小学数列找规律总结
六年级数学找规律题型

一、等差型数列规律1.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定 第8个数为 , 第n 个数为 . 二、等比型数列规律2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定三、含n 2型数列规律3.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律 确定第8个数为 , 第n 个数为 .四、其它数列规律列举4.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的 第k 个数是五、循环型数列.5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082 的末位数是 .6. 若1113a =-,2111a a =-,3211a a =-,… ;则2014a 的值为 . 六、算式型规律7. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .8. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1) 请用含n 的式子表示你发现的规律:___________________.(2) 请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值七、数列阵型9.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.。
二年级找规律填数技巧

找规律填数是小学各个学段的学生都要掌握的题型,只是所处学段不同,题的难易程度不同罢了。
我们知道按照一定顺序排列起来的一列数,叫做数列。
比如自然数列:1、2、3、4、5……;双数列:2、4、6、8、10……。
只要能从连续的几个数中发现排列的规律,那么就可以依据这个规律来填写空缺的数,一般来说常见的有七大规律。
一、递增关系在第一学段的一二年级数学中最为常见的找规律填数,就是数字排列呈递增关系的变化规律,比如:1,3,5,7,9()。
方法:把相邻两个已知数的数差计算出来,通过分析数差,找出数字之间的排列规律。
这列数可能是以“+2”的规律递增,也可能是以“+3”的规律递增,还可能以“+4”“+5”或“+10”,也或其它数的规律递增。
例:(1)2,4,6,8,10,(),()(2)5,10,15,20,(),()(3)3,6,9,12,15,18,()分析:通过观察(1)的已知数列,发现相邻两个已知数相差2,而且是依次递增的,也就是前面一个数“+2”,就等于后面的数,故括号里分别填12,14.通过观察(2)的已知数列,发现相邻两个已知数相差5,而且是依次递增的,也就是前面一个数“+5”,就等于后面的数,20+5=25,25+5=30,所以括号里分别填25,30.通过观察(3)的已知数列,发现相邻两个已知数相差3,而且是依次递增的,也就是前面一个数“+3”,就等于后面的数,根据这一规律18+3=21,所以括号里填21。
二、递减关系这也是常见的一种数字排列变化规律,与递增关系类似,方法也一样。
比如:14,12,10,8,6,()()。
方法:先把相邻两个已知数的数差计算出来,通过分析数差,找出数字之间的排列规律。
这列数可能是以“-2”的规律递减,也可能是以“-3”的规律递减,还可能以“-5”或“-10”,也或其它数的规律递减。
例:(1)25,20,15,10,()()(2)12,9,6,3,()(3)36,30,24,18,()()分析:通过观察(1)的已知数列,发现相邻两个已知数相差5,而且是依次递减的,也就是前面一个数“-5”,就等于后面的数,那根据这一规律10-5=5,5-5=0,所以括号里分别填5,0.通过观察(2)的已知数列,发现相邻两个已知数相差3,而且是依次递减的,也就是前面一个数“-3”,就等于后面的数,那3-3=0,所以括号里填0.通过观察(3)的已知数列,发现相邻两个已知数相差6,而且是依次递减的,也就是前面一个数“-6”,就等于后面的数,18-6=12,12-6=6,所以括号里分别填12,6.三、隔项关系隔项关系题型的特点主要是在一组数中,有一个固定的数在以一定的规律重复出现,这个特点是比较容易发现的,那我们只要计算出相同数两边的数之间的数差,就能从中找出这些数字的排列规律。
数列找规律万能公式

数列找规律公式数列找规律用拉格朗日插值。
拉格朗日“提出”了这种方法,所谓的插值,就是“插”“值”,就是指找出一个通过给出离散数据点的函数。
即,数列中给出数据可以表示为在坐标系上的点,x坐标就是第几项,y坐标就是该项的值。
比如说,“1 ,3,7,8,0,5,9,2,4,6”这个数列可以表示为:在Mathematica中用几行简单的代码即可做到:接下来,我们找出这些点都在哪一个函数上面,接着下来把下一项的项数带进去,就得到了下一项的值——这实际上就是通项公式!事不宜迟,马上来试一试!首先,我们先来看看拉格朗日插值公式是怎么样的:好吧,我知道小学生又看不懂了。
那下面我们先试一一个简单的数列:1、8、27…那下一个是什么呢?首先,这表示存在一个函数。
当自变量分别为1、2、3时函数值为1、8、27。
于是我们可以设一个函数:接下来就是关键的一步了!小学生可以不懂这是怎么回事。
但有什么问题?考试会用就行了(如果你不介意再解释一下一些其他的问题...比如未知数、自变量和分数的运算)。
容易看到,整个式子是三项的和,每一个点都有一项。
对于每一个单独的点来说,分子是这一点的函数值乘上x与其他点的自变量的差。
而分母就是该店的自变量和其他点的自变量的差的积。
于是,一个通项公式就出来了。
是于是我们迫不及待地把x=4带进去,得到58.至此,大功告成。
等等,什么答案写着是64?别管了,肯定是盗版书印错答案了。
有什么可能拉格朗日大牛会错呢?什么,我们的规律不对?正确的是y=x^3?好的,让我看看。
嗯…难道是拉格朗日错了?但是前面我们的估算也是没问题的啊。
再仔细看一下坑爹的高数课本,才发现原来是我们一直搞错了。
如果我们给的是n个点,那么拉格朗日给出的函数将会是(n-1)次的。
这不坑爹吗…用公式之前还得想清楚这个函数是几次的,而且如果是更高次数的还没办法加上点去求(更别说斐波那契数列这样的用递归定义的数列了)。
这就意味着,就算是1、2、3、4、5、6…这样的数列,拉格朗日插值法在耗尽你大量的考试时间去求出通项公式以后,还会给出一个超级坑爹的答案!那么这个方法还有什么用!别急,前面的计算都是为后面做铺垫的。
小学奥数找规律

小学奥数找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。
(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。
(1)(3)练习4:(1)(3)【例题5】按规律填数。
(1)187,286,385,( ),( ) (2)练习5:根据规律,在空格内填数。
小学奥数找规律知识点

小学奥数找规律知识点小学奥数是指小学生参加的数学奥赛比赛,题目难度较高,常常需要运用一些找规律的方法来解题。
在小学奥数中,找规律是一种重要的解题技巧,掌握了找规律的知识点,可以在解题时事半功倍。
本文将介绍小学奥数中常用的找规律的知识点。
一、数字序列的规律在小学奥数中,经常会给出一组数字的序列,要求找出其中的规律。
在解决这类问题时,我们可以首先观察数字序列的前几个数,看是否能够找到一些明显的规律。
比如,给定数字序列:2, 4, 6, 8, 10,我们可以发现每个数字都是前一个数字加2,因此规律是“加2”。
有时候数字序列的规律可能更加复杂,我们可以根据数字之间的差异来寻找规律。
例如,给定数字序列:1, 3, 6, 10,我们可以发现每个数字相对于前一个数字的差值递增,即1, 2, 3,因此规律是“差值递增”。
二、图形的规律小学奥数中常常会出现一些图形题目,要求找出图形之间的规律。
在解决这类问题时,我们可以先观察图形的形状、颜色、数量等特征,看是否能够找到一些规律。
例如,给定以下图形序列:△ △△ △△△ △△△△我们可以发现每一行图形的数量递增,因此规律是“数量递增”。
有时候图形的规律可能与位置有关,我们可以根据图形在位置上的变化来寻找规律。
比如,给定以下图形序列:□□ □□ □ □□ □ □ □我们可以发现每一行图形的位置与数量有关,因此规律是“位置与数量相关”。
三、数学运算的规律在小学奥数中,常常会出现一些涉及数学运算的题目,要求找出运算中的规律。
解决这类问题时,我们可以先观察数学运算的过程和结果,看是否能够找到一些规律。
例如,给定以下数学运算序列:2 +3 = 53 +4 = 74 +5 = 9我们可以发现每一组的结果都比前一组的结果大2,即组数与结果之间存在着一定的关系,因此规律是“结果与组数相关”。
有时候数学运算的规律可能与数的性质有关,我们可以根据数的性质来寻找规律。
比如,给定以下数学运算序列:6 × 1 = 66 × 2 = 126 × 3 = 18我们可以发现每一组的结果都是一个等差数列,因此规律是“结果是一个等差数列”。
数列运算的一些小技巧

数列运算的一些小技巧1. 等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208, 622,规律为a*3-2=b2.深一点模式,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3、看各数的大小组合规律,做出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=7 4 , 40*40-74=1526 , 74*74-40=5436</B>,这就是规律。
4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。
数列知识点归纳总结小学奥数

数列知识点归纳总结小学奥数数列是数学中重要的概念,也是小学奥数中经常涉及的内容之一。
在小学阶段,学生们开始接触数列的基本概念和性质,逐渐学习如何判断和计算数列中的各种元素。
本文将对小学奥数中的数列知识点进行归纳总结,帮助学生更好地理解和掌握数列的概念和应用。
一、数列的定义和表示方法数列由一组按照特定规律排列的数字组成,可以用一对大括号{}或者使用通项公式表示。
例如,数列{1, 3, 5, 7, 9}可以表示为an = 2n-1,其中n为自然数。
二、等差数列等差数列是最常见的数列类型之一,数列中相邻两个数之间的差值都是相等的。
等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1是首项,d是公差,n是项数。
在应用等差数列的时候,常常需要求解数列中的某一项,或者计算数列的前n项和。
对于已知首项和公差的等差数列,首先可以根据通项公式求出所需的值。
例题1:已知等差数列{2, 5, 8, 11, ...}的首项是2,公差是3,求该数列的第10项。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件,可得a10 = 2 + (10-1)3 = 2 + 27 = 29。
因此,该数列的第10项为29。
例题2:已知等差数列{2, 5, 8, 11, ...}的首项是2,公差是3,求数列的前10项的和。
解析:根据等差数列的求和公式S = (n/2)(a1+an),代入已知条件,可得S10 = (10/2)(2+29) = 5(31) = 155。
因此,该数列前10项的和为155。
三、等比数列等比数列是另一种常见的数列类型,数列中每一项与前一项的比值都是相等的。
等比数列的通项公式可以表示为an = a1 * r^(n-1),其中a1是首项,r是公比,n是项数。
在应用等比数列的时候,同样需要计算数列中的某一项或者前n项的和。
例题3:已知等比数列{3, 6, 12, 24, ...}的首项是3,公比是2,求该数列的第8项。
小学数学数列知识点总结

小学数学数列知识点总结在小学数学中,数列是一个重要的概念。
它不仅能帮助我们更好地理解数字的规律,还能培养我们的逻辑思维能力。
接下来,让我们一起深入学习小学数学中的数列知识点。
一、什么是数列数列,简单来说,就是按照一定顺序排列的一组数。
比如:1,2,3,4,5 就是一个简单的数列;再比如:2,4,6,8,10 也是一个数列。
数列中的每一个数都叫做这个数列的项。
第一个数称为首项,最后一个数称为末项,而数列中数的个数称为项数。
二、常见的数列类型1、等差数列等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的数列。
这个常数叫做等差数列的公差,常用字母“d”表示。
例如:1,3,5,7,9 就是一个公差为 2 的等差数列。
2、等比数列等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。
这个常数叫做等比数列的公比,常用字母“q”表示。
比如:2,4,8,16,32 就是一个公比为 2 的等比数列。
3、斐波那契数列斐波那契数列是一个非常有趣的数列,它的特点是从第三项开始,每一项都等于前两项之和。
例如:1,1,2,3,5,8,13,21……三、数列的通项公式通项公式可以帮助我们快速求出数列中任意一项的值。
对于等差数列,通项公式为:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(d\)表示公差。
例如,在等差数列 3,5,7,9,11……中,首项\(a_1 = 3\),公差\(d = 2\),那么第 5 项\(a_5 = 3 +(5 1)×2 = 11\)对于等比数列,通项公式为:\(a_n = a_1×q^{n 1}\),其中\(a_1\)表示首项,\(q\)表示公比。
比如,在等比数列 2,4,8,16,32……中,首项\(a_1 = 2\),公比\(q = 2\),那么第 4 项\(a_4 = 2×2^{4 1} = 16\)四、数列的求和公式1、等差数列求和公式等差数列的求和公式为:\(S_n =\frac{n(a_1 + a_n)}{2}\),其中\(S_n\)表示前\(n\)项的和,\(a_1\)表示首项,\(a_n\)表示末项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列找规律总结
1、顺等差数列,前一个数减去后一个数的差相等。
例如:1,3,5,7,9,…
逆等差数列,后一个数减去前一个数的差相等。
例如:10,8,6,4, 2…;
2、顺等比数列,即前一个数除以后一个数的商相等。
例如:2,4,8,16,32…;
逆等比数列,即后一个数除以前一个数的商相等。
例如:1024,512,256,128,…;
3、兔子数列,即单数序号的数字与双数序号的数分别形成规律。
例如8,15,10,13,12,11,(14),(9)这里8,10,12,14成规律,15,13,12,11,9成规律;
4、质数数列规律
例如:2,3,5,7,11,(13),(17)....这些数学都为质数;
5、“平方数列”、“立方数列”等,
例如:平方数列:1、4、9、16、27、64、125、…
立方数列:
例如:1、8、27、64、81、256、625、…
6、相邻数字差呈现规律。
数字之间差呈现等差数列,
例如:1、3、7、13、21、31、43、…
数字之间差呈现等比数列,
例如:1、3、7、15、31、63、…
7、多个数字间呈现规律,(本题考查较少)
裴波那契数列,即任意连续两个数字之和等于第三个数字,例如:1、1、2、3、5、8、13、21、34、…
任意连续三个数字之和等于第四个数字,
例如:1、1、1、3、5、9、17、31、57、105、…。