度 5 4 5 2 3 2模具费 3 4 3 1 5 3量产性 5 2 5 5 3 5产品价格 3 2 4 5 2 4* 粉末注射成型工艺技术的优点MIM的工艺优点可归纳如下:⑴ MIM可以成形三维形状复杂的各种金属材料零件(只要这种材料能被制成细粉)。

金属粉末的注射成型

金属粉末的注射成型

金属粉末的注射成型金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。

在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。

其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。

模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。

注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。

注射后,模具中的混合物开始固化,形成绿色零件。

最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。

相对于传统的金属加工方法,金属粉末注射成型具有以下优势:首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。

其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。

此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。

最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。

然而,金属粉末注射成型也存在应用范围的限制。

首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。

其次,较大的尺寸限制了MIM在制造大尺寸、高精度的零件上的应用。

此外,与其他成型方法相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。

尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。

随着制造技术的进步和材料属性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创新的解决方案。

金属加工新工艺 金属注射成形技术

金属加工新工艺 金属注射成形技术

金属注射成形是一种新的金属加工工艺,它是将金属粉末与其粘结剂混合得到的混合料进行制粒以后,再注射进模型中,从而得到所需形状零件的成形方法。

它结合了注塑成型设计的灵活性和精密金属的高强度以及整体性,是一种复杂几何形状零件成形的低成本解决方案。

尤其适合加工形状复杂、尺寸小的薄壁金属零部件。

目前,这一工艺被广泛应用到汽车、医疗、电子、工业等诸多行业,产品包括汽车配件、航空航天器材、通讯设备、医疗器械、工业工具和运动器材等。

其具体过程主要包括如下几个步骤:金属粉末与粘结剂混合:金属的精细粉末要与热塑性塑料和石蜡粘结剂进行混合,混合比例一定要精确。

混合过程必须在一个专门的混合设备中进行。

首先要加热到一定温度使粘结剂熔化,接下来使金属粉末颗粒均匀地涂上粘结剂,最后再进行冷却,使其形成能够被注入模腔的颗粒状原料。

大部分情况下,混合是使用机械来进行的。

注射成形:金属注射成形使用的设备和技术与注塑成型比较相似,颗粒状的原料先是被送入机器加热,然后在高压下注入模腔,最后冷却脱模,形成需要的形状。

加热温度要达到200摄氏度,才能使金属粉末及其粘合剂充分熔化,并完成金属注射成形过程。

所使用的模具可以只有一个腔,也可以设计成多腔,后者对于提高成形加工效率大有帮助。

设计模腔尺寸的时候,必须考虑到金属部件烧结过程中产生的收缩,并且对每种材料的收缩变化了如指掌。

脱脂:金属成形以后,还必须将金属中混合的粘结剂去除,这个过程就称为脱脂。

绝大部分的粘结剂是在烧结前就已经去除了的,而残留的一少部分能够支撑金属部件进入烧结炉。

脱脂可以采用多种方法来完成,最常用的方法是溶剂萃取法,残留的粘结剂在烧结时很容易被挥发。

脱脂后的部件会具有半渗透性。

烧结:经过脱脂的金属部件要放进高温、高压控制的熔炉中进行烧结。

在气体的保护下,金属部件先是被缓慢加热,从而去除残留的粘合剂。

等到粘结剂完全清除以后,该部件就会被加热到一个很高的温度,使颗粒之间相互融合,从而消除颗粒间的空隙。

金属粉末的注射成型

金属粉末的注射成型
纳米金属粉末
具有极高的表面积和活性,能够提高 材料的力学性能和电磁性能,为金属 粉末注射成型的发展提供了新的方向 。
材料性能与成型工艺的关系
1 2 3
流动性
金属粉末的流动性直接影响注射成型的充模能力 和制件质量,流动性好的粉末有利于提高制件的 光洁度和尺寸精度。
压缩性
金属粉末的压缩性决定了其在模具内的填充密度 和制件的致密度,压缩性好的粉末能够提高制件 的机械性能。
医疗器械领域
制造个性化医疗器械和植入物,满足医疗行业对个性化、高性能 和高安全性的需求。
感谢您的观看
THANKS
注射成型操作
将混合料加热至流动状态,注入 模具中,在压力和温度的作用下, 混合料填充模具并硬化定型。
后处理
脱脂
烧结
通过加热或化学方法将粘结剂从金属粉末 中分解、去除,以获得纯净的金属制品。
将脱脂后的金属粉末制品在高温下进行烧 结,使金属粉末颗粒之间形成冶金结合, 提高制品的强度和性能。
热处理
表面处理
度和复杂度。
新型粘结剂的开发
02
研究新型粘结剂,以提高金属粉末的粘结效果,降低成型难度
和成本。
连续注射成型技术
03
开发连续注射成型技术,实现金属粉末的连续加工,提高生产
效率和降低能耗。
新材料的应用与开发
高性能金属粉末
研究开发高性能金属粉末,如钛合金、镍基高温 合金等,以满足高端制造业的需求。
复合材料的应用
详细描述
粉末流动性问题通常表现为注射压力不足、填充不均匀、成 型时间延长等。为了解决这一问题,可以采用改善粉末粒度 分布、降低粉末含水量和加入润滑剂等方法,以提高粉末的 流动性。
成型精度问题

金属粉末注射成型技术

金属粉末注射成型技术

金属粉末注射成型技术
金属粉末注射成型技术是近些年来新兴的制造技术,它是一种利用压力将金属粉末材料注入模具内,形成几乎任意形状的零件的工艺。

该技术已被广泛应用于汽车、航空航天、电子、模具、机械等行业,用于生产高精度、复杂结构和多变形状的零件。

金属粉末注射成型技术的优势在于它可以生产出质量更好、精度更高、结构更复杂、尺寸更小的零件。

此外,金属粉末注射成型技术的加工速度快,模具开发成本低,操作简单,可以大大提高生产效率,降低成本。

金属粉末注射成型技术具有节能、环保、低噪声等优点,可以减少成本,改善劳动环境,改善工作质量。

此外,金属粉末注射成型技术还可以生产出材料节省、结构简单、表面质量好的零件。

金属粉末注射成型技术有很多优势,为不同行业的企业提供了更加高效、精确、高质量的产品,同时也改善了劳动环境,可以说是一项极具发展潜力的技术。

金属注射成型综述要点

金属注射成型综述要点

金属注射成型综述要点金属注射成型(MIM)是一种通过将金属粉末与塑料注射成型技术相结合的新型金属加工方法。

它以其高效率、高精度和复杂形状制造能力而受到广泛关注。

本文将对金属注射成型技术的原理、工艺流程、优点和应用领域等进行综述。

1.技术原理金属注射成型是将金属粉末与有机聚合物混合后,在高温下进行塑性加工。

首先,将金属粉末与粘结剂混合,形成金属粉末/粘结剂浆料。

然后,通过注射成型机将该浆料注入金属注射模具中。

在注射模具中,通过压力和温度的作用,金属粉末与粘结剂烧结成型。

最后,通过去除粘结剂和烧结金属零件的后处理工艺,获得最终的金属注射成型零件。

2.工艺流程金属注射成型的工艺流程主要包括:原料准备、混合、注射成型、脱脂、烧结和后处理。

在原料准备阶段,需要准备金属粉末、粘结剂和其他辅助材料。

混合阶段是将金属粉末与粘结剂混合,并形成浆料。

注射成型阶段将浆料注入金属注射模具中,并在高温下进行塑性变形。

脱脂阶段是将注射成型的零件在高温下去除粘结剂。

烧结阶段是将零件在高温下烧结,以实现金属颗粒的结合和形状的固定。

最后,通过后处理工艺,如表面处理、加工和涂装等,得到最终的金属注射成型零件。

3.优点(1)高精度:金属注射成型可以制造出复杂形状的零件,并且具有高精度和低尺寸偏差。

(2)高效率:金属注射成型可以通过注射成型机实现大规模的连续生产,提高生产效率。

(3)材料利用率高:金属注射成型可以利用可回收的金属粉末制造零件,减少材料浪费。

(4)节省成本:金属注射成型可以减少后续加工工序,节省制造成本。

(5)材料性能优良:金属注射成型所制造的零件具有高密度、均匀组织和优良的机械性能。

4.应用领域金属注射成型技术已广泛应用于汽车、医疗器械、电子设备、航天航空等领域。

在汽车行业中,金属注射成型可以制造出发动机零件、变速器零件和车身零件等。

在医疗器械领域,金属注射成型可以制造出植入物、外科器械和牙科器械等。

在电子设备领域,金属注射成型可以制造出连接器、插头和传感器等。

4、金属粉末注射成型

4、金属粉末注射成型
MIM和其他金属加工法相比,制品尺寸精度高,不必进行二次加工或只需少量精加 工。注射成型工艺可直接成型薄壁、复杂结构件,制品形状已接近最终产品要求,零件 尺寸公差一般保持在±0.1~±0.3mm左右。特别对于降低难于进行机械加工的硬质合金 的加工成本,减少贵重金属加工时的损失尤其具有重要意义。制品微观组织均匀、密度 高、性能好。
金属粉末注射成形MIM制品
笔记本电脑铰链转角
锁配件(锁头.锁舌.按键.复杂异形部件 MIM工艺手机类产品
MIM金属注射成型产品
工艺特点 金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末 冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可 注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形 状的结构零件,能够快速准确地将设计思想物化为具有一定结构、 功能特性的制品,并可直接批量生产出零件,是制造技术行业一 次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无 切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工 艺制品、材质不均匀、机械性能低、不易成型薄壁、复杂结构件 的缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的 金属零件。工艺流程金属粉末+粘结剂→混炼→注射成形→脱脂 →烧结→后处理 MIM工艺所用金属粉末颗粒尺寸一般在0.5~20μm;从理论 上讲,颗粒越细,比表面积也越大,易于成型和烧结。而传统的 粉末冶金工艺则采用大于40μm的较粗的粉末。 有机胶粘剂作用是粘接金属粉末颗粒,使混合料在注射机料 筒中加热具有流变性和润滑性,也就是说带动粉末流动的载体。 因此,粘接剂的选择是整个粉末注射成型的关键。对有机粘接剂 要求: 1.用量少,用较少的粘接剂能使混合料产生较好的流变性; 2.不反应,在去除粘结剂的过程中与金属粉末不起任何化学 反应; 3.易去除,在制品内不残留。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南工程学院《机械工程材料与成形工艺》考查课专业论文金属注射成型学生姓名:学院:专业班级:专业课程:任课教师:201 年月日摘要金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制高、耐磨性好的制品,近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。

这种新的粉末冶金成形方法称为金属注射成形。

金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。

关键词:金属注射成形粘结剂脱脂烧制一、金属粉末注射成型的发展现状及现状1. 国外概况金属粉末注射成型工艺技术的开拓者是美国的Parmatech公司。

该公司的航天燃料专家Wiech博士于1973年发明了MIM技术。

以Riverst和Wiech于70年代发明的专利为起点,开始了金属粉末注射成形技术。

Parmatech于70年代末注射成型铌火箭喷嘴获得MPIF 奖。

但由于该技术的独特优点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期间美国国内的MIM技术得以成熟并迅速发展形成产业化。

该项技术向世界披露后得到世界各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。

其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推展。

目前日本有四十余家企业从事MIM制品的生产,每家公司的利润都十分可观。

2000年世界粉末冶金会议在日本召开,并专门设立了MIM技术论坛。

继日本快速发展之后,台湾、韩国、新加坡、欧洲和南美的MIM产业也雨后春笋般的发展起来,其中德国的BASF公司以其独特的黏结剂配方成立了专门的MIM产品喂料生产线,在全世界范围内进行技术辅导和喂料的销售,获得了较大的商业利润。

德国BASF公司的Bloemacher于90年代初开发的MIM工艺成为MIM实现产业化的一个重大突破。

它采用聚醛树脂作为粘结剂,并在酸性气氛中快速催化脱脂,不仅大大缩短了脱脂时间,而且这种催化脱脂能在低于粘结剂的软化温度下进行,避免了液相的生成,有利于控制生坯的变形,保证了烧结后的尺寸精度。

同时,由于利用了聚醛树脂极性连接金属粉末,故适合于多种粉末的注射。

这种工艺不仅大大降低了生产成本,提高了生产率,并且可生产尺寸较大的零件和制品,扩大了MIM的应用范围,从而使MIM真正成为一种具有竞争力的PM近净成型技术。

作为该项技术的发明国美国。

MIM技术已经广泛的应用于航天、摩托车、汽车、医疗器械、食品机械、计算机、通信设备、五金工具、仪器仪表、钟表等各个制造行业,MIM企业也因此赚了个盆满钵满。

据粉末冶金协会粗略统计和预测,全球MIM产品的销售量正在以每年30%-40%的速度递增。

预计到2010年平均年销售量将超过24亿美元。

2.国内状况中国MIM技术的产业化发展只有不到十年的时间,技术的研究始于八十年代末,从事研究开发的单位不足l0家,虽然黏结剂各有不同,但都取得了可喜的成果,有的已经达到国际先进水平.而在MIM 技术的应用及产业化方面与国外相比存在一定的差距。

原因有以下几个方面:(1)中国1956年才开始粉末冶金的发展,基础实力薄弱。

(2)机械制造业与发达国家相比落后,工程技术人员的开发能力不足。

(3)国内技术人员对MIM技术的认识程度不够,制约了MIM技术的推广。

金属粉末射出成形(Metal powder Injection Molding)在中国的发展﹐可以说受惠于手机产业的带动﹐从2009年开始整个行业便扶摇直上;尤其到了2011年中后﹐更因为受到美商苹果计算机与韩商三星电子两家的商品竞争﹐在手持装置中大量采用MIM零件﹐是过去从未见到的热潮。

当然﹐其他方面的应用﹐MIM技术和产品更是不惶多让﹐包含:汽车燃料喷射系统、航空器的侦测系统(高空恶劣环境侦测如:温度、高度与空气氧气浓度)、乐器零组件、电子用散热模块与热管密封模块、电子连接器工具机零件、光纤接头、喷雾嘴、硬式磁盘驱动器零件、药用容器与装置、电动手工具零件、泵浦磨耗件、外科医疗器械及运动器材。

这些零件都是MIM逐步拓展的市场。

我们可以从台湾与大陆MIM制造商增加速度来看﹐从2009年不到50家﹐到2013年现在﹐突破100家的速度﹐平均机台数量至少为达到12 : 4 = 射出成形机台数: 烧结炉线数﹐甚至要更高的﹐这些惊人的发展意味着MIM行业的正在中国快崛起。

二、现行国际与国内MIM工艺流程演进现行中国的MIM行业受到早期BASF的射料的影响﹐酸脱催化烧结的方式一直难有突破﹐主要在于专用材料的调整性极乎其微﹐这是国际上的主流虽然一致﹐但是缺乏了弹性将导致中国MIM产业无法创新。

所幸BASF的催化脱黏专利已经到期﹐且BASF愿意在特定合约下提供更低价的原料﹐加上国内中南大学与华南理工的研究突破﹐在网络上公布了几篇研究报告﹐以塑基配方(相仿于BASF配方)也渐渐被应用﹐我们可以说目前中国境内的MIM技术应该是世界的前锋。

同时﹐因为世界工厂的地位﹐MIM产品结合其他手段的二次处理和加工﹐更是大大的向前迈进。

这是很有趣的技术整合﹐以MIM 制作近净型(Near net shape)的“精坯“(Advanced sinter part)﹐随后加以冲压、切边、整型、抛光甚至激光蚀刻等等﹐有许多令人惊艳的成绩!因此﹐我认为中国引领世界MIM技术的潮流﹐成MIM混合式整合技术(Hybrid and integration process with MIM)﹐大大提升金属零件加工的效率﹐以及节省大量能源而努力。

国内MIM产业的挑战金属粉末原材料国产的金属粉末因为质与量的关系﹐一直没有办法突破﹐这必须要结合国内MIM产业与学校一起合作﹐如何做出质量稳定而且是大批量的金属粉末﹐我想关键在于理解MIM用金属粉末和传统PM用金属粉末两者是截然不同﹐这点必须强调对于粉体科学得研究和开发﹐还要加油!三、3MIM粉末及制粉技术1. 3MIM粉末MIM对原料粉末要求较高,粉末的选择要有利于混炼、注射成形、脱脂和烧结,而这往往是相互矛盾的,对MIM原料粉末的研究包括:粉末形状、粒度和粒度组成、比表面等。

由于MIM原料粉末要求很细,MIM原料粉末价格一般较高,有的甚至达到传统PM粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有羰基法、超高压水雾化法、高压气体雾化法等。

2. 粘结剂粘结剂是MIM技术的核心,在MIM中粘结剂具有增强流动性以适合注射成形和维持坯块形状这两个最基本的职能,此外它还应具有易于脱除、无污染、无毒性、成本合理等特点,为此出现了各种各样的粘结剂,近年来正逐渐从单凭经验选择向根据对脱脂方法及对粘结剂功能的要求,有针对性地设计粘结剂体系的方向发展。

粘结剂一般是由低分子组元与高分子组元再加上一些必要的添加剂构成。

低分子组元粘度低,流动性好,易脱去;高分子组元粘度高,强度高,保持成形坯强度。

二者适当比例搭配以获得高的粉末装载量,最终得到高精度和高均匀性的产品。

通常采用的粘结剂主要有:热塑性体系(石蜡基、油基和热塑性聚合物基)、凝胶体系、热固性体系和水溶性体系。

3. 混炼混炼是将金属粉末与粘结剂混合得到均匀喂料的过程。

由于喂料的性质决定了最终注射成形产品的性能,所以混炼这一工艺步骤非常重要。

这牵涉到粘结剂和粉末加入的方式和顺序、混炼温度、混炼装置的特性等多种因素。

这一工艺步骤目前一直停留在依靠经验摸索的水平上,最终评价混炼工艺好坏的一个重要指标就是所得到喂料的均匀和一致性。

MIM喂料的混合是在热效应和剪切力的联合作用下完成的。

混料温度不能太高,否则粘结剂可能发生分解或者由于粘度太低而发生粉末和粘结剂两相分离现象,至于剪切力的大小则依混料方式的不同而变化。

MIM常用的混料装置有双螺旋挤出机、Z形叶轮混料机、单螺旋挤出机、柱塞式挤出机、双行星混炼机、双凸轮混料机等,这些混料装置都适合于制备粘度在1-1000Pa·s 范围内的混合料。

混炼的方法一般是先加入高熔点组元熔化,然后降温,加入低熔点组元,然后分批加入金属粉末。

这样能防止低熔点组元的气化或分解,分批加入金属粉可防止降温太快而导致的扭矩急增,减少设备损失。

对于不同粒度粉末搭配时的加料方式,日本专利介绍:先将较粗的15-40um水雾化粉加入粘结剂中,然后加入5-15um粉,最后加入粉度≤5um粉,这样得到的最终产品的收缩变化很少。

为了在粉末周围均匀涂覆一层粘结剂,还可将金属粉末直接加入到高熔点组元中,再加入低熔点组分,最后去除空气即可。

如Anwar 将PMIMA悬浮液直接加入到不锈钢粉中混合,然后将PEG水溶液加进去,干燥,然后边搅边除去空气。

O'connor采用溶剂混合,先将SA与粉干混再加入四氢呋喃溶剂,然后加入聚合物,四氢呋喃在受热中逸去后,再加入粉末混合,可得到均匀的喂料。

4. 注射成形注射成形的目的是获得所需形状的无缺陷、颗粒均匀排由的MIM 成形坯体。

如图1所示,首先将粒状喂料加热至一定高的温度使之具有流动性,然后将其注入模腔中冷却下来得到所需形状的具有一定刚性的坯体,然后将其从模具中取出得到MIM成形坯。

这个过程同传统塑料注射成形过程一致,但由于MIM喂料高的粉末含量,使得其注射成形过程在工艺参数上及其它一些方面存在很大差别,控制不当则易产生各种缺陷。

MIM产品可能的缺陷大部分是在注射成形步骤中形成,如裂纹、孔隙、焊缝、分层、粉末与粘结剂分离现象等。

但这些缺陷经常是直至脱脂和烧结后由于注射时产生的应力被释放后才能发现,因此,注射成形工艺的控制对提高产品成品率和材料利用率非常关键。

注射成形时缺陷控制问题基本可以分为二个方面,一是成形温度、压力、时间三者函数关系设定,另一方面则是填充时喂料在模腔中的流动就牵涉到模具设计的问题,包括在进料口的位置、流道的长短、排气孔的设置等,这些都需要对喂料流变性质、模腔内温度和残余应力分布清楚的了解。

计算机模拟技术在金属粉末注射成形模具设计方面将可发挥重要的作用。

5. 脱脂从MIM技术产生以来,随着粘结剂体系的不同,形成了多种MIM 工艺路径,脱脂方法也多种多样。

脱脂时间由最初的几天缩短以了现在的几小时。

从脱脂步骤上可以粗略地将所有的脱脂方法分为两大类:一类是二步脱脂法。

二步脱脂法包括溶剂脱脂+热脱脂,虹吸脱脂——热脱脂等。

相关文档
最新文档