硅集成电路制造工艺第0章绪论

合集下载

熊诗波第0章习题答案

熊诗波第0章习题答案

第0章绪论(本习题解答尚未及验正,如发现错误请告诉老师)0-1叙述我国法定计量单位的基本内容。

答:法定计量单位是强制性的,各行业、各组织都必须遵照执行,以确保单位的一致。

我国的法定计量单位是以国际单位制(SI)为基础并选用少数其他单位制的计量单位来组成的。

国际单位制的七个基本量的单位分别是:长度—米(m)、质量—千克(kg)、时间—秒(s)、温度—开尔文(K)、电流—安培(A)、发光强度—坎德拉(cd)、物质的量—摩尔(Mol)。

(余略)0-2如何保证量值的准确和一致?答:为了确保量值的统一和准确,除了对计量单位做出严格的定义外,还必须有保存、复现和传递单位的一整套制度和设备。

主要是基准和标准。

基准是用来保存、复现计量单位的计量器具。

它是具有现代科学技术所能达到的最高准确度的计量器具。

基准通常分为国家基准、副基准和工作基准三种等级。

计量标准是指用于检定工作计量器具的计量器具。

工作计量器具是指用于现场测量而不用于检定工作的计量器具。

通过对计量器具实施检定或校准,将国家基准所复现的计量单位量值经过各级计量标准传递到工作计量器具,以保证被测对象量值的准确和一致。

这个过程就是所谓的“量值传递”。

在此过程中,按检定规程对计量器具实施检定的工作对量值的准确和一致起着最重要的保证作用,是量值传递的关键步骤。

(余略)0-3何谓测量误差?通常测量误差是如何分类、表示的?答:测量结果与被测量真值之差称为测量误差,即测量误差=测量结果-真值根据误差的统计特征,可以将误差分为系统误差、随机误差、粗大误差。

常用的误差表示方法有绝对误差、相对误差、引用误差0-4 请将下列诸测量结果中的绝对误差改写为相对误差:①1.01825447.8V V μ±②(25.048940.00003)g ± ③2(5.4820.026)g cm ±解: ① 测量结果1.0182544V ,测量误差67.87.810V V μ−=×,相对误差:67.8100.000766%1.0182544V V −×= ② 测量结果25.04894g ,测量误差0.00003g ,相对误差:0.000030.00012%25.04894g g= ③ 测量结果25.482g cm ,测量误差20.026g cm ,相对误差:0.0260.474%5.482= 0-5 何谓测量不确定度?国际计量局于1980年提出的建议《实验不确定度的规定建议书INC-1(1980)》的要点是什么?答:测量不确定度是与测量结果相关联的参数,是测量误差量值分散性的指标,表示对测量值不能肯定的程度。

集成电路制造工艺

集成电路制造工艺

集成电路制造工艺第1章绪论1.1 课题背景在过去的的几十年里,一个以计算机、互联网、无线通信和全球定位系统为组成部分的信息社会逐渐形成。

这个信息社会的核心部分是由众多内建于系统中的细小集成电路(IC)芯片支持和构成的。

集成电路广泛应用于生活中的各个领域—诸如消费类产品、家庭用品、汽车、信息技术、电信、媒体、军事和空间应用。

结合纳米技术,持续不断的研究和开发即将使得集成电路更小和更强有力。

在可见的未来,计算机的尺寸将缩小到指甲盖大小,达到集成电路在尺寸、速度、价格及功耗方面实际可能的极限。

1.2 集成电路制造工艺发展概况随着硅平面工艺技术的不断完善和发展,到1958年,诞生了第一块集成电路,也就是小规模集成电路(SSL);到了20世纪60年代中期,出现了中规模集成电路(MSL);20世纪70年代前期,出现了大规模集成电路(LSL);20世纪70年代后期又出现了超大规模集成电路(VLSL);到了20世纪90年代就出现了特大规模集成电路(ULSL)。

集成电路的制造工艺流程十分复杂,而且不同的种类、不同的功能、不同的结构的集成电路,其制造工艺的流程也不一样。

人们常常以最小线宽(特征尺寸)、硅晶圆片的直径和动态随机存取存储器(DRAM)的容量,来评价集成电路制造工艺的发展水平。

在表1-1中列出了从1995年到2010年集成电路的发展情况和展望。

表1-1 集成电路的发展情况和展望年代1995 1998 2001 2004 2007 2010 特征尺寸/um 0.35 0.25 0.18 0.13 0.09 0.065DRAM容量/bit 64M 256M 1G 4G 16G 64G微处理器尺寸/mm²250 300 360 430 520 620DRAM尺寸/mm²190 280 420 640 960 1400 逻辑电路晶体管密度(晶体管数)/个4M 7M 13M 25M 50M 90M 高速缓冲器/(bit/cm²)2M 6M 20M 50M 100M 300M最大硅晶圆片直径/mm 200 200 300 300 400 400第2章半导体集成电路制造工艺流程2.1 概括本章以大量精美的图片、图表及具体详实的数据详细描述了集成电路制造的全过程。

集成电路制造工艺流程ppt课件

集成电路制造工艺流程ppt课件
工艺)
7
引言
6. 代工工艺 代工(Foundry)厂家很多,如:
宏力 8英寸晶圆0.25/0.18 mCMOS工艺 华虹 NEC 8英寸晶圆0.25mCMOS工艺 台积电(TSMC) 在松江筹建 8英寸晶圆0.18
mCMOS工艺 联华(UMC) 在苏州筹建 8英寸晶圆0.18
无生产线(Fabless)集成电路设计公司。 如美国有200多家、台湾有100多家这样的 设计公司。
2
引言
2. 代客户加工(代工)方式 芯片设计单位和工艺制造单位的分离,即
芯片设计单位可以不拥有生产线而存在和 发展,而芯片制造单位致力于工艺实现, 即代客户加工(简称代工)方式。 代工方式已成为集成电路技术发展的一个 重要特征。
6
引言
6. 代工工艺 代工(Foundry)厂家很多,如:
无锡上华(0.6/0.5 mCOS和4 mBiCMOS 工艺)
上海先进半导体公司(1 mCOS工艺) 首钢NEC(1.2/0.18 mCOS工艺) 上海华虹NEC(0.35 mCOS工艺) 上海中芯国际(8英寸晶圆0.25/0.18 mCOS
mCMOS工艺等等。
8
7.境外代工厂家一览表
9
引言
8. 芯片工程与多项目晶圆计划
F&F(Fabless and Foundry)模式 工业发达国家通过组织无生产线IC设计的芯片
计划来促进集成电路设计的专业发展、人才培 养、技术研究和中小企业产品开发,而取得成 效。 这种芯片工程通常由大学或研究所作为龙头单 位负责人员培训、技术指导、版图汇总、组织 芯片的工艺实现,性能测试和封装。大学教师、 研究生、研究机构、中小企业作为工程受益群 体,自愿参加,并付一定费用。

硅集成电路工艺简介

硅集成电路工艺简介
艺中,一般只采用正胶
负胶:分辨率差,适于加工线宽≥3m的
线条
几种常见的光刻方法
接触式光刻、接近式曝光、投影式曝光
光学曝光的各种曝光方式及其利弊
接成品率低。
优点:掩模版寿命长,成本低。
接近式

缺点:衍射效应严重,影响分辨率。

优点:无像差,无驻波效应影响。
D
G
S
G
D
S
Al
SiO2
N
N
P-si
掺杂:将需要的杂质掺入特定的 半导体区域中,以达到改变半导 体电学性质,形成PN结、电阻、 欧姆接触
磷(P)、砷(As) — N型硅
硼(B) — P型硅
掺杂工艺:扩散、离子注入
扩散
替位式扩散:杂质离子占据硅原子的位:
– Ⅲ、Ⅴ族元素 – 一般要在很高的温度(950~1280℃)下进行,
蚀。具有溅射刻蚀和等离子刻蚀两者的优点,同 时兼有各向异性和选择性好的优点。目前,RIE 已成为VLSI工艺中应用最广泛的主流刻蚀技术。
2.3 掺杂工艺(扩散与离子注入)
通过掺杂可以在硅衬底上形成不同类型的半导体区
域,构成各种器件结构。掺杂工艺的基本思想就是通过 某种技术措施,将一定浓度的Ⅲ价元素,如硼,或Ⅴ价 元素,如磷、砷等掺入半导体衬底。
2. 集成电路制造工艺
2.1 集成电路加工过程简介
一、硅片制备(切、磨、抛)
*圆片(Wafer)尺寸与衬底厚度: 3— 0.4mm 5— 0.625mm 4— 0.525mm 6— 0.75mm
硅片的大部分用于机械支撑。
晶圆退火工艺流程
晶体生长
Crystal Growth
硅晶体
Si Crystal

第0章绪论

第0章绪论

构件——组成机械的各个相对运动的实物.
单一零件——曲轴
多个零件的刚性组合——连杆
构件是机械中运动的单元.
零件:机械中不可拆的制造单元体.是制造的单元.
通用零件:轴,键,齿轮等
零件 专用零件:叶轮,枪栓等
部件:若干个零件的装配体,是装配的单元.
§0-2 本课程在教学中的地位
课程性质: 技术基础课 作用: 承前启后
§0-3 机械设计的基本要求和一般过程
机械设计---规划和设计实现预期功能的新机械或改 进原有机械的性能.
基本要求:在满足预期功能的前提下,性能好,效 率高,成本低,安全可靠,操作方便,环保,维修 简单和造型美观. 机械设计的内容与过程: 1.根据设计要求,确定机械的工作原理;
2. 拟定设计方案; 3. 总体设计,进行运动分析和动力分析; 4. 结构设计,完成零部件设计.
8 7
3
4
2 1 5 6
进气阀3, 曲轴6,
齿轮9,10
9 10
凸轮7,
顶杆8,
工作原理: 1.活塞下行,进气阀开启,混合气体 内燃机 进入汽缸; 2.活塞上行,气阀关闭,混合气体被压缩, 在顶部点 火燃烧; 3.高压燃烧气体推动活塞下行,两气阀关闭; 4.活塞上行,排气阀开启,废气体被排出汽缸.
内燃机的工作过程:
大带轮4 偏心轴5 电动机1V带3功用:动板6 定颚板8压碎物料
小带轮2
组成: 见右图
轴板7
工作过程:
电动机
带传动
偏心轴转动
动颚板摆动,与定 颚板一起压碎物料
点击上图观看动画
机器的共有特征: ①由一系列的相对运动单元体所组成; ②各部分有确定的相对运动; ③代替或减轻人类劳动完成有用功或实现能量 的转换

大学所有课程目录

大学所有课程目录

高等数学第一章:函数与极限第二章: 导数与微分第三章: 微分中值定理与导数的应用第四章: 不定积分第五章: 定积分第六章: 定积分的应用第七章: 微分方程第八章: 空间解析几何与向量代数第九章: 多元函数微分法及其应用第十章: 重积分第十一章: 曲线积分与曲面积分第十二章: 无穷级数模拟电子技术基础第0章: 导言第一章: 常用半导体器件第二章: 基本放大电路第三章: 多级放大电路第四章: 集成运算放大电路第五章: 放大电路的频率响应第六章: 放大电路中的反馈第七章: 信号的运算和处理第八章: 波形的发生和信号的转换第九章: 功率放大电路第十章: 直流电源第十一章: 模拟电子电路读图附录: 半导体器件模型数字电子技术基础第一章: 数制和码制第二章:逻辑代数基础第三章:门电路第四章:组合逻辑电路第五章:触发器第六章:时序逻辑电路第七章:半导体存储器第八章:可编程逻辑器件第九章:硬件描述语言简介第十章:脉冲波形的产生和整形第十一章:数-模和模-数转换信号与系统第一章:绪论第二章:连续时间系统的时域分析第三章:傅里叶变换第四章:拉普拉斯变换,连续时间系统的s域分析第五章:傅里叶变换应用于通信系统——滤波、调制与抽样第六章:信号的矢量空间分析第七章:离散时间系统的时域分析第八章:z变换、离散时间系统的z域分析第九章:离散傅里叶变换以及其他离散正交变换第十章:模拟与数字滤波器第十一章:反馈系统第十二章:系统的状态变量分析电子材料导论第一章:电子材料概论第二章:导电材料第三章:电阻材料第四章:超导材料第五章:半导体材料第六章:电介质材料第七章:光电子材料第八章:磁性材料第九章:敏感电子材料大学物理学力学基础篇第一章:运动的描述第二章:运动定律与力学中的守恒定律第三章:相对论第四章:机械振动第五章:机械波气体动理论和热力学篇第六章:气体动理论基础第七章:热力学基础电磁学篇第八章:静电场和稳恒电场第九章:稳恒磁场第十章:电磁感应第十一章:电磁场和电磁波波动光学篇第十二章: 光的干涉第十三章:光的衍射第十四章:光的偏振量子论篇第十五章:量子物理基础第十六章:原子核物理和粒子物理简介第十七章:新技术的物理基础数字信号处理教程第0章:绪论第一章:离散时间信号与系统第二章:z变换与离散时间傅里叶变换(DTFT)第三章:离散傅里叶变换(DFT)第四章:快速傅里叶变换(FFT)第五章:数字滤波器的基本结构第六章:无限长单位冲激响应(IIR)数字滤波器的设计方法第七章:有限长单位冲激响应(FIR)数字滤波器的设计方法第八章:信号的抽取与插值——多抽样率数字信号处理基础第九章:数字信号处理中的有限字长效应硅集成电路工艺基础第一章:硅的晶体结构第二章:氧化第三章:扩散第四章:离子注入第五章:物理气相淀积第六章:化学气相淀积第七章:外延第八章:光刻与刻蚀工艺第九章:金属化与多层互连第十章:工艺集成微型计算机原理及应用技术第一章:计算机基础知识第二章:8086微处理器及其系统第三章:从8086到Pentium系列微处理器的技术发展第四章:指令系统第五章:汇编语言程序设计第六章:微机存储器系统第七章:输入/输出和中断第八章:接口技术与常见接口芯片的应用第九章:微机总线技术概率论与数理统计第一章: 随机事件及其概率第二章: 随机变量及其分布第三章:多维随机变量及其分布第四章:随机变量的数字特征第五章:大数定律与中心极限定理第六章:样本及抽样分布第七章:参数估计第八章:假设检验第九章:回归分析与方差分析第十章:R软件在概率论与数理统计中的应用复变函数第一章:复数与复变函数第二章:解析函数第三章:复变函数的积分第四章:级数第五章:留数第六章:共形映射积分变换第一章:Fourier变换第二章:Laplace变换矢量分析与场论第一章:矢量分析第二章:场论第三章:哈密顿算子▽第四章:梯度、散度、旋度与调和量在正交曲线。

硅集成电路制造工艺绪论

硅集成电路制造工艺绪论

硅集成电路制造工艺绪论引言硅集成电路制造工艺是现代电子工程领域中的重要基础,它涉及到芯片的设计、制造和封装等多个环节。

本文将对硅集成电路制造工艺进行绪论的介绍,包括其定义、发展历程、应用领域等内容。

定义硅集成电路制造工艺,简称IC制造工艺,是指在硅基片上通过一系列的工艺步骤,将电路图案和器件结构逐步形成,并且将各个器件连接起来,最终形成一个完整的集成电路芯片的过程。

发展历程硅集成电路制造工艺起源于20世纪50年代,当时半导体技术刚刚起步。

最早的集成电路制造工艺是通过手工方式逐个添加器件,由于工艺复杂、成本高昂,导致了生产效率低下。

随着科技的发展,人们逐渐采用自动化的方式来完成集成电路制造工艺,大大提高了生产效率和产品质量。

在20世纪70年代,随着计算机技术的快速发展,对集成电路的需求急剧增加。

这导致集成电路制造工艺的研究进一步深化,出现了许多新的制造工艺和技术。

在20世纪80年代,随着微电子技术的成熟,集成电路制造工艺实现了更大的进步。

新的材料和制造工艺的引入使得集成电路芯片的功能更加强大,尺寸更小,性能更稳定。

到了21世纪,随着半导体技术的进一步革新,硅集成电路制造工艺越发成熟。

同时,新兴的技术如三维集成技术、纳米制造技术等也开始应用于集成电路制造领域,为未来的发展奠定了基础。

应用领域硅集成电路制造工艺在现代社会中广泛应用于各个领域,如通信、计算机、消费电子、工业控制等。

以下是一些常见的应用领域:通信集成电路在通信领域的应用非常广泛。

例如,手机中的处理器、无线模块、芯片组等都是通过硅集成电路制造工艺制造的。

同时,基站设备中的射频芯片、基带处理器等也是通过集成电路制造工艺制造的。

计算机计算机中的各个部件,如处理器、内存、硬盘控制器等,均使用集成电路制造工艺制造。

这使得计算机性能得到了大幅提升,同时体积也得到了显著缩小。

消费电子消费电子产品中广泛使用了集成电路制造工艺制造的芯片,如电视、音响、游戏机等。

硅集成电路工艺基础要点整理

硅集成电路工艺基础要点整理

硅工艺简易笔记第二章氧化⏹SiO2作用:掩蔽膜和离子注进屏蔽膜钝化膜c.MOS电容的介质材料d.MOSFET的尽缘栅材料e.电路隔离介质或尽缘介质2.1SiO2的结构与性质⏹Si-O4四面体中氧原子:桥键氧——为两个Si原子共用,是多数;非桥键氧——只与一个Si原子联结,是少数;⏹无定形SiO2网络强度:与桥键氧数目成正比,与非桥键氧数目成反比。

2.2.1杂质在SiO2中的存在形式1.网络形成者:即替位式杂质,取代Si,如B、P、Sb等。

其特点是离子半径与Si接近。

⏹Ⅲ族杂质元素:价电子为3,只与3个O形成共价键,剩余1个O变成非桥键氧,导致网络强度落低。

⏹Ⅴ族杂质元素:价电子为5,与4个O形成共价键,多余1个价电子与四周的非桥键氧形成桥键氧,网络强度增加。

2.网络改变者:即间隙式杂质,如Na、K、Pb、Ca、Ba、Al等。

其特点是离子半径较大,多以氧化物形式掺进;结果使非桥键氧增加,网络强度减少。

2.2.2杂质在SiO2中的扩散系数⏹扩散系数:D SiO2=D0exp(-ΔE/kT)D0-表看扩散系数〔ΔE/kT→0时的扩散系数〕ΔE-杂质在SiO2中的扩散激活能⏹B、P、As的D SiO2比D Si小,Ga、Al的D SiO2比D Si大得多,Na的D SiO2和D Si都大。

2.3.1硅的热氧化⏹定义:在高温下,硅片〔膜〕与氧气或水汽等氧化剂化学反响生成SiO2。

:高温下,氧气与硅片反响生成SiO2⏹特点-速度慢;氧化层致密,掩蔽能力强;均匀性和重复性好;外表与光刻胶的粘附性好,不易浮胶。

:高温下,硅片与高纯水蒸汽反响生成SiO2⏹特点:氧化速度快;氧化层疏松-质量差;外表是极性的硅烷醇--易吸水、易浮胶。

3.湿氧氧化——氧气中携带一定量的水汽⏹特点:氧化速率介于干氧与水汽之间;氧化层质量介于干氧与水汽之间;4.掺氯氧化——在干氧中掺少量的Cl2、HCl、C2HCl3〔TCE〕、C2H3Cl3〔TCA〕掺氯的作用:汲取、提取大多数有害的重金属杂质及Na+,减弱Na+正电荷效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27
• SSI (小型集成电路),晶体管数 10~100,门数<10 • MSI (中型集成电路),晶体管数 100~1,000,10<门数<100 • LSI (大规模集成电路),晶体管数 1,000~100,000,门数>100 • VLSVI L(超SI 大规模集成电路),晶体管数 100,000~ 1,000,000 • ULSI (特大规模集成电路) ,晶体管数>1,000,000 • GSI(极大规模集成电路) ,晶体管数>109 ,Grand Scale
张忠谋
25
戈登-摩尔提出摩尔定律
•英特尔公司的联合创始 人之一----戈登-摩尔 •早在1965年,摩尔就曾 对集成电路的未来作出预 测。 •“摩尔定律”: 集成电 路上能被集成的晶体管数 目,将会以每18个月翻一 番的速度稳定增长。
26
简短回顾:一项基于科学的伟大发明
➢Bardeen, Brattain, Shockley, First Ge-based bipolar transistor invented 1947, Bell Labs. Nobel prize ➢Kilby (TI) & Noyce (Fairchild), Invention of integrated circuits 1959, Nobel prize ➢Atalla, First Si-based MOSFET invented 1960, Bell Labs. ➢Planar technology, Jean Hoerni, 1960, Fairchild ➢First CMOS circuit invented 1963, Fairchild ➢“Moore’s law” coined 1965, Fairchild ➢Dennard, scaling rule presented 1974, IBM ➢First Si technology roadmap published 1994, USA
1
2
3
4
绪论
引言 集成电路制造工艺发展状况 集成电路工艺特点与用途 本课程内容
5
1 引言
早在1830年,科学家已于实验室展开 对半导体的研究。
1874年,电报机、电话和无线电相继 发明等早期电子仪器亦造就了一项新兴 的工业──电子业的诞生。
6
基本器件的两个发展阶段
分立元件阶段(1905~1959)
20
(Fairchild Semi.)
Si IC
21
仙童(Fairchild)半导体公司
1959年7月,诺依斯提出:可以用蒸发沉 积金属的方法代替热焊接导线,这是解 决元件相互连接的最好途径。
1966年,基尔比和诺依斯同时被富兰克 林学会授予巴兰丁奖章,基尔比被誉为 “第一块集成电路的发明家”而诺依斯 被誉为“提出了适合于工业生产的集成 电路理论”的人。
1969年,法院最后的判决下达,也从法 律上实际承认了集成电路是一项同时的 发明。
22
J. Kilby-TI 2000诺贝尔物理奖
半导体Ge,Au线
R. Noyce-Fairchild 半导体Si,Al线
23
发展
60年代的出现了外延技术,如:n-Si/n+-Si, n-Si/p-Si。一般双极电路或晶体管制作在外 延层上。
不同产品的制作工艺不同,但可将制作工 艺分解为多个基本相同的小单元(工序 )——单项工艺。
不同产品的制作就是将单项工艺按需要顺 序排列组合来实现的——工艺集成。
8
微电子工业生产过程图
前工序:微电子产 品制造的特有工艺
后工序
9
npn-Si双极型晶体管芯片工艺流程 ----硅外延平面工艺举例
举例
15
1958-1960: 氧化 p-n结隔离 Al的蒸发 ……
平面工艺发明人:Jean Hoerni -- Fairchild
16
氧化
扩散 光刻
掩蔽
17
平面工艺基本光刻步骤
掩膜版 光刻胶
18
应用平面工艺可以实现多个器件的集成
19
Jack Kilby’s First Integrated Circuit
70年代的离子注入技术,实现了浅结掺杂。 IC的集成度提高得以实现。
新工艺,新技术,不断出现。(等离子技术 的应用,电子束光刻,分子束外延,等等)
24
张忠谋:台湾半导体教父
全球第一个集成 电路标准加工厂 (Foundry)是 1987年成立的台 湾积体电路公司, 它的创始人张忠 谋也被誉为“晶 体芯片加工之 父”。
be
n+
n
n+
c
10
2 集成电路制造工艺发展历程
诞生:1947年12月在美国的贝尔实验室,发明了 半导体点接触式晶体管,采用的关键工艺技术 是合金法制作pn结。
In
Ge
N-Ge
加热、 降温
pn结
合金法pn结示意图
11
合金结晶体管
12
1st point contact transistor in 1947 -- by Bell Lab J. Bardeen W. Brattain
•1959年2月,德克萨斯 仪器公司(TI)工程 师J.kilby申请第一个集 成电路发明专利;
•利用台式法完成了用硅来 实现晶体管、二极管、电 阻和电容,并将其集成在 一起的创举。 •台式法----所有元件内部 和外部都是靠细细的金属 导线焊接相连。
Photo courtesy of Texas Instruments, Inc.
W. Shockley
1956年诺贝尔物理奖
点接触晶体管:基片是N型锗,发射极和 集电极是两根金属丝。这两根金属丝尖端 很细,靠得很近地压在基片上。金属丝间 的距离:~50μm
13
不足之处: 可靠性低、噪声大、放大率低等缺点
14
诞生
1958年在美国的德州仪器公司和仙 童公司各自研制出了集成电路,采 用的工艺方法是硅平面工艺。
真空电子管、半导体晶体管
集成电路阶段(1959~)
SSI、MSI、LSI、VLSI、ULSI
集成电路从小规模集成电路迅速发展到大规模 集成电路和超大规模集成电路,从而使电子产 品向着高效能低消耗、高精度、高稳定、智能 化的方向发展。
7
什么是集成电路制造工艺
集成电路工艺,是指用半导体材料制作集 成电路产品的方法、原理、技术。
相关文档
最新文档