高考试题——数学理(辽宁卷)解析版
2022高考数学(理)真题精校精析(辽宁卷)(纯word书稿)

2022高考数学(理)真题精校精析(辽宁卷)(纯word 书稿)1.[2020·辽宁卷] 已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁∪B )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}1.B [解析] 本小题要紧考查集合的概念及差不多运算.解题的突破口为弄清交集与补集的概念以及运算性质.法一:∵∁U A ={}2,4,6,7,9,∁U B ={}0,1,3,7,9,∴(∁U A )∩(∁U B )={}7,9.法二:∵A ∪B ={}0,1,2,3,4,5,6,8,∴(∁U A )∩(∁U B )=∁U ()A ∪B ={}7,9.2.[2020·辽宁卷] 复数2-i 2+i =( ) A.35-45i B.35+45i C .1-45i D .1+35i2.A [解析] 本小题要紧考查复数的除法运算.解题的突破口为分子分母同乘以分母的共轭复数.因为2-i2+i =()2-i 2()2+i ()2-i =3-4i 5=35-45i ,因此答案为A.3.[2020·辽宁卷] 已知两个非零向量,满足+=-,则下面结论正确的是()A.B.C.=D.+=-3.B[解析] 本小题要紧考查向量的数量积以及性质.解题的突破口为关于模的明白得,向量的模平方就等于向量的平方.因为||a+b=||a-b⇔()a+b2=()a-b2⇔·=0,因此⊥,答案选B.4.[2020·辽宁卷] 已知命题p:∀x1,x2∈,(f(x2)-f(x1))(x2-x1)≥0,则綈p 是()A.∃x1,x2∈,(f(x2)-f(x1))(x2-x1)≤0B.∀x1,x2∈,(f(x2)-f(x1))(x2-x1)≤0C.∃x1,x2∈,(f(x2)-f(x1))(x2-x1)<0D.∀x1,x2∈,(f(x2)-f(x1))(x2-x1)<04.C[解析] 本小题要紧考查存在性命题与全称命题的关系.解题的突破口为全称命题的否定是存在性命题,存在性命题的否定是全称命题.全称命题的否定是存在性命题,故∀x1,x2∈,(f(x2)-f(x1))(x2-x1)≥0的否定是∃x1,x2∈,(f(x2)-f(x1))<0,故而答案选C.5.[2020·辽宁卷] 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为()A.3×3! B.3×(3!)3C.(3!)4D.9!5.C [解析] 本小题要紧考查排列组合知识.解题的突破口为分清是分类依旧分步,是排列依旧组合问题.由已知,该问题是排列中捆绑法的应用,即先把三个家庭看作三个不同元素进行全排列,而后每个家庭内部进行全排列,即不同坐法种数为A 33·A 33·A 33·A 33=(3!)4.6.[2020·辽宁卷] 在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )A .58B .88C .143D .1766.B [解析] 本小题要紧考查等差数列的性质和求和公式.解题的突破口为等差数列性质的正确应用.由等差数列性质可知,a 4+a 8=a 1+a 11=16,S 11=11×(a 1+a 11)2=88.7.[2020·辽宁卷] 已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C.22 D .17.A [解析] 本小题要紧考查同角三角函数差不多关系的应用.解题的突破口为灵活应用同角三角函数差不多关系.∵sin α-cos α=2⇒()sin α-cos α2=2⇒1-2sin αcos α=2⇒sin αcos α=-12⇒sin αcos αsin 2α+cos 2α=-12⇒tan αtan 2α+1=-12⇒tan α=-1.故而答案选A.8.[2020·辽宁卷] 设变量x ,y 满足⎩⎨⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .558.D [解析] 本小题要紧考查线性规划.解题的突破口为作出可行域,借助目标函数的几何意义求目标函数的最值.不等式组表示的区域如图1-1所示,令z =2x +3y ,目标函数变为y =-23x +z3,故而当截距越大,z 的取值越大,故当直线z =2x +3y 通过点A 时,z 最大,由于⎩⎪⎨⎪⎧ x +y =20,y =15⇒⎩⎪⎨⎪⎧x =5y =15,故而A 的坐标为()5,15,代人z =2x +3y ,得到z max =55,即2x +3y 的最大值为55.图1-19.[2020·辽宁卷] 执行如图1-2所示的程序框图,则输出的S 值是( )图1-2A .-1 B.23 C.32 D .49.A [解析] 本小题要紧考查程序框图的应用.解题的突破口为分析i 与6的关系.当i =1时,S =22-4=-1;当i =2时,S =22-(-1)=23;当i =3时,S =22-23=32;当i =4时,S =22-32=4;当i =5时,S =22-4=-1;当i =6时程序终止,故而输出的结果为-1.10.[2020·辽宁卷] 在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.4510.C [解析] 本小题要紧考查几何概型.解题的突破口为弄清是长度之比面积之比依旧体积之比.令AC =x ,CB =12-x ,这时的面积为S =x (12-x ),依照条件S =x (12-x )<32⇒x 2-12x +32>0⇒0<x <4或8<x <12,矩形面积小于32 cm 2的概率P =4-0+(12-8)12=23,故而答案为C.11.[2020·辽宁卷] 设函数f (x )(x ∈)满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x c os(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( )A .5B .6C .7D .811.B [解析] 本小题要紧考查函数的奇偶性与周期性和函数零点的判定.解题的突破口为依照函数的性质得到函数f (x )的解析式,结合函数图象求解.f (-x )=f (x ),因此函数f (x )为偶函数,因此f (x )=f (2-x )=f (x -2),因此函数f (x )为周期为2的周期函数,且f (0)=0,f (1)=1,而g (x )=||x cos ()πx 为偶函数,且g (0)=g ⎝ ⎛⎭⎪⎫12=g ⎝ ⎛⎭⎪⎫-12=g ⎝ ⎛⎭⎪⎫32=0,在同一坐标系下作出两函数在⎣⎢⎡⎦⎥⎤-12,32上的图像,发觉在⎣⎢⎡⎦⎥⎤-12,32内图像共有6个公共点,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为6.12.[2020·辽宁卷] 若x ∈[0,+∞),则下列不等式恒成立的是( )A .e x≤1+x +x 2B.11+x ≤1-12x +14x 2C .cos x ≥1-12x 2D .ln(1+x )≥x -18x 212.C [解析] 本小题要紧考查导数与函数知识,属于导数在函数中的应用.解题的突破口为构造函数,借助导数工具来解决问题.验证A ,当x =3时,e 3>2.73=19.68>1+3+32=13,故排除A ;验证B ,当x =12时,11+12=63,而1-12×12+14×14=1316=3948=152148<153648=16648,故排除B ;验证C ,令g (x )=cos x -1+12x 2,g ′(x )=-sin x +x ,g ″(x )=1-cos x ,明显g ″(x )>0恒成立,因此当x ∈[0,+∞)时,g ′(x )≥g ′(0)=0,因此x ∈[0,+∞)时,g (x )=cos x -1+12x 2为增函数,因此g (x )≥g (0)=0恒成立,即cos x ≥1-12x 2恒成立;验证D ,令h (x )=ln(1+x )-x +18x 2,h ′(x )=1x +1-1+x 4=x (x -3)4(x +1),令h ′(x )<0,解得0<x <3,因此当0<x <3时,h (x )<h (0)=0,明显不恒成立.故选C.13.[2020·辽宁卷] 一个几何体的三视图如图1-3所示.则该几何体的表面积为________.图1-313.38 [解析] 本小题要紧考查三视图的应用和常见几何体表面积的求法.解题的突破口为弄清要求的几何体的形状,以及表面积的构成.由三视图可知,该几何体为一个长方体和一个圆柱构成,几何体的表面积S =长方体表面积+圆柱的侧面积-圆柱的上下底面面积,由三视图知,长方体的长宽高为431,圆柱的底面圆的半径为1,高为1,因此S =2×(4×3+4×1+3×1)+2π×1×1-2×π×12=38.14.[2020·辽宁卷] 已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式为a n =________.14.2n [解析] 本小题要紧考查等比数列的概念与性质.解题的突破口为灵活应用等比数列通项变形式,是解决问题关键.由已知条件{}a n 为等比数列,可知,2(a n +a n +2)=5a n +1⇒2(a n +a n ·q 2)=5a n q ⇒2q 2-5q +2=0⇒q =12或2,又因为{}a n 是递增数列, 因此q =2.由a 25=a 10得a 5=q 5=32,因此a 1=2,a n =a 1q n -1=2n .15.[2020·辽宁卷] 已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过PQ 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.15.-4 [解析] 本小题要紧考查导数的几何意义的应用.解题的突破口为求切点坐标和切线的斜率.由x 2=2y 可知y =12x 2,这时y ′=x ,由P ,Q 的横坐标为4,-2,这时P (4,8),Q (-2,2), 以点P 为切点的切线方程P A 为y -8=4(x -4),即4x -y -8=0①;以点Q 为切点的切线方程QA 为y -2=-2(x +2),即2x +y +2=0②;由①②联立得A 点坐标为(1,-4),这时纵坐标为-4.16.[2020·辽宁卷] 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.若P A ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.16.33 [解析] 本小题要紧考查球的概念与性质.解题的突破口为解决好点P 到截面ABC 的距离.由已知条件可知,以P A ,PB ,PC 为棱能够补充成球的内接正方体,故而P A 2+PB 2+PC 2=()2R 2, 由已知P A =PB =PC, 得到P A =PB =PC =2, 因为V P -ABC =V A -PBC ⇒13h ·S △ABC =13P A ·S △PBC, 得到h =233,故而球心到截面ABC 的距离为R -h =33.17.[2020·辽宁卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.17.解:(1)由已知2B =A +C ,A +B +C =180°,解得B =60°,因此cos B =12.(2)(解法一)由已知b 2=ac ,及cos B =12,依照正弦定理得sin 2B =sin A sin C , 因此sin A sin C =1-cos 2B =34.(解法二)由已知b 2=ac ,及cos B =12,依照余弦定理得cos B =a 2+c 2-ac2ac ,解得a =c , 因此A =C =B =60°,故sin A sin C =34.18.[2020·辽宁卷] 如图1-4,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.图1-418.解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°, AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 因此M 为AB ′中点. 又因为N 为B ′C ′的中点. 因此MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,因此MP ∥AA ′,PN ∥A ′C ′, 因此MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.图1-5设AA ′=1,则AB =AC =λ,因此A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).因此M ⎝ ⎛⎭⎪⎫λ2,0,12,N ⎝ ⎛⎭⎪⎫λ2,λ2,1.设=(x 1,y 1,z 1)是平面A ′MN 的法向量, 由⎩⎪⎨⎪⎧·A ′M →=0,m ·MN →=0得⎩⎪⎨⎪⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取=(1,-1,λ).设=(x 2,y 2,z 2)是平面MNC 的法向量, 由⎩⎪⎨⎪⎧·NC →=0,n ·MN →=0得⎩⎪⎨⎪⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取=(-3,-1,λ).因为A ′-MN -C 为直二面角,因此·=0. 即-3+(-1)×(-1)+λ2=0,解得λ= 2.19.[2020·辽宁卷] 电视传媒公司为了解某地区电视观众对某类体育节目的收视情形,随机抽取了100名观众进行调查.下面是依照调查结果绘制的观众日均收看该体育节目时刻的频率分布直方图.图1-6将日均收看该体育节目时刻不低于40分钟的观众称为“体育迷”. (1)依照已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)纳随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2,19.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:将2×2χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(30×10-45×15)275×25×45×55=10033≈3.030. 因为3.030<3.841,因此没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为E (X )=np =3×14=34.D (X )=np (1-p )=3×14×34=916.20.[2020·辽宁卷] 如图1-7,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点.C 1与C 0相交于A ,B ,C ,D 四点.图1-7(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等.证明:t 21+t 22为定值.20.解:(1)设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则 直线A 1A 的方程为y =y 1x 1+a (x +a ),①直线A 2B 的方程为y =-y 1x 1-a (x -a ),②由①②得y 2=-y 21x 21-a2(x 2-a 2).③ 由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得 4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,因此b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2,由t 1≠t 2,知x 1≠x 2,因此x 21+x 22=a 2. 从而y 21+y 22=b 2,因此t 21+t 22=a 2+b 2为定值.21.[2020·辽宁卷] 设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.(1)求a ,b 的值;(2)证明:当0<x <2时,f (x )<9xx +6. 21.解:(1)由y =f (x )过(0,0)点,得b =-1. 由y =f (x )在(0,0)点的切线斜率为32,又y ′⎪⎪⎪⎪⎪⎪x =0=⎝ ⎛⎭⎪⎫1x +1+12x +1+a x =0=32+a , 得a =0. (2)(证法一)由均值不等式,当x >0时,2(x +1)·1<x +1+1=x +2,故x +1<x2+1.记h (x )=f (x )-9xx +6,则 h ′(x )=1x +1+12x +1-54(x +6)2 =2+x +12(x +1)-54(x +6)2 <x +64(x +1)-54(x +6)2 =(x +6)3-216(x +1)4(x +1)(x +6)2.令g (x )=(x +6)3-216(x +1),则当0<x <2时, g ′(x )=3(x +6)2-216<0.因此g (x )在(0,2)内是递减函数,又由g (0)=0,得 g (x )<0,因此h ′(x )<0.因此h (x )在(0,2)内是递减函数,又h (0)=0,得h (x )<0.因此 当0<x <2时,f (x )<9xx +6. (证法二)由(1)知f (x )=ln(x +1)+x +1-1.由均值不等式,当x >0时,2(x +1)·1<x +1+1=x +2,故x +1<x2+1.①令k (x )=ln(x +1)-x ,则k (0)=0,k ′(x )=1x +1-1=-x x +1<0, 故k (x )<0,即ln(x +1)<x .② 由①②得,当x >0时,f (x )<32x .记h (x )=(x +6)f (x )-9x ,则当0<x <2时, h ′(x )=f (x )+(x +6)f ′(x )-9 <32x +(x +6)⎝ ⎛⎭⎪⎫1x +1+12x +1-9 =12(x +1)[3x (x +1)+(x +6)(2+x +1)-18(x +1)]<12(x +1)[3x (x +1)+(x +6)⎝ ⎛⎭⎪⎫3+x 2-18(x +1)] =x4(x +1)(7x -18)<0.因此h (x )在(0,2)内单调递减,又h (0)=0,因此h(x)<0,即f(x)<9x x+6.22.[2020·辽宁卷] 选修4-1:几何证明选讲如图1-8,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E.证明:(1)AC·BD=AD·AB;(2)AC=AE.图1-822.证明:(1)由AC与⊙O′相切于A,得∠CAB=∠ADB,同理∠ACB=∠DAB,因此△ACB∽△DAB.从而ACAD=ABBD,即AC·BD=AD·AB.(2)由AD与⊙O相切于A,得∠AED=∠BAD,又∠ADE=∠BDA,得△EAD∽△ABD.从而AEAB=ADBD,即AE·BD=AD·AB.结合(1)的结论,得AC=AE.23.[2020·辽宁卷] 选修4-4:坐标系与参数方程在直角坐标系xOy.圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 23.解:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ. 解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3. 故圆C 1与圆C 2交点的坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3. 注:极坐标系下点的表示不唯独. (2)(解法一)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t-3≤t ≤ 3.(或参数方程写成⎩⎪⎨⎪⎧x =1,y =y -3≤y ≤3)(解法二)在直角坐标系下求得弦C 1C 2的方程为x =1(-3≤y ≤3).将x =1代入⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得ρcos θ=1, 从而ρ=1cos θ.因此圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tan θ, -π3≤θ≤π3.24.[2020·辽宁卷] 选修4-5:不等式选讲已知f (x )=|ax +1|(a ∈),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范畴. 24.解:(1)由|ax +1|≤3得-4≤ax ≤2. 又f (x )≤3的解集为{x |-2≤x ≤1},因此 当a ≤0时,不合题意. 当a >0时,-4a ≤x ≤2a ,得 a =2.(2)记h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2,则h (x )=⎩⎪⎨⎪⎧1, x ≤-1,-4x -3, -1<x<-12,-1, x ≥-12,因此|h (x )|≤1,因此k ≥1.。
辽宁高考数学理科卷解析

一、选择题(每小题5分,共60分). 1.已知集合{}{}35,55M x x N x x =-<=-<<,则MN =( )A. {}55x x -<< B. {}35x x -<< C. {}55x x-< D. {}35x x -<【测量目标】集合的基本运算.【考查方式】给出两个集合运用集合间的交集运算求解交集表示的范围. 【难易程度】容易 【参考答案】B【试题解析】直接利用交集性质求解,或者画出数轴求解. 2.已知复数12i z =-,那么1z=( )A.55+ B.i 55- C.12i 55+ D.12i 55- 【测量目标】复数的基本运算、共轭复数.【考查方式】给出复数的共轭复数的分数形式求其值. 【难易程度】容易 【参考答案】D 【试题解析】21112i 12i 12i 12i (12i)(12i)1255z --====-++-+. 3.平面向量a 与b 的夹角为60︒,(2,0)=a ,1=b 则2+=a b( )【测量目标】平面向量的数量积运算.【考查方式】给出平面向量之间的夹角及一个向量的坐标表示求模. 【难易程度】容易 【参考答案】B【试题解析】由已知2222,2444421cos60412︒=+=++=+⨯⨯⨯+=a a b a a b b ,∴2+=a b 4. 已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【测量目标】直线与圆的位置关系,圆的方程.【考查方式】已知圆与一条已知直线之间的位置关系和圆心所在的直线方程求圆的一般方程. 【难易程度】容易 【参考答案】B【试题解析】圆心在0x y +=上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可.5.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( ) A.70种 B. 80种 C. 100种 D.140种 【测量目标】排列组合.【考查方式】给出实际问题运用排列组合的性质运算求解答案. 【难易程度】容易 【参考答案】A【试题解析】直接法:一男两女,有1254C C =5×6=30种,两男一女,有2154C C =10×4=40种,共计70种.间接法:任意选取39C =84种,其中都是男医生有35C =10种,都是女医生有14C =4种,于是符合条件的有84-10-4=70种. 6.设等比数列{}n a 的前n 项和为n S ,若633S S =,则69SS = ( )A. 2 B. 73C. 83D.3【测量目标】等比数列的前n 项和,等比数列的性质.【考查方式】给出等比数列的前n 项和的比的形式求解其值.【难易程度】容易 【参考答案】B【试题解析】设公比为q ,则3336333(1)132S q S q q S S +==+=⇒=.于是63693112471123S q q S q ++++===++. 7.曲线2xy x =-在点(1,1)-处的切线方程为( ) A. 2y x -= B.32y x =-+ C. 23y x =- D. 21y x =-+ 【测量目标】函数的导数,切线方程.【考查方式】给出一个曲线的解析式求其在某个定点的切线方程. 【难易程度】中等 【参考答案】D【试题解析】2222(2)(2)x x y x x ---'==--,当1x =时切线斜率为2k =-. 8.已知函数()cos()f x A x ωϕ=+的图象如图所示,π2()23f =-,则(0)f = ( )第8题图A.23-B.23C.12-D. 12【测量目标】函数sin()y A x ωϕ=+的图像与性质.【考查方式】给出函数sin()y A x ωϕ=+的图像,运用其性质求解未知数. 【难易程度】中等 【参考答案】B【试题解析】由图象可得最小正周期为2π3于是2π(0)()3f f =,注意到2π3与π2关于7π12对称所以2ππ2()()323f f =-=. 9.已知偶函数()f x 在区间[0,)+∞单调增加,则满足1(21)()3f x f -<的x 取值范围是( )A. 12(,)33B.12,33⎡⎫⎪⎢⎣⎭ C. 12(,)23 D. 12,23⎡⎫⎪⎢⎣⎭【测量目标】利用函数的单调性求参数范围.【考查方式】已知函数在某个区间的单调性求未知参数的取值范围. 【难易程度】中等 【参考答案】A【试题解析】由于()f x 是偶函数,故()()f x f x =∴得1(21)()3f x f -<,再根据()f x 的单调性得1213x -<解得1233x <<. 10.某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,... N a ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )第10题图A.0,A V S T >=-B.0,A V S T <=-C.0,A V S T >=+D.0,A V S T <=+【测量目标】循环结构的程序框图.【考查方式】已知某个循环结构的程序框图,给出输出结果逆推出原程序框图中的残缺部分. 【难易程度】容易 【参考答案】C 【试题解析】月总收入为S,因此0A >时归入S ,判断框内填0A >支出T 为负数,因此月盈利V S T =+.11.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥 P -GAC 体积之比为( )A. 1:1B. 1:2C. 2:1D. 3:2 【测量目标】锥的体积.【考查方式】求解已知几何体中部分几何体的体积之比. 【难易程度】中等 【参考答案】C【试题解析】由于G 是PB 的中点,故P -GAC 的体积等于B -GAC 的体积. 在底面正六边形ABCDEF 中3tan 303BH AB AB ︒==而3BD AB =故DH =2BH 于是22D GAC B GAC P GAC V V V ---==第11题图12.若1x 满足225xx +=, 2x 满足222log (1)5x x +-=, 12x x +=( )A.52 B.3 C. 72D.4 【测量目标】对数函数、指数函数的性质.【考查方式】给出满足对数函数、指数函数的未知数,运用对数函数、指数函数的性质求解未知数之和.【难易程度】中等 【参考答案】C【试题解析】由题意225xx += ①222log (1)5x x +-= ②(步骤1)所以112252,log (52)xx x x =-=-即12122log (52)x x =-(步骤2)令1272x t =-,代入上式得22722log (22)22log (1)t t t -=-=+-2522log (1)t t ∴-=-与②式比较得2t x = 于是12272x x =-(步骤3)1272x x ∴+=,故选C.(步骤4) 13.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分 层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命 的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为 980h ,1020h ,1032h ,则抽取的100件产品的使用寿命的平均值为_________h. 【测量目标】分层抽样.【考查方式】给出实际问题运用分层抽样的方法求解答案. 【难易程度】容易 【参考答案】1013 【试题解析】9801102021032110134x ⨯+⨯+⨯==.14.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = . 【测量目标】数列的通项公式{}n a 与前n 项和n S 的关系.【考查方式】已知数列的通项与其前n 项和之间的关系求解数列的未知项.【难易程度】中等 【参考答案】13【试题解析】∵11(1)2n S na n n d =+-∴5131510,33S a d S a d =+=+. ∴5311114653060(1515)154515(3)15S S a d a d a d a d a -=+-+=+=+=. ∵53655,S S -=故413a =. 15.设某几何体的三视图如下(尺寸的长度单位为m ).则该几何体的体积为 3m .第15题图【测量目标】三视图,求几何体的体积【考查方式】给出几何体的三视图,求其体积. 【难易程度】容易 【参考答案】4【试题解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 体积等于16×2×4×3=4.16.已知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA +的最小值为 .【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线的标准方程,运用其简单的几何性质求两条线段模的最值. 【难易程度】中等 【参考答案】9【试题解析】注意到P 点在双曲线的两只之间,且双曲线右焦点为(4,0)F ', 于是由双曲线性质24PF PF a '-==而5PA PF AF ''+=两式相加得9PF PA+,当且仅当,,A P F '三点共线时等号成立.17.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75︒,30︒,于水面C 处测得B 点和D 点的仰角均为60︒,0.1AC = km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km ,2≈1.414, 6≈2.44)第17题图【测量目标】正弦定理的实际应用.【考查方式】运用正弦定理在实际问题中构建三角形求解实际问题. 【难易程度】中等【试题解析】在ABC △中,30,6030DAC ADC DAC ︒︒︒∠=∠=-∠=.(步骤1)所以0.1CD AC == 又180606060BCD ︒︒︒︒∠=--=,(步骤2)故CB 是CAD △底边AD 的中垂线,所以BD BA =,(步骤3)在ABC △中,sin sin AB ACBCA ABC=∠∠即sin 60326sin1520AC AB ︒︒+==(步骤4)因此,3260.33km 20BD +=≈.故B ,D 的距离约为0.33km. (步骤5)18.(本小题满分12分)如图,已知两个正方行ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点 .(1)若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正值弦;(2)用反证法证明:直线ME 与 BN 是两条异面直线.第18题图【测量目标】面面垂直,异面直线之间的关系.【考查方式】给出立体几何体,由已知知识点求解面面垂直与异面直线之间的关系. 【难易程度】较难【试题解析】(1)解法一:取CD 的中点G ,连接MG ,NG .设正方形ABCD ,DCEF 的边长为2,则MG ⊥CD ,MG =2,NG 2=(步骤1)因为平面ABCD ⊥平面DCED ,所以MG ⊥平面DCEF ,可得∠MNG 是MN 与平面DCEF 所成的角. (步骤2)因为MN 6=,所以6sin 3MNG ∠=为MN 与平面DCEF 所成角的正弦值.(步骤3) 解法二:设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为,,x y z 轴正半轴建立空间直角坐标系如图. (步骤1)则M (1,0,2),N (0,1,0),可得(1,1,2)MN =-(步骤2) 又(0,2,2)DA =为平面DCEF 的法向量,可得6cos(,)3MN DA MN DA MN DA==-· 所以MN 与平面DCEF 所成角的正弦值为6cos ,3MN DA =(步骤3)第18题(1)图(2)假设直线ME 与BN 共面,则AB ⊂平面MBEN ,且平面MBEN 与平面DCEF 交于EN 由已知,两正方形不共面,故AB ⊄平面DCEF .又AB //CD ,所以AB //平面DCEF .而EN 为平面MBEN 与平面DCEF 的交线,所以AB //EN .又AB //CD //EF ,所以EN //EF ,这与ENEF =E 矛盾,故假设不成立.所以ME 与BN 不共面,它们是异面直线. 19.(本小题满分12分)某人向一目射击4次,每次击中目标的概率为13.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(1)设X 表示目标被击中的次数,求X 的分布列;(2)若目标被击中2次,A 表示事件“第一部分至少被击中1次或第二部分被击中2次”,求()P A【测量目标】数学期望,分布列.【考查方式】运用数学期望的相关知识求解实际问题. 【难易程度】中等【试题解析】(1)依题意X 的分列为X 0 1 2 3 4P1681 3281 2481 881 181(2)设A 1表示事件“第一次击中目标时,击中第i 部分”,1,2i =.B 1表示事件“第二次击中目标时,击中第i 部分”,1,2i =依题意知P (A 1)=P (B 1)=0.1,P (A 2)=P (B 2)=0.3,(步骤1)11111122A A B A B A B A B =,(步骤2)所求的概率为11111122()()()()P A P A B P A B PA B P A B =+++() =11111122()()())()()()P A B P A P B PA PB P A P B +++( =0.10.90.90.10.10.10.30.30.28⨯+⨯+⨯+⨯= . (步骤3)20.(本小题满分12分)已知,椭圆C 过点A 3(1,)2,两个焦点为(1,0),(1,0)-.(1) 求椭圆C 的方程;(2) E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.【测量目标】椭圆的标准方程,直线与椭圆的位置关系.【考查方式】已知椭圆的几个参数求解椭圆的标准方程,判断直线与椭圆的位置关系. 【难易程度】较难【试题解析】(1)由题意,c =1,可设椭圆方程为2219114b b+=+,(步骤1)解得23b =,234b =-(舍去)所以椭圆方程为22143x y +=. (步骤2) (2)设直线AE 方程为:3(1)2y k x =-+,代入22143x y +=得 2223(34)4(32)4()1202k x k k x k ++-+--=(步骤3)设(,)E E E x y ,(,)F F F x y ,因为点3(1,)2A 在椭圆上,所以2234()12234F k x k--=+,32E E y kx k =+-(步骤4) 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以k -代k ,可得2234()12234F k x k +-=+32E Ey kx k =-++(步骤5)所以直线EF 的斜率()212F E F E EF F E F E y y k x x k k x x x x --++===--即直线EF 的斜率为定值,其值为12. (步骤6) 21.(本小题满分12分)已知函数21()(1)ln ,12f x x ax a x a =-+->. (1)讨论函数()f x 的单调性; (2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.【测量目标】函数的单调性.【考查方式】已知函数解析式求解函数的单调性,已知参数范围求解区间内函数的单调性. 【难易程度】较难【试题解析】(1)()f x 的定义域为(0,)+∞.211()a x ax a f x x a x x--+-'=-+= (1)(1)x x a x-+-=(步骤1)(i )若11a -=即2a =,则2(1)()x f x x-'=故()f x 在(0,)+∞单调增加. (步骤2)(ii)若11a -<,而1a >,故12a <<,则当(1,1)x a ∈-时,()0f x '<;(步骤3) 当(0,1)x a ∈-及(1,)x ∈+∞时,()0f x '>故()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加. (步骤4)(iii)若11a ->,即2a >,同理可得()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加. (步骤5)(2)考虑函数 ()()g x f x x =+21(1)ln 2x ax a x x =-+-+(步骤6)则211()(1)2(1)1(11)a a g x x a x a a x x--'=--+--=---(步骤7) 由于15a <<,故()0g x '>,即()g x 在(4, +∞)单调增加,从而当120x x >>时有12()()0g x g x ->,(步骤8)即1212()()0f x f x x x -+->,故1212()()1f x f x x x ->--,当120x x <<时,有12211221()()()()1f x f x f x f x x x x x --=>---.(步骤9) 22.(本小题满分10分)已知ABC △中,AB =AC , D 是ABC △外接圆劣弧AC 上的点(不与点A ,C 重合),延长BD 至E .(1)求证:AD 的延长线平分∠CDE ;(2)若∠BAC =30︒,ABC △中BC 边上的高为2+3, 求ABC △外接圆的面积.第22题图【测量目标】直线与圆的位置关系,圆的简单几何性质.【考查方式】给出圆与直线的位置关系,运用其简单几何性质求解角与线的关系.【难易程度】中等【试题解析】(1)如图,设F 为AD 延长线上一点∵A ,B ,C ,D 四点共圆,∴∠CDF=∠ABC (步骤1) 又AB =AC ∴∠ABC =∠ACB ,且∠ADB =∠ACB , ∴∠ADB =∠CDF , (步骤2)对顶角∠EDF =∠ADB , 故∠EDF =∠CDF ,即AD 的延长线平分∠CDE . (步骤3)第22题图(2)设O 为外接圆圆心,连接AO 交BC 于H ,则AH ⊥BC .连接OC , OA 由题意∠OAC =∠OCA =15︒, ∠ACB =75︒,∴∠OCH =60︒.(步骤4)设圆半径为r ,则r +23r =2+3,a 得r =2,外接圆的面积为4π.(步骤5) 23.(本小题满分10分)选修4-4 :坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为πcos()3ρθ-=1,M,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.【测量目标】坐标系与参数方程.【考查方式】建立坐标系求解参数方程.【难易程度】中等【试题解析】(1)由πcos()13ρθ-=得13(cos )12ρθθ+=(步骤1) 从而C 的直角坐标方程为13122x y +=即32x +=(步骤2) 0θ=时,2,ρ=所以(2,0)M π2θ=时,3=3ρ所以3π()32N (步骤3) (2)M 点的直角坐标为(2,0)N 点的直角坐标为3(0,3(步骤4) 所以P 点的直角坐标为3,则P 点的极坐标为23π()6所以直线OP 的极坐标方程为π,(,)6θρ=∈-∞+∞(步骤5) 24.(本小题满分10分)设函数()|1|||f x x x a =-+-.(1)若1,a =-解不等式()3f x ; (2)如果x ∀∈R ,()2f x ,求a 的取值范围.【测量目标】不等式.【考查方式】给出函数解析式求解不等式.【难易程度】中等【试题解析】(1)当1a =-时,()11f x x x =-++.由()3f x 得113x x -++(步骤1) ○1当1x -时,不等式化为113x x---即23x -(步骤2)○2当1x >时,联立不等式组1()3x f x >⎧⎨⎩解得其解集为3+2⎛⎫∞ ⎪⎝⎭,,综上得()3f x 的解集为33,,22⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭.(步骤3) (2)若1,()21a f x x ==-,不满足题设条件.○1若1a <,21,,()1,1,2(1),1x a x a f x a a x x a x -++⎧⎪=-<<⎨⎪-+⎩()f x 的最小值为1a -(步骤4) ○2若1,a >21,1,()1,1,2(1),x a x f x a x a x a x a -++⎧⎪=-<<⎨⎪-+⎩()f x 的最小值为1a -(步骤5) 所以()2x f x ∀∈R ,的充要条件是12a -,从而a 的取值范围为][13∞-+∞(-,,).(步骤6)。
2021年高考理科数学辽宁卷word解析版

2021年普通高等学校夏季招生全国统一考试数学理工农医类(辽宁卷)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2021辽宁,理1)复数1i 1z =-的模为( ).A .12B .2CD .2答案:B 解析:∵1i 111i i 1(i 1)(i 1)22z --===------,∴|z |2=,故选B.2.(2021辽宁,理2)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( ).A .(0,1)B .(0,2]C .(1,2)D .(1,2] 答案:D解析:0<log 4x <1⇔log 41<log 4x <log 44⇔1<x <4,即A ={x |1<x <4}, ∴A ∩B ={x |1<x ≤2}.故选D. 3.(2021辽宁,理3)已知点A (1,3),B (4,-1),则与向量AB 同方向的单位向量为( ).A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭C .34,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭答案:A解析:与AB 同方向的单位向量为ABAB=34,55⎛⎫=- ⎪⎝⎭,故选A.4.(2021辽宁,理4)下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列n a n ⎧⎫⎨⎬⎩⎭是递增数列; p 4:数列{a n +3nd }是递增数列. 其中的真命题为( ). A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4 答案:D 解析:如数列为{-2,-1,0,1,…},则1×a 1=2×a 2,故p 2是假命题;如数列为{1,2,3,…},则na n=1,故p 3是假命题.故选D. 5.(2021辽宁,理5)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( ).A .45B .50C .55D .60 答案:B解析:由频率分布直方图,低于60分的同学所占频率为(0.005+0.01)×20=0.3,故该班的学生人数为150.3=50.故选B. 6.(2021辽宁,理6)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( ).A .π6B .π3C .2π3D .5π6答案:A解析:根据正弦定理:a sin B cos C +c sin B cos A =12b 等价于sin A cos C +sin C cos A =12, 即sin(A +C )=12. 又a >b ,∴∠A +∠C =5π6,∴∠B =π6.故选A. 7.(2021辽宁,理7)使3nx⎛⎝(n ∈N +)的展开式中含有常数项的最小的n 为( ).A .4B .5C .6D .7答案:B解析:3nx⎛+ ⎝展开式中的第r +1项为C r n (3x )n -r 32r x -=52C 3n r r n r n x --,若展开式中含常数项,则存在n ∈N +,r ∈N ,使52n r -=0,故最小的n 值为5,故选B.8.(2021辽宁,理8)执行如图所示的程序框图,若输入n =10,则输出S =( ).A .511 B .1011 C .3655 D .7255答案:A解析:当n =10时,由程序运行得到222221111121416181101S =++++----- 11111133********=++++⨯⨯⨯⨯⨯ 11111111111213355779911⎛⎫=-+-+-+-+- ⎪⎝⎭ 110521111=⨯=.故选A. 9.(2021辽宁,理9)已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( ).A .b =a 3B .31b a a=+C .331()0b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--=答案:C解析:若B 为直角,则0OB AB ⋅=, 即a 2+a 3(a 3-b )=0,又a ≠0,故31b a a=+; 若A 为直角,则0OA AB ⋅=,即b (a 3-b )=0,得b =a 3;若O 为直角,则不可能.故b -a 3=0或b -a 3-1a=0,故选C.10.(2021辽宁,理10)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A .2 B . C .132D .答案:C解析:过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r132=.故选C. 11.(2021辽宁,理11)已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( ).A .16B .-16C .a 2-2a -16D .a 2+2a -16 答案:B解析:∵f (x )-g (x )=2x 2-4ax +2a 2-8 =2[x -(a -2)][x -(a +2)],∴()1(),(,2],(),(2,2],(),(2,],f x x a H x g x x a a f x x a ∈-∞-⎧⎪∈-+⎨⎪∈++∞⎩=()2(),(,2],(),(2,2],(),(2,],g x x a H x f x x a a g x x a ∈-∞-⎧⎪∈-+⎨⎪∈++∞⎩=可求得H 1(x )的最小值A =f (a +2)=-4a -4,H 2(x )的最大值B =g (a -2)=-4a +12, ∴A -B =-16.故选B.12.(2021辽宁,理12)设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=2e8,则x >0时,f (x )( ).A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值 答案:D解析:令F (x )=x 2f (x ),则F ′(x )=x 2f ′(x )+2xf (x )=ex x,F (2)=4·f (2)=2e 2.由x 2f ′(x )+2xf (x )=e xx ,得x 2f ′(x )=e x x -2xf (x )=2e 2x x f x x -(),∴f ′(x )=3e 2x F x x-(). 令φ(x )=e x -2F (x ),则φ′(x )=e x-2F ′(x )=2e e (2)e x x xx x x--=. ∴φ(x )在(0,2)上单调递减,在(2,+∞)上单调递增,∴φ(x )的最小值为φ(2)=e 2-2F (2)=0. ∴φ(x )≥0.又x >0,∴f ′(x )≥0.∴f (x )在(0,+∞)单调递增.∴f (x )既无极大值也无极小值.故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2021辽宁,理13)某几何体的三视图如图所示,则该几何体的体积是__________.答案:16π-16 解析:由三视图可知该几何体是一个底面半径为2的圆柱体,中间挖去一个底面棱长为2的正四棱柱,故体积为π·22·4-2×2×4=16π-16.14.(2021辽宁,理14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=__________.答案:63解析:因为x 2-5x +4=0的两根为1和4,又数列{a n }是递增数列, 所以a 1=1,a 3=4,所以q =2.所以S 6=611212⋅(-)-=63.15.(2021辽宁,理15)已知椭圆C :2222=1x y a b+(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e=__________.答案:57解析:如图所示.根据余弦定理|AF |2=|BF |2+|AB |2-2|AB |·|BF |cos ∠ABF ,即|BF |2-16|BF |+64=0,得|BF |=8.又|OF |2=|BF |2+|OB |2-2|OB |·|BF |cos ∠ABF ,得|OF |=5. 根据椭圆的对称性|AF |+|BF |=2a =14,得a =7. 又|OF |=c =5,故离心率e =57. 16.(2021辽宁,理16)为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为__________.答案:10解析:设5个班级的人数分别为x 1,x 2,x 3,x 4,x 5,则1234575x x x x x ++++=,2222212345777775x x x x x (-)+(-)+(-)+(-)+(-)=4,即5个整数平方和为20,最大的数比7大不能超过3,否则方差超过4,故最大值为10,最小值为4.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2021辽宁,理17)(本小题满分12分)设向量a = x ,sin x ),b =(cos x ,sin x ),x ∈π0,2⎡⎤⎢⎥⎣⎦.(1)若|a |=|b |,求x 的值; (2)设函数f (x )=a ·b ,求f (x )的最大值.解:(1)由|a |2=)2x +(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.又x ∈π0,2⎡⎤⎢⎥⎣⎦,从而sin x =12,所以π6x =.(2)f (x )=a ·b x ·cos x +sin 2x112cos 222x x =-+ π1sin 262x ⎛⎫=-+ ⎪⎝⎭,当ππ0,32x ⎡⎤=∈⎢⎥⎣⎦时,πsin 26x ⎛⎫- ⎪⎝⎭取最大值1. 所以f (x )的最大值为32.18.(2021辽宁,理18)(本小题满分12分)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点.(1)求证:平面P AC ⊥平面PBC ;(2)若AB =2,AC =1,P A =1,求二面角CPBA 的余弦值. (1)证明:由AB 是圆的直径,得AC ⊥BC .由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以BC ⊥平面P AC . 因为BC ⊂平面PBC .所以平面PBC ⊥平面P AC .(2)解法一:过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系.因为AB =2,AC =1,所以BC因为P A =1,所以A (0,1,0),B (,0,0),P (0,1,1). 故CB =0,0),CP =(0,1,1). 设平面BCP 的法向量为n 1=(x ,y,z ),则110,0,CB CP ⎧⋅=⎪⎨⋅=⎪⎩n n 所以0,0,y z =+=⎪⎩不妨令y =1,则n 1=(0,1,-1). 因为AP =(0,0,1),AB =1,0). 设平面ABP 的法向量为n 2=(x ,y ,z ),则220,0,AP AB ⎧⋅=⎪⎨⋅=⎪⎩n n所以0,0,z y =⎧⎪-=不妨令x =1,则n 2=(10),于是cos 〈n 1,n 2=. 所以由题意可知二面角CPBA的余弦值为4.解法二:过C 作CM ⊥AB 于M ,因为P A ⊥平面ABC ,CM ⊂平面ABC , 所以P A ⊥CM ,故CM ⊥平面P AB . 过M 作MN ⊥PB 于N ,连接NC , 由三垂线定理得CN ⊥PB .所以∠CNM 为二面角CPBA 的平面角.在Rt △ABC 中,由AB =2,AC =1,得BC,CM=2,BM =32, 在Rt △P AB 中,由AB =2,P A =1,得PB因为Rt △BNM ∽Rt △BAP ,所以31MN=MN.又在Rt △CNM 中,CN,故cos ∠CNM所以二面角CPBA的余弦值为419.(2021辽宁,理19)(本小题满分12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.解:(1)设事件A =“张同学所取的3道题至少有1道乙类题”,则有A =“张同学所取的3道题都是甲类题”.因为P (A )=36310C 1C 6=,所以P (A )=1-P (A )=56. (2)X 所有的可能取值为0,1,2,3.P (X =0)=02023214C 555125⎛⎫⎛⎫⋅⋅⋅=⎪⎪⎝⎭⎝⎭; P (X =1)=0202102232132428C +C 555555125⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; P (X =2)=2011212232132457C +C 555555125⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; P (X =3)=202232436C 555125⎛⎫⎛⎫⋅⋅⋅=⎪⎪⎝⎭⎝⎭. 所以X所以E (X )=0×4125+1×125+2×125+3×125=2.20.(2021辽宁,理20)(本小题满分12分)如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1时,切线MA 的斜率为12-.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).解:(1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为'=2xy ,且切线MA 的斜率为12-,所以A 点坐标为11,4⎛⎫- ⎪⎝⎭,故切线MA 的方程为11(1)24y x =-++.因为点M (1y 0)在切线MA 及抛物线C 2上,于是0113(2244y -=-+=-,①20(1322y p p-=-=-.② 由①②得p =2.(2)设N (x ,y ),A 211,4x x ⎛⎫ ⎪⎝⎭,B 222,4x x ⎛⎫ ⎪⎝⎭,x 1≠x 2,由N 为线段AB 中点知x =122x x x +=,③22128x x y +=.④切线MA ,MB 的方程为2111()24x x y x x =-+,⑤2222()24x x y x x =-+.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为1202x x x +=,1204x xy =. 因为点M (x 0,y 0)在C 2上,即20x =-4y 0,所以2212126x x x x +=-.⑦由③④⑦得243x y =,x ≠0. 当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足243x y =. 因此AB 中点N 的轨迹方程为243x y =. 21.(2021辽宁,理21)(本小题满分12分)已知函数f (x )=(1+x )e -2x,g (x )=ax +32x +1+2x cosx .当x ∈[0,1]时,(1)求证:1-x ≤f (x )≤11x+; (2)若f (x )≥g (x )恒成立,求实数a 的取值范围.(1)证明:要证x ∈[0,1]时,(1+x )e -2x ≥1-x ,只需证明(1+x )e -x ≥(1-x )e x .记h (x )=(1+x )e -x -(1-x )e x ,则h ′(x )=x (e x -e -x ), 当x ∈(0,1)时,h ′(x )>0, 因此h (x )在[0,1]上是增函数, 故h (x )≥h (0)=0.所以f (x )≥1-x ,x ∈[0,1]. 要证x ∈[0,1]时,(1+x )e-2x≤11x+, 只需证明e x ≥x +1.记K (x )=e x -x -1,则K ′(x )=e x -1,当x ∈(0,1)时,K ′(x )>0,因此K (x )在[0,1]上是增函数, 故K (x )≥K (0)=0. 所以f (x )≤11x+,x ∈[0,1].综上,1-x ≤f (x )≤11x+,x ∈[0,1]. (2)解法一:f (x )-g (x )=(1+x )e -2x -312cos 2x ax x x ⎛⎫+++ ⎪⎝⎭≥1-x -ax -1-32x -2x cos x =-x (a +1+22x +2cos x ). 设G (x )=22x +2cos x ,则G ′(x )=x -2sin x . 记H (x )=x -2sin x ,则H ′(x )=1-2cos x ,当x ∈(0,1)时,H ′(x )<0,于是G ′(x )在[0,1]上是减函数,从而当x ∈(0,1)时,G ′(x )<G ′(0)=0,故G (x )在[0,1]上是减函数.于是G (x )≤G (0)=2,从而a +1+G (x )≤a +3.所以,当a ≤-3时,f (x )≥g (x )在[0,1]上恒成立.下面证明当a >-3时,f (x )≥g (x )在[0,1]上不恒成立.f (x )-g (x )≤3112cos 12x ax x x x ----+ =32cos 12x x ax x x x ----+ =212cos 12x x a x x ⎛⎫-+++ ⎪+⎝⎭, 记I (x )=2112cos ()121x a x a G x x x+++=++++, 则I ′(x )=21'()(1)G x x -++, 当x ∈(0,1)时,I ′(x )<0,故I (x )在[0,1]上是减函数,于是I (x )在[0,1]上的值域为[a +1+2cos 1,a +3].因为当a >-3时,a +3>0,所以存在x 0∈(0,1),使得I (x 0)>0,此时f (x 0)<g (x 0),即f (x )≥g (x )在[0,1]上不恒成立.综上,实数a 的取值范围是(-∞,-3].解法二:先证当x ∈[0,1]时,1-12x 2≤cos x ≤1-14x 2. 记F (x )=cos x -1+12x 2, 则F ′(x )=-sin x +x .记G (x )=-sin x +x ,则G ′(x )=-cos x +1,当x ∈(0,1)时,G ′(x )>0,于是G (x )在[0,1]上是增函数,因此当x ∈(0,1)时,G (x )>G (0)=0,从而F (x )在[0,1]上是增函数.因此F (x )≥F (0)=0,所以当x ∈[0,1]时,1-12x 2≤cos x .同理可证,当x ∈[0,1]时,cos x ≤1-14x 2. 综上,当x ∈[0,1]时,1-12x 2≤cos x ≤1-14x 2. 因为当x ∈[0,1]时, f (x )-g (x )=(1+x )e -2x -312cos 2x ax x x ⎛⎫+++ ⎪⎝⎭≥321(1)12124x x ax x x ⎛⎫------ ⎪⎝⎭ =-(a +3)x .所以当a ≤-3时,f (x )≥g (x )在[0,1]上恒成立.下面证明当a >-3时,f (x )≥g (x )在[0,1]上不恒成立.因为f (x )-g (x )=(1+x )e -2x -312cos 2x ax x x ⎛⎫+++ ⎪⎝⎭≤3211121122x ax x x x ⎛⎫----- ⎪+⎝⎭=23(3)12x x a x x +-++ ≤32(3)23x x a ⎡⎤-+⎢⎥⎣⎦, 所以存在x 0∈(0,1)(例如x 0取33a +和12中的较小值)满足f (x 0)<g (x 0). 即f (x )≥g (x )在[0,1]上不恒成立.综上,实数a 的取值范围是(-∞,-3].请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。
2020年普通高等学校招生全国统一考试数学理试题(辽宁卷,解析版)

2020年普通高等学校招生全国统一考试数学理试题(辽宁卷,解析版)【名师简评】本套试卷全面考查了《考试大纲》所规定的考试内容,如第4、15、18题分别考查了程序框图、三视图、统计案例等新增内容的应用;第22、23、24题分别考查了选修系列4中的几何证明选讲、坐标系与参数方程、不等式证明等知识。
试卷充分重视主干知识的地位,考的宗旨对推动数学教学改革起到了良好的导向作用。
第I 卷一、选择墨:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},(u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}(2)设a,b 为实数,若复数11+2ii a bi=++,则 (A )31,22a b == (B) 3,1a b == (C) 13,22a b == (D) 1,3a b ==(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512(C)14 (D)16(4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于(A )1m n C -(B) 1m nA -(C) mn C (D) mn A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是(A )23 (B)43 (C)32(D)3(6)设{a n }是有正数组成的等比数列,n S 为其前n 项和。
已知a 2a 4=1, 37S =,则5S =(A )152 (B)314 (C)334(D)172(7)设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如 果直线AF 的斜率为-3,那么|PF|= (A)43 (B)8 (C)83 (D) 16(8)平面上O,A,B 三点不共线,设,OA=a OB b =,则△OAB 的面积等于 (A)222|||()|a b a b -g (B) 222|||()|a b a b +g (C)2221|||()2|a b a b -g (D) 2221|||()2|a b a b +g(9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐 近线垂直,那么此双曲线的离心率为 (A) 2 (B)3 (C)312+ (D) 512+(1O)已知点P 在曲线y=41x e +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值 范围是 (A)[0,4π) (B)[,)42ππ 3(,]24ππ (D) 3[,)4ππ(11)已知a>0,则x 0满足关于x 的方程ax=6的充要条件是 (A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤-(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)(0,62+) (B)(1,22)(C) (62-,62+) (D) (0,22)二、填空题:本大题共4小题,每小题5分。
2023高考辽宁(理)全解全析

2023年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A 、B 互斥,那么 球地表面积公式P(A+B)=P(A)+P(B) S=42Rπ如果事件A 、B 相互独立,那么 其中R 表示球地半径 P(A ·B)=P(A)·P(B) 球地体和只公式如果事件A 在一次试验中发生地概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次地概率 V =243R π ()(1)(0,1,2,,)kkn kn n P k C P p k n -=-= 其中R 表示球地半径一、选择题1.已知集合{}30,31x M xN x x x ⎧+⎫=<=-⎨⎬-⎩⎭…,则集合{}1x x …为( )A.M NB.M NC.()R M N ðD.()R M N ð解析:C解析:本小题主要考查集合地相关运算知识。
依题{}{}31,3M x x N x x =-<<=-…,∴{|1}M N x x ⋃=<,()R M N = ð{}1.x x …2.135(21)lim(21)n n n n →∞++++-+ 等于( )A.14 B.12C.1D.2解析:B解析:本小题主要考查对数列极限地求解。
依题22135(21)1lim lim .(21)22n n n n n n n n →∞→∞++++-==++ 3.圆221x y +=与直线2y kx =+没有公共点地充要条件是( )A.(k ∈B.(,)k ∈-∞+∞C.(k ∈D.(,)k ∈-∞+∞ 解析:C解析:本小题主要考查直线和圆地位置关系。
依题圆221x y +=与直线2y kx =+没有公共点1d ⇔=>⇔(k ∈4.复数11212i i +-+-地虚部是( ) A.15i B.15 C.15i - D.15-解析:B解析:本小题主要考查复数地相关运算及虚部概念。
辽宁省2024年高考数学真题及参考答案

辽宁省2024年高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知1i z =--,则||z =().A.0B.1D.22.已知命题:R p x ∀∈,|1|1x +>;命题:0q x ∃>,3x x =.则().A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a = ,|2|2a b += ,且(2)b a b -⊥ ,则||b =().A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为().A.221(0)164x y y +=> B.221(0)168x y y +=>C.221(0)164y x y +=> D.221(0)168y x y +=>6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =()A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为().A.12 B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为().A.18B.14C.12D.1二、多项选择题:本题共3小题,每小题6分,共18分。
辽宁高考数学理科试题详细解答(全,每个题都有详细解答)

2012年高考辽宁卷理科数学解析版 沈阳市第三十一中学 李曙光编辑整理一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=U U C A C BA .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,6 难度 易 正确答案B()()(){}=C =7,9U U U C A C B AB2.复数2-=2+i i A .34-55iB .34+55i C .41-5i D .31+5i 难度 易 正确答案A()()()22-2-3-434===-2+2+2-555i ii i i i i 3. 已知两个非零向量,a b 满足+=-a b a b ,则下面结论正确 A .//a b B .a b ⊥ C .=a b D .+=-a b a b难度 中 正确答案B+=-a b a b ,可以从几何角度理解,以非零向量,a b 为邻边做平行四边形,对角线长分别为+,-a b a b ,若+=-a b a b ,则说明四边形为矩形,所以a b ⊥;也可由已知得22+=-a b a b ,即2222-2+=+2+=0a ab b a ab b ab a b ∴∴⊥ 4. 已知命题()()()()122121:,,--0p x x R f x f x x x ∀∈≥,则p ⌝是A .()()()()122121,,--0x x R f x f x x x ∃∈≤B .()()()()122121,,--0x x R f x f x x x ∀∈≤C .()()()()122121,,--<0x x R f x f x x x ∃∈D .()()()()122121,,--<0x x R f x f x x x ∀∈难度 易 正确答案C全称命题的否定形式为将“∀”改为“∃”,后面的加以否定,即将“()()()()2121--0f x f x x x ≥”改为“()()()()2121--<0f x f x x x ”5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 A .33!⨯ B .()333!⨯ C .()43!D .9!难度 中 正确答案C每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!6. 在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S A .58 B .88 C .143 D .176 难度 中 正确答案B4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a 7. 已知()sin -cos =2,0,αααπ∈,则tan α= A .1- B .2- C 2 D .1难度 中 正确答案A方法一:()sin -cos 2,0,αααπ∈,两边平方得1-sin 2=2,α()sin 2=-1,20,2,ααπ∈332=,=,24ππααtan =-1α∴ 方法二:由于形势比较特殊,可以两边取导数得cos +sin =0,tan =-1ααα∴8. 设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .55 难度 中 正确答案D如图所示过点()5,15A 时,2+3x y 的最大值为55 9. 执行如图所示的程序框图,则输出的S 值是 A .-1 B .23 C .32D .4 难度 中 正确答案D当=1i 时,经运算得2==-12-4S ; 当=2i 时,经运算得()22==2--13S ;当=3i 时,经运算得23==222-3S ; 当=4i 时,经运算得2==432-2S ;当=5i 时,经运算得2==-12-4S ; 从此开始重复,每隔4一循环,所以当=8i 时,经运算得=4S ;接着=9i 满足输出条件,输出=4S 10. 在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为 A .16B .13 C .23 D .45难度 中正确答案C如图所示,令=,=AC x CB y ,则()+=12>0,y>0x y x ,矩形面积设为S ,则()==12-32S xy x x ≤。
2021年普通高等学校招生全国统一考试(辽宁卷)理科数学试题及解答

普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k kn k n n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}3|0|31x M x x N x x x +⎧⎫==<=-⎨⎬-⎩⎭,≤,则集合{}|1x x ≥=( ) A .M N B .M NC .()MM ND .()MM N2.135(21)lim(21)x n n n →∞++++-=+( )A .14B .12C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B .((2)k ∈-+,∞C .(k ∈D .((3)k ∈-+∞,,∞4.复数11212i i +-+-的虚部是( ) A .15i B .15 C .15i - D .15-5.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( )A .2OA OB - B .2OA OB -+C .2133OA OB - D .1233OA OB -+6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .348.将函数21xy =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a9.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) AB .3CD .9211.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线( ) A .不存在 B .有且只有两条 C .有且只有三条 D .有无数条 12.设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫= ⎪+⎝⎭的所有x 之和为( ) A .3-B .3C .8-D .8第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.函数100x x x y e x +<⎧=⎨⎩,,,≥的反函数是__________.14.在体积为的球的表面上有A ,B ,C 三点,AB =1,BC,A ,C两点的球面距离为3,则球心到平面ABC 的距离为_________.15.已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2≤n ≤8,则n =______. 16.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.18.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4 频数205030(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.19.(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45,求D E '与平 面PQGH 所成角的正弦值.A B CD E FP Q H A ' B 'C 'D ' G20.(本小题满分12分)在直角坐标系xOy 中,点P到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点. (Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |. 21.(本小题满分12分)在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++….22.(本小题满分14分) 设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2008年普通高等学校招生全国统一考试(辽宁卷) 数学(供理科考生使用)试题参考答案和评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,共60分. 1.D 2.B 3.C 4.B 5.A 6.A 7.C 8.A 9.B 10.A 11.D 12.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.11ln 1.x x y x x -<⎧=⎨⎩,,, ≥14.3215.516.143三、解答题17.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △,所以1sin 2ab C =4ab =. ························ 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································ 8分 当cos 0A =时,2A π=,6B π=,a =b =当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =b =.所以ABC △的面积1sin 2S ab C ==. ······················································ 12分 18.本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ····················· 3分 (Ⅱ)ξ的可能值为8,10,12,14,16,且 P (ξ=8)=0.22=0.04, P (ξ=10)=2×0.2×0.5=0.2, P (ξ=12)=0.52+2×0.2×0.3=0.37, P (ξ=14)=2×0.5×0.3=0.3, P (ξ=16)=0.32=0.09.ξ的分布列为··················································································· 9分E ξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) ····························· 12分 19.本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u B ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力。
【解析】因为A ∩B={3},所以3∈A ,又因为 u B ∩A={9},所以9∈A ,所以选D 。
本题也可以用Venn 图的方法帮助理解。
(2)设a,b 为实数,若复数11+2i i a bi =++,则 (A )31,22a b == (B) 3,1a b == (C) 13,22a b == (D) 1,3a b == 【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。
【解析】由121i i a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512(C)14 (D)16 【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题【解析】记两个零件中恰好有一个一等品的事件为A ,则P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于(A )1m n C -(B) 1m n A -(C) m n C(D) m n A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =m n A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是 (A )23 (B)43 (C)32(D)3 【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。
【解析】将y=sin(ωx+3π)+2的图像向右平移34π个单位后为4sin[()]233y x ππω=-++4sin()233x πωπω=+-+,所以有43ωπ=2k π,即32k ω=,又因为0ω>,所以k ≥1,故32k ω=≥32,所以选C (6)设{a n }是有正数组成的等比数列,n S 为其前n 项和。
已知a 2a 4=1, 37S =,则5S =(A )152 (B)314 (C)334(D)172 【答案】B【命题立意】本题考查了等比数列的通项公式与前n 项和公式,考查了同学们解决问题的能力。
【解析】由a 2a 4=1可得2411a q =,因此121a q=,又因为231(1)7S a q q =++=,联力两式有11(3)(2)0q q +-=,所以q=12,所以5514(1)3121412S --==-,故选B 。
(7)设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF 的斜率为那么|PF|=(A) (B)8(C) (D) 16【答案】B【命题立意】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想。
【解析】抛物线的焦点F (2,0),直线AF的方程为2)y x =-,所以点(2,A -、(6,P ,从而|PF|=6+2=8(8)平面上O,A,B 三点不共线,设,OA=a OB b =,则△OAB 的面积等于(B)(C)(D)【答案】C【命题立意】本题考查了三角形面积的向量表示,考查了向量的内积以及同角三角函数的基本关系。
【解析】三角形的面积S=12|a||b|sin<a,b>,而=11|||||||sin ,22a b a b a b =<> (9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐 近线垂直,那么此双曲线的离心率为(A)(C)12 (D) 12【答案】D【命题立意】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想。
【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,则F (c,0),B(0,b)直线FB :bx+cy-bc=0与渐近线y=b x a 垂直,所以1b b c a-=-,即b 2=ac所以c 2-a 2=ac ,即e 2-e -1=0,所以e =或e =(舍去) (1O)已知点P 在曲线y=41x e +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值 范围是(A)[0,4π) (B)[,)42ππ 3(,]24ππ (D) 3[,)4ππ 【答案】D【命题立意】本题考查了导数的几何意义,求导运算以及三角函数的知识。
【解析】因为'2441(1)2x x x x e y e e e --==≥-+++,即tan a ≥-1,所以34παπ≤≤。
(11)已知a>0,则x 0满足关于x 的方程ax=6的充要条件是(A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤- 【答案】C【命题立意】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力。
【解析】由于a >0,令函数22211()222b b y ax bx a x a a=-=--,此时函数对应的开口向上,当x=b a 时,取得最小值22b a -,而x 0满足关于x 的方程ax=b,那么x 0==b a ,y min =2200122b ax bx a -=-,那么对于任意的x ∈R,都有212y ax bx =-≥22b a -=20012ax bx - (12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)( (B)(1,-+ (D) (0,【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。
【解析】根据条件,四根长为2的直铁条与两根长为a 的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a ,a ,如图,此时a 可以取最大值,可知AD=3,SD=21a -,则有21a -<2+3,即22843(62)a <+=+,即有a<62+(2)构成三棱锥的两条对角线长为a ,其他各边长为2,如图所示,此时a>0;综上分析可知a ∈(0,62+)二、填空题:本大题共4小题,每小题5分。
(13)261(1)()x x x x ++-的展开式中的常数项为_________.【答案】-5【命题立意】本题考查了二项展开式的通项,考查了二项式常数项的求解方法【解析】21()x x-的展开式的通项为6216(1)r r r r T C x -+=-,当r=3时,34620T C =-=-,当r=4时,45615T C =-=,因此常数项为-20+15=-5(14)已知14x y -<+<且23x y <-<,则23z x y =-的取值范围是_______(答案用区间表示)【答案】(3,8)【命题立意】本题考查了线性规划的最值问题,考查了同学们数形结合解决问题的能力。
【解析】画出不等式组1423x y x y -<+<⎧⎨<-<⎩表示的可行域,在可行域内平移直线z=2x-3y ,当直线经过x-y=2与x+y=4的交点A (3,1)时,目标函数有最小值z=2×3-3×1=3;当直线经过x+y=-1与x-y=3的焦点A (1,-2)时,目标函数有最大值z=2×1+3×2=8.(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.【答案】23【命题立意】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力。
【解析】由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为22222223++=(16)已知数列{}n a 满足1133,2,n n a a a n +=-=则n a n 的最小值为__________. 【答案】212【命题立意】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力。
【解析】a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2[1+2+…(n -1)]+33=33+n 2-n所以331n a n n n=+- 设()f n =331n n +-,令()f n =23310n -+>,则()f n 在33,)+∞上是单调递增,在33)上是递减的,因为n ∈N +,所以当n=5或6时()f n 有最小值。
又因为55355a =,66321662a ==,所以,n a n的最小值为62162a = 三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++(Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值.(17)解:(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++即 222a b c bc =++由余弦定理得 2222cos a b c bc A =+-故 1cos 2A =-,A=120° ……6分(Ⅱ)由(Ⅰ)得:sin sin sin sin(60)B C B B +=+︒-31cossin 22sin(60)B B B =+=︒+ 故当B=30°时,sinB+sinC 取得最大值1。