三维成像声纳毕业教学文稿

合集下载

基于FPGA的高精度三维成像声呐系统

基于FPGA的高精度三维成像声呐系统

基于FPGA的高精度三维成像声呐系统
 摘要:高精度三维成像声呐的实现需要完成大规模信号同步采集和海量数据并行计算,为此,提出基于现场可编程逻辑门阵列的并行计算系统。

在使用同源时钟的前提下,利用Spartan-3 对平面阵2304 路换能器信号进行同步采样,通过离散傅里叶变换降采样以减小采样数据规模,采用Virtex-5 重新计算换能器权重以降低运算量,使用分步的波束形成算法以减小系统所消耗的存储器规模,同时在PC上实现三维图像实时显示。

实验结果证明了该系统的可行性。

1 概述
 高精度三维成像技术是目前水声设备研究的重要创新领域,在海底勘探、沉船打捞、海洋研究等领域都有重要应用。

目前研制高精度三维声呐成像系统需要克服的关键技术难点在于大规模换能器数据的同步采集和海量数据的并行计算所带来的巨大的硬件开销[1]。

为此,文献[2]提出使用稀疏矩阵换能器阵列,对平面阵内不同索引号的换能器进行权重分配,对权重为0 的换能器做忽略处理从而减少前端信号采集通道和后端的数据运算量。

从减少波束形成过程中参与并行运算矩阵的大小出发,文献[3]提出将大阵列进行多子阵划分,通过换能器发射机和接收机做一定的匹配设计,使用波束多级合成的办法形成最终的波束,也能做到减少运算量。

《多波束成像声呐仿真及成像分析研究》范文

《多波束成像声呐仿真及成像分析研究》范文

《多波束成像声呐仿真及成像分析研究》篇一一、引言多波束成像声呐(Multi-beam Imaging Sonar)是一种高分辨率、高精度的水下探测设备,广泛应用于海洋科学研究、水下考古、海洋资源探测以及军事等领域。

其工作原理是通过发射多个声波束,对水下目标进行扫描,并根据接收的回波信息重构目标的图像。

近年来,随着计算机技术和信号处理技术的不断发展,多波束成像声呐在成像性能和抗干扰能力方面取得了显著的进步。

本文将对多波束成像声呐的仿真及其成像分析进行研究。

二、多波束成像声呐的仿真1. 仿真模型建立多波束成像声呐的仿真模型主要包括声呐系统模型、目标模型和环境模型。

声呐系统模型包括发射器、接收器和信号处理模块等;目标模型用于模拟水下目标的形状、大小和材质等特征;环境模型则用于模拟水体的声速、温度、盐度等参数以及水下的地形地貌等。

在仿真过程中,首先需要根据实际需求和条件,设定仿真参数,如声呐的工作频率、波束数、扫描速度等。

然后,通过建立仿真模型,模拟声波的发射、传播和接收过程。

2. 仿真结果分析仿真结果主要包括声波的传播图像和回波信号的时序图。

通过对这些图像和时序图的分析,可以了解声波在水下的传播特性,如声速分布、衰减等。

同时,还可以分析回波信号的强度、频率等特征,为后续的成像处理提供依据。

三、多波束成像分析1. 成像原理多波束成像声呐的成像原理是通过多个声波束对水下目标进行扫描,根据接收到的回波信息重构目标的图像。

在成像过程中,需要考虑到声波的传播特性、目标特性以及环境因素等多种因素。

2. 成像性能评价多波束成像声呐的成像性能主要受到分辨率、信噪比和动态范围等指标的影响。

分辨率越高,能够分辨出目标越细微的特征;信噪比越高,图像的清晰度越高;动态范围则决定了图像的亮度和对比度。

通过对这些指标的分析,可以评价多波束成像声呐的成像性能。

3. 成像结果分析通过对多波束成像声呐的实际应用进行实验研究,可以获得水下目标的图像。

《多波束成像声呐仿真及成像分析研究》范文

《多波束成像声呐仿真及成像分析研究》范文

《多波束成像声呐仿真及成像分析研究》篇一一、引言随着科技的不断发展,声呐技术在海洋探测、水下目标追踪以及海洋环境监测等领域中扮演着重要的角色。

其中,多波束成像声呐(MBINS)技术因其具有较高的空间分辨率和宽广的覆盖范围而受到广泛的关注。

本文将对多波束成像声呐的仿真技术及成像分析进行研究,为实际应用提供理论基础和依据。

二、多波束成像声呐的基本原理多波束成像声呐系统由声波发射器、声波接收器、信号处理模块等部分组成。

系统通过发射多束声波并接收回波信号,将接收到的回波信号进行处理、分析和显示,形成多波束的声呐图像。

这种技术利用了声波的传播特性和声呐系统的空间分辨能力,实现了对水下环境的精确探测和成像。

三、多波束成像声呐仿真研究(一)仿真模型建立为了研究多波束成像声呐的性能,我们首先需要建立一个仿真模型。

该模型应包括声呐系统的发射和接收模块、信号处理模块以及水下环境模型等部分。

其中,水下环境模型应考虑到水体的温度、盐度、深度等因素对声波传播的影响。

(二)仿真参数设置在仿真过程中,我们需要设置一系列的参数,如声波的频率、发射角度、接收阵列的布局等。

这些参数的设置将直接影响到仿真结果的准确性和可靠性。

因此,我们需要根据实际需求和实验条件进行合理的参数设置。

(三)仿真结果分析通过仿真实验,我们可以得到多波束成像声呐的回波信号和声呐图像。

通过对这些结果的分析,我们可以评估声呐系统的性能,包括空间分辨率、覆盖范围、噪声抑制能力等。

同时,我们还可以通过改变仿真参数,研究不同参数对声呐系统性能的影响。

四、多波束成像声呐的成像分析(一)图像处理技术为了得到清晰的声呐图像,我们需要对回波信号进行一系列的图像处理技术。

包括去噪、增强、边缘检测等。

这些技术可以有效地提高图像的信噪比和对比度,使得水下环境更加清晰地呈现在图像中。

(二)图像分析方法通过对声呐图像的分析,我们可以得到水下环境的各种信息。

例如,我们可以根据图像中的回声强度来判断物体的距离和大小;根据回声的形状和分布来判断物体的形状和结构等。

声呐图像的三维重建技术研究

声呐图像的三维重建技术研究

声呐图像的三维重建技术研究声呐技术是一种无创性、安全可靠的医疗检测手段,能够在人体内部获得高分辨率的图像信息,发挥了在医学、生物医学等领域的重要作用。

然而,传统的声呐图像是二维的,只有一个截面信息,难以准确还原三维模型信息。

因此,声呐图像的三维重建技术研究也成为了目前医疗影像领域的研究热点之一。

一、三维重建技术的应用声呐图像三维重建技术在医疗诊断、治疗方案制定、手术规划等方面都有着广泛的应用。

例如,对于心脏病的诊断,三维重建技术可以通过重建立体实体模型,通过旋转、放大等操作判读心脏病发生部位、大小、形态特征等重要信息,对病情进行全面评估。

在骨科手术规划中,医生可以通过重建患者受伤部位的三维模型,对手术范围、操作角度等进行合理规划,术前精确确定手术的困难程度、手术时间和术后的修复进程。

二、三维重建技术的发展历程早在20世纪90年代,人们开始尝试使用三维重建技术研究声呐图像的三维结构。

最初的方法是通过单张不同角度的二维图像叠加,最终形成三维模型。

但是由于这种方法耗时长且图像信息不准确,限制了进一步的应用。

随着数字成像技术的发展,更高精度、更高效率的三维重建技术应运而生。

目前主要的三维重建技术包括基于成像图像的方法和基于声信号的方法。

三、基于成像图像的三维重建技术基于成像图像的三维重建技术是通过对多个二维图像进行合成,构建成三维模型。

这种技术需要获取多张图像,而且需要确保拍摄角度不同,增加图像间的差异性。

这种方法可以通过多个诊断仪器进行图像采集,例如核磁共振、CT、X光等仪器。

通过对这些成像技术得到的图像进行重建,可以得到具有高精度的三维模型。

四、基于声信号的三维重建技术基于声信号的重建技术是通过对声信号的处理和分析,重建出三维模型。

这种技术需要先将声信号转换成二维图像,然后再基于多个二维图像构建成三维模型。

这种方法可以通过超声波成像仪器进行采集,该仪器可以捕获到三维声波反射信息。

通过对反射信息进行处理和分析,可以形成高精度的声呐图像三维重建模型。

《多波束成像声呐仿真及成像分析研究》范文

《多波束成像声呐仿真及成像分析研究》范文

《多波束成像声呐仿真及成像分析研究》篇一一、引言多波束成像声呐(Multi-beam Imaging Sonar)是现代海洋探测和海洋科学研究的重要工具。

它通过发射多个声波束,对目标区域进行快速、高分辨率的扫描和成像,为海洋科学研究、水下探测和海洋资源开发提供了重要的技术支持。

本文将针对多波束成像声呐的仿真及成像分析进行研究,旨在提高声呐系统的性能和成像质量。

二、多波束成像声呐原理多波束成像声呐系统主要由发射器、接收器、信号处理器和计算机等部分组成。

在工作过程中,发射器发出多个声波束,对目标区域进行扫描。

这些声波束遇到目标后会发生反射,接收器接收反射信号并传输到信号处理器中。

信号处理器对接收到的信号进行处理,提取出目标的位置、速度和类型等信息,并将这些信息传输到计算机中进行成像处理。

三、多波束成像声呐仿真为了研究多波束成像声呐的性能和成像质量,我们进行了仿真实验。

仿真实验主要分为以下步骤:1. 建立仿真模型:根据多波束成像声呐的工作原理,建立仿真模型。

包括发射器、接收器、信号处理器等部分的建模。

2. 设定仿真参数:根据实验需求,设定仿真参数,如声速、声波束的角度、扫描速度等。

3. 仿真实验:通过仿真软件进行仿真实验,模拟多波束成像声呐对目标区域的扫描和成像过程。

4. 结果分析:对仿真结果进行分析,包括声波束的覆盖范围、分辨率、信噪比等指标的评估。

四、多波束成像声呐成像分析在多波束成像声呐的成像过程中,需要对接收到的信号进行处理和解析,以提取出目标的位置、速度和类型等信息。

我们通过对多波束成像声呐的成像过程进行分析,得出以下结论:1. 分辨率的提高:通过增加声波束的数量和改善信号处理算法,可以提高多波束成像声呐的分辨率,从而获得更高质量的图像。

2. 信噪比的改善:通过对接收到的信号进行滤波和增强处理,可以改善信噪比,提高图像的清晰度和对比度。

3. 目标类型的识别:通过对反射信号的特征进行分析和识别,可以判断目标的类型和性质,为后续的海洋科学研究和水下探测提供重要的信息。

小平台三维成像声呐显示系统实现

小平台三维成像声呐显示系统实现

小平台三维成像声呐显示系统实现
徐剑;周天;李海森;么彬
【期刊名称】《沈阳工业大学学报》
【年(卷),期】2011(033)005
【摘要】为了满足小平台声呐声学三维成像的需要,并对海底地形进行估计,提出了一种以OMAP5912双核处理芯片为核心处理器,基于DSP内核实时实现的多子阵幅度-相位联合检测算法.利用ARM内核自主开发了三维显示函数库,实现了基于LCD的海底地形信息三维重构显示,并利用QT/E设计了人机交互界面.此小平台三维成像声呐系统在松花湖外场实验过程中性能稳定,能够有效完成湖底三维地形信息的伪彩显示,充分验证了该方法的有效性、实用性与优越性.
【总页数】5页(P566-569,581)
【作者】徐剑;周天;李海森;么彬
【作者单位】哈尔滨工程大学水声技术国家级重点实验室,哈尔滨150001;哈尔滨工程大学水声技术国家级重点实验室,哈尔滨150001;哈尔滨工程大学水声技术国家级重点实验室,哈尔滨150001;哈尔滨工程大学水声技术国家级重点实验室,哈尔滨150001
【正文语种】中文
【中图分类】TP39
【相关文献】
1.三维成像声呐的设计与实现 [J], 桑恩方;张小平;苏龙滨
2.基于DMD的真三维显示系统及其三维成像引擎设计 [J], 韩刚;耿征
3.集成成像三维显示系统显示性能的研究进展 [J], 赵星;王芳;杨勇;方志良;袁小聪
4.三维声呐成像系统在防波堤水下安装块石中的运用 [J], 胡金龙;邓居勇
5.三维ABUS图像多平面联合显示平台的MATLAB实现方法 [J], 闵一迪;吴俊;汪源源;徐丹;罗华友;孙亮;舒若
因版权原因,仅展示原文概要,查看原文内容请购买。

一种声纳图像的三维重建方法

一种声纳图像的三维重建方法

一种声纳图像的三维重建方法李雪峰;姜静【摘要】声纳是重要水下探测与感知设备, 但普通的二维声纳图像包含信息较少, 不利于直观的理解.本文基于声纳图像的映射原理、利用多视角的几何映射关系建立一种特征点的三维重建方法.对声纳的映射与逆映射原理进行描述与分析, 建立一种对高度特征分段分层搜索的重建方法, 实现旋转、平移参数已知情况下的重建;对参数未知的情况, 利用粒子群优化算法和少量特征点获得参数的估计, 在此基础上实现更多特征点的重建;最后增加传感器对旋转平移参数带有误差的估计, 实现重建精度大幅度地提升.该方法对特征点的数量以及重建环境的变化不敏感, 是一种适应性好、鲁棒性较强的方法.%Sonar is an important equipment for submarine detection and perception, but usual two-dimensional sonar images contain fewinformation and can not be comprehended intuitively. Depending on mapping theory of sonar image and using sonar multiple viewgeometry a three-dimensional reconstruction method for feature points is proposed in this paper.The theories of sonar mapping and their inverse mapping are described for building a threedimensional reconstruction method searching height feature in different segmental arc of every layer, which could realize reconstruction under the condition that rotation and translation parameters are known. Corresponding to situations that those parameters are not known, particle swarm optimization algorithm is used to estimate parameters via using fewfeature points. Then more feature points are reconstructed subsequently by estimated parameters. At the end of this paper, the precision is improved drastically by appendingrotation and translation parameters which are estimated by sensors with some errors. This described method is not easy to be obstructed by the number of feature points or reconstruction of scene, and hasgood adaptation as well as robustness.【期刊名称】《沈阳理工大学学报》【年(卷),期】2018(037)005【总页数】8页(P38-45)【关键词】三维重建;声纳图像;粒子群优化【作者】李雪峰;姜静【作者单位】沈阳理工大学自动化与电气工程学院,沈阳 110159;中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳 110016;沈阳理工大学自动化与电气工程学院,沈阳 110159【正文语种】中文【中图分类】TP751.1随着能源、矿产等资源的日渐紧张,海洋资源的开发和利用越来越受到世界各国的重视,海洋技术与空天技术并列成为21世纪尖端科技竞争的焦点[1-2]。

声呐相关实验-实验指导

声呐相关实验-实验指导

专业实验——声学部分实验指导实验1 侧扫声呐实验实验目的1.掌握侧扫声呐的工作原理。

2.学习侧扫声呐的使用方法。

3.测量校区附近特定水域的地形地貌,并分析。

一、实验原理1.侧扫声呐原理侧扫声呐的基本工作原理与侧视雷达类似,侧扫声呐左右各安装一条换能器线阵,首先发射一个短促的声脉冲,声波按球面波方式向外传播,碰到海底或水中物体会产生散射,其中的反向散射波(也叫回波)会按原传播路线返回换能器被换能器接收,经换能器转换成一系列电脉冲。

一般情况下,硬的、粗糙的、凸起的海底,回波强;软的、平滑的、凹陷的海底回波弱,被遮挡的海底不产生回波,距离越远回波越弱。

将每一发射周期的接收数据一线接一线地纵向排列,显示在显示器上,就构成了二维海底地貌声图。

声图平面和海底平面成逐点映射关系,声图的亮度包涵了海底的特征。

2点位于声呐的正下方,回波是很强的正发射波;4、5、6回波较强,6的回波先到换能器,然后是第5点,第6点。

6、7点没有回波,产生阴影区。

侧扫声呐有三个突出的特点:一是分辨率高,二是能得到连续的二维海底图像,三是价格较低。

其应用主要有海洋测绘和海洋地质调查(1)海洋测绘侧扫声呐可以显示微地貌形态和分布,可以得到连续的有一定宽度的二维海底声图,而且还可能做到全覆盖不漏测,这是测深仪和条带测深仪所不能替代的,所以港口、重要航道、重要海区,都要经过侧扫声呐测量。

(2)海洋地质调查侧扫声呐的海底声图可以显示出地质形态构造和底质的大概分类,尤其是巨型侧扫声呐,可以显示出洋脊和海底火山,是研究地球大地构造和板块运动的有力手段。

2.侧扫声呐参数说明1)、工作频率侧扫声呐一般工作在50 kHz-1. 2 MHz,较低的工作频率可以有较大的探测距离,而较高的工作频率能在有限长度的传感器尺寸下得到高的角度分辨力。

一般100 kHz左右的声呐作用距离可达600 m, 500 kHz左右的声呐工作距离为150 m左右。

2)、传播损失传播损失TL (dB>:水声传播损失主要计及球面拓展损失和吸收损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三维成像声纳姓名:徐静班级:1013105专业:光电子技术与科学院校:长春理工大学光电信息学院目录摘要第一章声呐1.1 声呐的概述1.2 三维成像技术1.3 三维成像声呐的发展现状第二章三维成像声呐的工作原理第三章三维成像声呐的应用第四章三维成像声纳的选择第五章结论和展望摘要声纳的发展背景:海洋蕴藏着丰富的矿产和能源,同时又具有重要的军事地位,海洋开发日益受到人们的重视。

首先,全球能源日益紧张,所以开发新的能源和空间十分必要,海洋是个巨大的能源宝库,具有很大的开发潜力。

其次,我国海岸线绵长,海域辽阔,了解海域特点、海底地形地貌状况对维护国家安全很有必要。

从上面可以看到成像声纳有着十分广泛的用途,不仅关系到军事方面,而且还关系到国民经济生活发展的很多方面,所以研究和发展成像声纳十分必要和迫切。

三维成像声纳所使用的可视化技术,将大量枯燥的数据以生动的立体图形图像的方式表现出来,使人们能够对声纳数据进行更直观的解释和分析,提高水下探测的工作效率。

借助成熟的三维显示技术,三维图形可被缩放、移动和转动、测距,以便工作人员可以从各种视角更好地进行观察和理解,提供准确、科学的依据。

1.1声呐的概述声呐是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,Sound Navigation And Ranging”是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水下探测和通讯任务的电子设备。

它有主动式和被动式两种类型,属于声学定位的范畴。

声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置。

声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。

此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。

1.2三维成像技术通常我们说一个客观的世界是三维的,客观世界的三维图像通过某种技术把它记录下来然后处理、压缩再传输出去,显示出来,最终在人的大脑中再现客观世界的图像,这个过程就是三维成像技术的全过程。

1.3 三位成像声纳的发展现状三维成像声纳与普通的多波数声纳的区别,在于它具有更高的分辨率,从而可以提供水下目标外形轮廓的更多细节描述。

高分辨率成像声纳在对水下目标进行成像时,能够提供非常优秀的图像质量,从而可以对目标进一步地跟踪和识别。

目前最前沿的三维成像声纳是以声透镜技术为基础,它能提供目标的实时动态视频图像,质量小、尺寸小,可以装载到各种AUV、ROV上进行水下作业。

声视觉导航:给出目标物尺寸和方位信息海底地貌检测:提供海底的等高线图和地理参考数据,海图的绘制。

残骸搜索:提供失事船只残骸的详细信息堤坝的检测:提供堤坝的裂缝信息管道检测:对海底油气输送管道进行安全检查桥墩探伤:检测受损桥墩的险情海港检测:给出水下目标的回声及运动轨迹和速度海床检测:矿产资源和能源勘探图1-1 海图图1-2 失事船只残骸第二章声纳工作的基本原理声纳头发射声音波束的频率是特定的,声纳头发射波束,波束经过障碍物反射,声纳头接收声音信号,将其转化为电信号;再通过RS232协议将电信号传输至水下光端机,光端机把电信号转化为光信号,光信号通过光缆传输至水上光端机,水上光端机把光信号转化为电信号,再通过RS232协议传输至声纳控制单元,声纳控制单元利用声纳的操作软件(如Seanet Pro)把声纳头扫描到的信息以图像的形式显示在显示屏上。

在水上,可以通过操作软件或控制单元面板控制声纳。

标准的声纳水下接头的是由Tritech提供的6针的接头,如图2-4所示。

图2-1 声纳发射与接收信号图2-2 声纳控制软件界面图2-3 声纳工作线路图2-4 声纳的六针接头第三章产品介绍及其应用示例3.1 产品介绍3.1.1Gemini 720iGemini 720i是一种紧凑型实时高频sonar,它创设了多波束成像声纳的新标准,优化的信号处理电路设计使Gemini 720i sonar提供清晰的实时图像;一个集成的声速计能进行图像的锐化和精确测距;声纳数据能呈现在Tritech公司的Senet Pro 或Gemini的独立操作软件上。

如图3-1:图3-1 Gemini 720i系统的主要技术规格:工作频率720KHz声学角度分辨率 1.0°扫描扇区120°波束个数256有效角度分辨率0.5°垂直波束宽度20°探测距离0.2m-120m扫描速率10-30Hz距离分辨率8mm接口规格:Power consumption 35WSupply voltage 18-75VDCComms Ethernet(10/100 Base T)orVSDL(with Ethernet 1000Baseavailable)机械参数:Depth Rating 300m(984ft)Weight in air 3.9Kg(8.82Lb)Weight in water 1.2Kg(2.65Lb)Width 135mm(5.31〞)Height 110mm(4.33〞)Depth 228mm(8.98〞)3.1.2 EclipseEclipse不仅是一个多波束测深系统,还可以安装在ROV上在2500m水深作为前视导航和三维立体化可视模式系统。

它采用延时式波束形成模式和电子式波束控制系统。

它电子扫频可以获得1.5°剖面式波束,声纳头前方120°x45°空间的图像数据可以获得。

并且以10米量程和1°扫频步进速度,Eclipse扫描整个工作空间不需要1秒。

3D模式可以吧测量数据进行数字化处理嵌入到3D图像中,图像包含距离、方位数据、水平和垂直距离,以及感兴趣的两个方位点之间的倾斜角度数据。

它有两种模式:剖面模式(120°x1.5°)或前视模式(120°x45°)。

Eclipse可以通过测距和辅助导航接近目标获得目标更详细的数据资料。

如图3-2:图3-2 eclipse系统的主要技术规格:物理特性甲板控制单元:Eclipse使用具有高性能图像处理功能的专用PC机作为甲板单元。

PC机安装有专用于和Eclipse声纳头通讯的硬件单元和处理软件。

3.1.3 Gemini 720idGemini 720id是继Gemini 720i之后的又一款前视三维实时成像声纳,它的耐压深度是4000m,波束宽度120°。

由于其优秀的调焦能力,它不仅适用于近距离观察ROV自身的推进器而且适用于远距离目标探测。

如图3-3:图3-3 Gemini 720id系统的主要技术规格:工作频率720KHz声学角度分辨率 1.0°扫描扇区120°波束个数256有效角度分辨率0.5°垂直波束宽度20°探测距离0.5m-120m 扫描速率7-30Hz距离分辨率8mm接口参数:Power consumption 35W Supply voltage 18-75VDCCommsEthernet(10/100 Base T)or VSDL(with Ethernet 1000Base available)ConnectorImpulse as standard,Schilling option available(Schilling seanet)机械参数:3.1.4 BLUEVIEW BV5000BLUEVIEW BV5000系列是高分辨率三维实时成像声纳目前该系列只要有两款三维成像声纳:BLUEVIEW BV5000-1350和BLUEVIEW BV5000-2250。

如图3-4:其参数如下表所示:图3-4 BLUEVIEW BV5000图3-7 gemini720i沉船扫描图3-8 BV5000-1350船坞扫描图3-9 BV5000-2250导管架扫描图3-10 二维声呐扫描示例第四章三维成像声纳的选择声纳的选择主要参考声纳的类型、价格以及以下五个参数:深度级别、频率、重量、扫描扇区、通讯接口以及性能。

类型二维避障声纳:这种声纳能够实现避障、搜索目标以及目标确认的功能。

三维成像声纳:这种声纳在目标物与声纳相对静止的条件下扫描到清晰的图像,这种声纳一般运用在码头、船坞、桥墩等的检测中,将这种声纳装在支架上放到河床上或者浅海海床上,在与目标物相对静止的条件下拍摄到扫描范围内的情况。

简单地说,这种声纳在零能见度条件下发挥了相机的作用,但与相机有两点不同:相机拍摄不到障碍物后面的情况,但是三维成像声纳能够现实障碍物后面的情况。

相机拍摄的结果是既定的,即照片中的内容已经定格了,但是三维成像声纳扫描得到得图形能够随意翻转,能够从另外的角度讲目标物显示在终端显示屏上。

三维实时成像声纳:这种声纳能够在目标物与声纳相对运动运动的情况下实时地将声纳扫描得到的数据以图像的形式展现在终端显示器上。

如ROV在检查海管时,ROV可以沿着管线前进,ROV可以扫描到声纳;这种声纳能够扫描到水中游动的鱼。

简单地说,这种声纳在零能见度条件下能够想摄像机一样拍摄到扫描范围内的情况,但与摄像机也有两点不同:摄相机拍摄不到障碍物后面的情况,但是三维成像声纳能现实障碍物后面的情况。

摄相机拍摄的结果是既定的,即照片中的内容已经定格了,但是三维成像声纳扫描得到得图形能够随意翻转,能够从另外的角度讲目标物显示在终端显示屏上。

频率声纳的频率越高、波束越窄成像的清晰度就越高,但是对光纤和光端机的要求也就越高,ROV命令、反馈信号、图像等信号的传输是通过单模光纤传播的,单模光纤相比于多模光纤可支持更长传输距离,在100Mbps的以太网,单模光纤都可支持超过5000m的传输距离,载波频率越大,同一根光纤能够传输的数据量越大,所以三维成像声纳的应用一般不会影响到其它信号的传输。

Quantum13、Quantum14、Quantum18、Quantum19铠甲缆中有六根光纤,Quantum13、Quantum14滑环中光滑环只允许两根光纤,Quantum18、Quantum19滑环中光滑环只允许三根光纤,并且一根是TMS的光缆,所以四套设备用于ROV 通讯的光纤各只有两根,其中一根是备用光纤。

声纳图像信息的容量过大,单根光纤无法传输时有两种方法可以解决:如果光端机可以同时对两根光纤编码,可以启用另一根光纤,一根光纤只传输声纳的信号,另一根传输其他信号。

如果光端机在同一时刻只能编码一根光纤上的数据,可以应用光纤收发器对另一根光纤收发信号。

重量下表中提供的重量参数中,Gemini 720i、Gemini 720id、Eclipse、Seaking DFS 都是声纳自身的重量,BV5000系列的两款声纳的重量包括云台的重量。

相关文档
最新文档