金属注射成型综述要点
翻译-金属基复合材料注射成型工艺总结

金属基复合材料注射成型工艺总结摘要金属注射成型(金属注射成型工艺)是一种成熟制造技术,是能够低成本高效益批量生产复杂零件的制造工艺。
这种独特处理方法能,使它对金属基复合材料的制造有吸引力。
在本文中,通过金属注射成型工艺制造金属基复合材料的研究和发展的状况进行总结,材料系统,制造方法,由此产生的材料特性和微观结构是主要的焦点。
此外,这种复合材料制造技术的不足在本文中也会介绍。
金属注射成型工艺工艺制备金属基复合材料的全部潜力有待探讨。
目录1. 介绍 (3)2. 金属基复合材料注射成型工艺 (4)2.1难熔金属基复合材料 (4)2.2 钛基复合材料 (6)2.3 金属化合物基复合材料 (6)2.4 钢基复合材料 (7)2.5双金属结构 (8)3.微注射成形 (9)4.总结 (10)1. 介绍粉末注射成型(PIM)是一种与塑料注塑成型相结合的成熟的制造技术。
粉末的能力冶金用于加工金属和陶瓷粉末(德国,1990年)。
PIM的过程通常包括四个步骤:混合,注塑成型,脱脂和烧结,如下图(图1)PIM技术的演变导致了许多变化,反映了不同的组合粉末,粘结剂,成型技术,脱脂路线,烧结做法。
金属注射成型,常用其简称金属注射成型工艺,是迄今为止使用最广泛的PIM的过程。
金属注射成型工艺吸引人的特点,非常有利于金属基复合材料的制造(MMC)或陶瓷基复合材料(CMC)。
虽然许多金属基复合材料具有独特的属性,但是无法正常实现制造工艺来实现材料,其商业用途往往受限于材料和制造成本。
通过采用金属注射成型工艺,使用复合材料的商业成本可显着降低。
在近年来,综合性的工作已进行到探索金属基复合材料的制造,并扩展到陶瓷基复合材料和部件。
金属注射成型工艺技术的复合材料制造公司甚至已建立并形成商业能力(德克尔,1989年,H. C. Starck的公司,2003年)。
最广泛的研究是PIM金属基复合材料,包括不锈钢钢,难熔金属,金属间化合物和钛合金。
金属粉末的注射成型

金属粉末的注射成型金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。
在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。
其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。
模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。
注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。
注射后,模具中的混合物开始固化,形成绿色零件。
最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。
相对于传统的金属加工方法,金属粉末注射成型具有以下优势:首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。
其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。
此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。
最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。
然而,金属粉末注射成型也存在应用范围的限制。
首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。
其次,较大的尺寸限制了MIM在制造大尺寸、高精度的零件上的应用。
此外,与其他成型方法相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。
尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。
随着制造技术的进步和材料属性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创新的解决方案。
金属粉末注射成型

(4)注射速度及注射压力
注射压力大小与注射机种类、物料流动性、模具浇口尺寸、 产品厚度、模具温度及流程等因素有关。 一般注射压力略高于热塑性塑料的注射压力。 保压的作用:使制品冷却收缩时得以补料,尺寸准确,表 面光洁,有利于消除气泡。保压时间一般0.3~2分钟,特厚制 品可达5~10分钟。 注射速度与注射压力、温度、模口尺寸等因素有关。注射 速度慢不利于充模,生产效率低,注射速度过快易混入气泡。 需通过实际实验确定。
MIM和传统方法的比较: 压铸工艺用在铝和锌合金等熔点低、铸液流动性良好的材料。此工艺的产品因 材料的限制,其强度、耐磨性、耐蚀性均有限度。MIM工艺可以加工的原材料 则较多。注射成型工艺技术利用注射机注射成型产品毛坯,保证物料充分充满 模具型腔(金属液铸造充模较差),也就保证了零件高复杂结构的实现。 粉末锻造是一项重要的发展,已适用于连杆的量产制造。但是一般而言,锻造 过中热处理的成本和模具的寿命还是有问题,仍待进一步解决。 传统机械加工法,近年来靠自动化而提升了其加工能力,在效果和精度上 有极大的进步,但是基本的程序上仍脱不开逐步加工(车削、刨、铣、磨、钻孔、 抛光等)来完成零件形状的方式。机械加工方法的加工精度远优于其他加工方法, 但是因为材料的有效利用率低,且其形状的完成受限于设备与刀具,有些零件 无法用机械加工完成。相反,MIM可以有效利用材料,不受限制,对于小型、 高难度形状的精密零件的制造,MIM工艺比较机械加工而言,其成本较低且效 率高,具有很强的竞争力。 以往在传统加工技术中先作成个别元件再组合成组件的方式,在使用MIM 技术时可以考虑整合成完整的单一零件,大大减少步骤、简化加工程序。 MIM技术并非与传统加工方法竞争,而是弥补传统加工方法在技术上的不足 或无法制作的缺陷。MIM技术可以在传统加工方法制作的零件领域上发挥其特 长。MIM工艺在零部件制造方面所具有的技术优势可成型高度复杂的结构零件。
金属粉末的注射成型

具有极高的表面积和活性,能够提高 材料的力学性能和电磁性能,为金属 粉末注射成型的发展提供了新的方向 。
材料性能与成型工艺的关系
1 2 3
流动性
金属粉末的流动性直接影响注射成型的充模能力 和制件质量,流动性好的粉末有利于提高制件的 光洁度和尺寸精度。
压缩性
金属粉末的压缩性决定了其在模具内的填充密度 和制件的致密度,压缩性好的粉末能够提高制件 的机械性能。
医疗器械领域
制造个性化医疗器械和植入物,满足医疗行业对个性化、高性能 和高安全性的需求。
感谢您的观看
THANKS
注射成型操作
将混合料加热至流动状态,注入 模具中,在压力和温度的作用下, 混合料填充模具并硬化定型。
后处理
脱脂
烧结
通过加热或化学方法将粘结剂从金属粉末 中分解、去除,以获得纯净的金属制品。
将脱脂后的金属粉末制品在高温下进行烧 结,使金属粉末颗粒之间形成冶金结合, 提高制品的强度和性能。
热处理
表面处理
度和复杂度。
新型粘结剂的开发
02
研究新型粘结剂,以提高金属粉末的粘结效果,降低成型难度
和成本。
连续注射成型技术
03
开发连续注射成型技术,实现金属粉末的连续加工,提高生产
效率和降低能耗。
新材料的应用与开发
高性能金属粉末
研究开发高性能金属粉末,如钛合金、镍基高温 合金等,以满足高端制造业的需求。
复合材料的应用
详细描述
粉末流动性问题通常表现为注射压力不足、填充不均匀、成 型时间延长等。为了解决这一问题,可以采用改善粉末粒度 分布、降低粉末含水量和加入润滑剂等方法,以提高粉末的 流动性。
成型精度问题
金属注射成型综述要点

金属注射成型综述要点金属注射成型(MIM)是一种通过将金属粉末与塑料注射成型技术相结合的新型金属加工方法。
它以其高效率、高精度和复杂形状制造能力而受到广泛关注。
本文将对金属注射成型技术的原理、工艺流程、优点和应用领域等进行综述。
1.技术原理金属注射成型是将金属粉末与有机聚合物混合后,在高温下进行塑性加工。
首先,将金属粉末与粘结剂混合,形成金属粉末/粘结剂浆料。
然后,通过注射成型机将该浆料注入金属注射模具中。
在注射模具中,通过压力和温度的作用,金属粉末与粘结剂烧结成型。
最后,通过去除粘结剂和烧结金属零件的后处理工艺,获得最终的金属注射成型零件。
2.工艺流程金属注射成型的工艺流程主要包括:原料准备、混合、注射成型、脱脂、烧结和后处理。
在原料准备阶段,需要准备金属粉末、粘结剂和其他辅助材料。
混合阶段是将金属粉末与粘结剂混合,并形成浆料。
注射成型阶段将浆料注入金属注射模具中,并在高温下进行塑性变形。
脱脂阶段是将注射成型的零件在高温下去除粘结剂。
烧结阶段是将零件在高温下烧结,以实现金属颗粒的结合和形状的固定。
最后,通过后处理工艺,如表面处理、加工和涂装等,得到最终的金属注射成型零件。
3.优点(1)高精度:金属注射成型可以制造出复杂形状的零件,并且具有高精度和低尺寸偏差。
(2)高效率:金属注射成型可以通过注射成型机实现大规模的连续生产,提高生产效率。
(3)材料利用率高:金属注射成型可以利用可回收的金属粉末制造零件,减少材料浪费。
(4)节省成本:金属注射成型可以减少后续加工工序,节省制造成本。
(5)材料性能优良:金属注射成型所制造的零件具有高密度、均匀组织和优良的机械性能。
4.应用领域金属注射成型技术已广泛应用于汽车、医疗器械、电子设备、航天航空等领域。
在汽车行业中,金属注射成型可以制造出发动机零件、变速器零件和车身零件等。
在医疗器械领域,金属注射成型可以制造出植入物、外科器械和牙科器械等。
在电子设备领域,金属注射成型可以制造出连接器、插头和传感器等。
金属注射成型简介

该工艺需要大量能源,如电和热能,能源消耗大且效率低。
废弃物排放
金属注射成型过程中会产生有害气体和废水,如未经处理直接排 放,会对环境造成严重破坏。
安全问题
高温环境
金属注射成型需要在高温环境下进行,操作人员可能面临烫伤风 险。
机械伤害
金属注射成型设备在运行过程中可能发生故障,导致机械伤害事故 。
04
金属注射成型的发展趋势和挑 战
技术发展趋势
智能化生产
随着工业4.0和智能制造的推进,金属 注射成型的生产过程将更加智能化, 实现自动化、数据驱动的生产决策。
增材制造集成
新型材料应用
新型金属材料和复合材料的开发与应 用,将拓展金属注射成型的领域和市 场。
金属注射成型将与增材制造技术结合 ,实现复杂结构的高效、精密成型。
金属注射成型简介
汇报人: 2024-01-06
目录
• 金属注射成型定义 • 金属注射成型的应用 • 金属注射成型的技术与设备 • 金属注射成型的发展趋势和挑
战
目录
• 金属注射成型与其他成型工艺 的比较
• 金属注射成型的环保与安全问 题
01
金属注射成型定义
金属注射成型的定义
金属注射成型是一种将金属粉末与有机粘结剂混合,通过注 射机注入模具中,经过加热、固化、脱脂和烧结等工艺过程 ,最终形成致密金属零件的成型技术。
研发环保型的金属注射成型工艺和材料,降低生产过程中的环境 污染。
高精度与高性能产品
通过工艺优化和技术创新,提高金属注射成型产品的精度和性能。
跨领域合作与创新
加强与其他制造领域的合作,共同推动金属注射成型技术的进步和 应用拓展。
05
金属注射成型与其他成型工艺 的比较
金属粉末注射成型设备和发展

金属粉末注射成型设备和发展金属粉末注射成型(Metal Powder Injection Molding, MIM)是一种将金属粉末与有机粘结剂混合,然后通过注射成型、脱脂和高温烧结等工艺制造金属零件的先进技术。
该技术在近几十年来得到了快速发展,并在各个领域得到了广泛应用。
在金属粉末注射成型设备的发展中,关键技术主要包括金属粉末的混合、注射成型、脱脂和烧结等环节。
首先,金属粉末需要与有机粘结剂进行均匀混合,以便于注射成型。
注射成型过程中,需要控制注射压力和速度,使得金属粉末在模具中充分填充,并保持良好的成型精度。
脱脂是将有机粘结剂从注射成型件中去除的过程,通常采用热解或溶解方法。
最后,通过高温烧结将金属粉末颗粒熔合,使其形成致密的金属零件。
在金属粉末注射成型设备的发展过程中,关键技术的发展促进了设备的性能提升和生产效率的提高。
首先,注射成型精度得到了大幅提升。
现代设备通过控制注射压力和速度,减小了成型件的收缩和变形,提高了成型精度。
其次,设备的自动化程度逐步提高。
自动化设备可以实现单人操作多台设备,大大提高了生产效率。
此外,设备的可靠性和稳定性也得到了很大的提升,降低了故障率和维修成本。
金属粉末注射成型设备的发展不仅带动了技术的进步,同时也推动了该技术在各个领域的应用。
金属粉末注射成型技术具有成型精度高、零件复杂度高、材料利用率高等优势,适用于制造复杂形状的零件,如微小零件、精密零件和具有多孔结构的零件。
目前,金属粉末注射成型技术已广泛应用于汽车、航空航天、医疗器械、电子设备等领域。
在未来,金属粉末注射成型设备将继续发展。
随着新材料的不断涌现,将会有更多种类的金属粉末可以用于注射成型,从而进一步扩大该技术的应用范围。
同时,注射成型工艺的优化和新工艺的引入将提高成型精度和生产效率。
此外,设备的智能化和网络化也将成为未来的发展趋势,实现设备的远程监控和数据分析,提高生产过程的控制和管理水平。
总之,金属粉末注射成型设备的发展已经取得了显著的进展,在提高生产效率和产品质量方面发挥了重要作用。
金属注射成形 MIM

PIM
技术概念:
粉末注射成形工艺技术(简称 PIM),包括金属注射成形(Metal Injection Molding,MIM)与陶瓷注射成形(Ceramics Injection Molding,CIM)两部分是一种将粉末冶金与塑料成形工艺相结合的新型制造工艺技术。
它是先将所选粉末与粘结剂进行混合,然后将混合料进行制粒再注射成形所需要的形状。
聚合物将其粘性流动的特征赋予混合料,而有助于成形、模腔填充和粉末装填的均匀性。
成形以后排除粘结剂,再对脱脂坯进行烧结。
有的烧结产品还可能要进行进一步致密化处理、热处理或机加工。
烧结产品不仅具有与塑料注射成形法所得制品一样的复杂形状和高精度,而且具有与锻件接近的物理、化学与机械性能。
在传统机械加工技术中,对于复杂的零件,通常是先分解并制作出单个零件,然后再组装;而在使用PIM技术后,完全可以考虑将其整合成完整的单一零件,这样大大减少了生产步骤,简化了加工程序,节约成本,提高效率。
这样的技术特点使得该工艺技术特别适合大批量生产小型、精密、三维形状复杂以及具有特殊性能要求的金属零部件的制造。
下图体现了PIM与其它工艺比较的综合优势:可以低成本地大批量生产复杂形状的高性能产品。
PIM生产制程:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属注射成型综述要点河南工程学院《机械工程材料与成形工艺》考查课专业论文金属注射成型学生姓名:学院:专业班级:专业课程:任课教师:201 年月日摘要金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制高、耐磨性好的制品,近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。
这种新的粉末冶金成形方法称为金属注射成形。
金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。
关键词:金属注射成形粘结剂脱脂烧制一、金属粉末注射成型的发展现状及现状1. 国外概况金属粉末注射成型工艺技术的开拓者是美国的Parmatech公司。
该公司的航天燃料专家Wiech博士于1973年发明了MIM技术。
以Riverst和Wiech于70年代发明的专利为起点,开始了金属粉末注射成形技术。
Parmatech于70年代末注射成型铌火箭喷嘴获得MPIF 奖。
但由于该技术的独特优点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期间美国国内的MIM技术得以成熟并迅速发展形成产业化。
该项技术向世界披露后得到世界各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。
其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推展。
目前日本有四十余家企业从事MIM制品的生产,每家公司的利润都十分可观。
2000年世界粉末冶金会议在日本召开,并专门设立了MIM技术论坛。
继日本快速发展之后,台湾、韩国、新加坡、欧洲和南美的MIM 产业也雨后春笋般的发展起来,其中德国的BASF公司以其独特的黏结剂配方成立了专门的MIM产品喂料生产线,在全世界范围内进行技术辅导和喂料的销售,获得了较大的商业利润。
德国BASF公司的Bloemacher于90年代初开发的MIM工艺成为MIM实现产业化的一个重大突破。
它采用聚醛树脂作为粘结剂,并在酸性气氛中快速催化脱脂,不仅大大缩短了脱脂时间,而且这种催化脱脂能在低于粘结剂的软化温度下进行,避免了液相的生成,有利于控制生坯的变形,保证了烧结后的尺寸精度。
同时,由于利用了聚醛树脂极性连接金属粉末,故适合于多种粉末的注射。
这种工艺不仅大大降低了生产成本,提高了生产率,并且可生产尺寸较大的零件和制品,扩大了MIM的应用范围,从而使MIM真正成为一种具有竞争力的PM 近净成型技术。
作为该项技术的发明国美国。
MIM技术已经广泛的应用于航天、摩托车、汽车、医疗器械、食品机械、计算机、通信设备、五金工具、仪器仪表、钟表等各个制造行业,MIM企业也因此赚了个盆满钵满。
据粉末冶金协会粗略统计和预测,全球MIM产品的销售量正在以每年30%-40%的速度递增。
预计到2010年平均年销售量将超过24亿美元。
2.国内状况中国MIM技术的产业化发展只有不到十年的时间,技术的研究始于八十年代末,从事研究开发的单位不足l0家,虽然黏结剂各有不同,但都取得了可喜的成果,有的已经达到国际先进水平.而在MIM 技术的应用及产业化方面与国外相比存在一定的差距。
原因有以下几个方面:(1)中国1956年才开始粉末冶金的发展,基础实力薄弱。
(2)机械制造业与发达国家相比落后,工程技术人员的开发能力不足。
(3)国内技术人员对MIM技术的认识程度不够,制约了MIM技术的推广。
金属粉末射出成形(Metal powder Injection Molding)在中国的发展﹐可以说受惠于手机产业的带动﹐从2009年开始整个行业便扶摇直上;尤其到了2011年中后﹐更因为受到美商苹果计算机与韩商三星电子两家的商品竞争﹐在手持装置中大量采用MIM零件﹐是过去从未见到的热潮。
当然﹐其他方面的应用﹐MIM技术和产品更是不惶多让﹐包含:汽车燃料喷射系统、航空器的侦测系统(高空恶劣环境侦测如:温度、高度与空气氧气浓度)、乐器零组件、电子用散热模块与热管密封模块、电子连接器工具机零件、光纤接头、喷雾嘴、硬式磁盘驱动器零件、药用容器与装置、电动手工具零件、泵浦磨耗件、外科医疗器械及运动器材。
这些零件都是MIM逐步拓展的市场。
我们可以从台湾与大陆MIM制造商增加速度来看﹐从2009年不到50家﹐到2013年现在﹐突破100家的速度﹐平均机台数量至少为达到12 : 4 = 射出成形机台数: 烧结炉线数﹐甚至要更高的﹐这些惊人的发展意味着MIM行业的正在中国快崛起。
二、现行国际与国内MIM工艺流程演进现行中国的MIM行业受到早期BASF的射料的影响﹐酸脱催化烧结的方式一直难有突破﹐主要在于专用材料的调整性极乎其微﹐这是国际上的主流虽然一致﹐但是缺乏了弹性将导致中国MIM产业无法创新。
所幸BASF的催化脱黏专利已经到期﹐且BASF愿意在特定合约下提供更低价的原料﹐加上国内中南大学与华南理工的研究突破﹐在网络上公布了几篇研究报告﹐以塑基配方(相仿于BASF配方)也渐渐被应用﹐我们可以说目前中国境内的MIM技术应该是世界的前锋。
同时﹐因为世界工厂的地位﹐MIM产品结合其他手段的二次处理和加工﹐更是大大的向前迈进。
这是很有趣的技术整合﹐以MIM 制作近净型(Near net shape)的“精坯“(Advanced sinter part)﹐随后加以冲压、切边、整型、抛光甚至激光蚀刻等等﹐有许多令人惊艳的成绩!因此﹐我认为中国引领世界MIM技术的潮流﹐成MIM混合式整合技术(Hybrid and integration process with MIM)﹐大大提升金属零件加工的效率﹐以及节省大量能源而努力。
国内MIM产业的挑战金属粉末原材料国产的金属粉末因为质与量的关系﹐一直没有办法突破﹐这必须要结合国内MIM产业与学校一起合作﹐如何做出质量稳定而且是大批量的金属粉末﹐我想关键在于理解MIM用金属粉末和传统PM用金属粉末两者是截然不同﹐这点必须强调对于粉体科学得研究和开发﹐还要加油!三、3MIM粉末及制粉技术1. 3MIM粉末MIM对原料粉末要求较高,粉末的选择要有利于混炼、注射成形、脱脂和烧结,而这往往是相互矛盾的,对MIM原料粉末的研究包括:粉末形状、粒度和粒度组成、比表面等。
由于MIM原料粉末要求很细,MIM原料粉末价格一般较高,有的甚至达到传统PM粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有羰基法、超高压水雾化法、高压气体雾化法等。
2. 粘结剂粘结剂是MIM技术的核心,在MIM中粘结剂具有增强流动性以适合注射成形和维持坯块形状这两个最基本的职能,此外它还应具有易于脱除、无污染、无毒性、成本合理等特点,为此出现了各种各样的粘结剂,近年来正逐渐从单凭经验选择向根据对脱脂方法及对粘结剂功能的要求,有针对性地设计粘结剂体系的方向发展。
粘结剂一般是由低分子组元与高分子组元再加上一些必要的添加剂构成。
低分子组元粘度低,流动性好,易脱去;高分子组元粘度高,强度高,保持成形坯强度。
二者适当比例搭配以获得高的粉末装载量,最终得到高精度和高均匀性的产品。
通常采用的粘结剂主要有:热塑性体系(石蜡基、油基和热塑性聚合物基)、凝胶体系、热固性体系和水溶性体系。
3. 混炼混炼是将金属粉末与粘结剂混合得到均匀喂料的过程。
由于喂料的性质决定了最终注射成形产品的性能,所以混炼这一工艺步骤非常重要。
这牵涉到粘结剂和粉末加入的方式和顺序、混炼温度、混炼装置的特性等多种因素。
这一工艺步骤目前一直停留在依靠经验摸索的水平上,最终评价混炼工艺好坏的一个重要指标就是所得到喂料的均匀和一致性。
MIM喂料的混合是在热效应和剪切力的联合作用下完成的。
混料温度不能太高,否则粘结剂可能发生分解或者由于粘度太低而发生粉末和粘结剂两相分离现象,至于剪切力的大小则依混料方式的不同而变化。
MIM常用的混料装置有双螺旋挤出机、Z形叶轮混料机、单螺旋挤出机、柱塞式挤出机、双行星混炼机、双凸轮混料机等,这些混料装置都适合于制备粘度在1-1000Pa·s 范围内的混合料。
混炼的方法一般是先加入高熔点组元熔化,然后降温,加入低熔点组元,然后分批加入金属粉末。
这样能防止低熔点组元的气化或分解,分批加入金属粉可防止降温太快而导致的扭矩急增,减少设备损失。
对于不同粒度粉末搭配时的加料方式,日本专利介绍:先将较粗的15-40um水雾化粉加入粘结剂中,然后加入5-15um粉,最后加入粉度≤5um粉,这样得到的最终产品的收缩变化很少。
为了在粉末周围均匀涂覆一层粘结剂,还可将金属粉末直接加入到高熔点组元中,再加入低熔点组分,最后去除空气即可。
如Anwar 将PMIMA悬浮液直接加入到不锈钢粉中混合,然后将PEG水溶液加进去,干燥,然后边搅边除去空气。
O'connor采用溶剂混合,先将SA与粉干混再加入四氢呋喃溶剂,然后加入聚合物,四氢呋喃在受热中逸去后,再加入粉末混合,可得到均匀的喂料。
4. 注射成形注射成形的目的是获得所需形状的无缺陷、颗粒均匀排由的MIM 成形坯体。
如图1所示,首先将粒状喂料加热至一定高的温度使之具有流动性,然后将其注入模腔中冷却下来得到所需形状的具有一定刚性的坯体,然后将其从模具中取出得到MIM成形坯。
这个过程同传统塑料注射成形过程一致,但由于MIM喂料高的粉末含量,使得其注射成形过程在工艺参数上及其它一些方面存在很大差别,控制不当则易产生各种缺陷。
MIM产品可能的缺陷大部分是在注射成形步骤中形成,如裂纹、孔隙、焊缝、分层、粉末与粘结剂分离现象等。
但这些缺陷经常是直至脱脂和烧结后由于注射时产生的应力被释放后才能发现,因此,注射成形工艺的控制对提高产品成品率和材料利用率非常关键。
注射成形时缺陷控制问题基本可以分为二个方面,一是成形温度、压力、时间三者函数关系设定,另一方面则是填充时喂料在模腔中的流动就牵涉到模具设计的问题,包括在进料口的位置、流道的长短、排气孔的设置等,这些都需要对喂料流变性质、模腔内温度和残余应力分布清楚的了解。
计算机模拟技术在金属粉末注射成形模具设计方面将可发挥重要的作用。
5. 脱脂从MIM技术产生以来,随着粘结剂体系的不同,形成了多种MIM 工艺路径,脱脂方法也多种多样。
脱脂时间由最初的几天缩短以了现在的几小时。
从脱脂步骤上可以粗略地将所有的脱脂方法分为两大类:一类是二步脱脂法。
二步脱脂法包括溶剂脱脂+热脱脂,虹吸脱脂——热脱脂等。