从《Cash》谈一类分治算法的应用cdq

从《Cash》谈一类分治算法的应用cdq
从《Cash》谈一类分治算法的应用cdq

算法分析与设计总结

第一章算法概述 1.算法:解决问题的一种方法或过程;由若干条指令组成的有穷指令。 2.算法的性质: 1)输入:有零个或多个输入 2)输出:有至少一个输出 3)确定性:每条指令是清晰的、无歧义的 4)有限性:每条指令的执行次数和时间都是有限的 3.算法与程序的区别 程序是算法用某种程序设计语言的具体实现 程序可以不满足算法的有限性 4.算法复杂性分析 1)算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复 杂性,需要空间资源的量称为空间复杂性 2)三种时间复杂性:最坏情况、最好情况、平均情况 3)可操作性最好且最有实际价值的是最坏情况下的时间复杂性 第二章递归与分支策略 1.递归概念:直接或间接调用自身的算法 2.递归函数:用函数自身给出定义的函数 3.递归要素:边界条件、递归方程 4.递归的应用 ?汉诺塔问题 void Hanuo(int n,int a,int b,int c) { if(n==1) return; Hanuo(n-1,a,c,b); move(a,b) Hanuo(n-1,c,b,a); } ?全排列问题 void Perm(Type list[],int k,int m) { //产生list[k,m]的所有排列 if(k == m) { for(int i = 0;I <= m;i++) cout<

《计算机算法设计与分析》习题及答案

《计算机算法设计与分析》习题及答案 一.选择题 1、二分搜索算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是( A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是(A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4. 回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 5.下列算法中通常以自底向上的方式求解最优解的是(B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 6、衡量一个算法好坏的标准是( C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 7、以下不可以使用分治法求解的是( D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 8. 实现循环赛日程表利用的算法是(A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 9.下面不是分支界限法搜索方式的是(D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 10.下列算法中通常以深度优先方式系统搜索问题解的是(D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法

11.备忘录方法是那种算法的变形。( B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法 12.哈夫曼编码的贪心算法所需的计算时间为(B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 13.分支限界法解最大团问题时,活结点表的组织形式是(B )。 A、最小堆 B、最大堆 C、栈 D、数组 14.最长公共子序列算法利用的算法是(B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 15.实现棋盘覆盖算法利用的算法是(A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 16.下面是贪心算法的基本要素的是(C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 17.回溯法的效率不依赖于下列哪些因素( D ) A.满足显约束的值的个数 B. 计算约束函数的时间 C.计算限界函数的时间 D. 确定解空间的时间 18.下面哪种函数是回溯法中为避免无效搜索采取的策略(B ) A.递归函数 B.剪枝函数 C。随机数函数 D.搜索函数 19. (D)是贪心算法与动态规划算法的共同点。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、最优子结构性质 20. 矩阵连乘问题的算法可由( B )设计实现。 A、分支界限算法 B、动态规划算法 C、贪心算法 D、回溯算法 21. 分支限界法解旅行售货员问题时,活结点表的组织形式是( A )。

算法设计与分析:递归与分治法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目递归与分治法 综合实验评分表

实验报告 一、实验目的与要求 1.掌握递归算法的设计思想 2.掌握分治法设计算法的一般过程 3.理解并掌握算法渐近时间复杂度的分析方法 二、实验内容 1、折半查找的递归算法 (1)源程序代码 #include #include using namespace std; int bin_search(int key[],int low, int high,int k) { int mid; if(low>high) return -1; else{ mid = (low+high) / 2; if(key[mid]==k) return mid; if(k>key[mid]) return bin_search(key,mid+1,high,k); else return bin_search(key,low,mid-1,k); } } int main() { int n , i , addr; int A[10] = {2,3,5,7,8,10,12,15,19,21}; cout << "在下面的10个整数中进行查找" << endl; for(i=0;i<10;i++){ cout << A[i] << " " ; } cout << endl << endl << "请输入一个要查找的整数" << endl; cin >> n; addr = bin_search(A,0,9,n);

if(-1 != addr) cout << endl << n << "是上述整数中的第" << addr << "个数" << endl; else cout << endl << n << "不在上述的整数中" << endl << endl; getchar(); return 0; } (2)运行界面 ①查找成功 ②查找失败

维吉尼亚算法分析及应用

维吉尼亚算法分析及应用 一.实验目的 通过应用维吉尼亚算法对数据进行加解密的操作,了解维吉尼亚的加解密的机制,加深对维吉尼亚的算法理解 二.试验环境 安装Windows操作系统的PC机,具有C语言编译环境 三.试验原理 加密过程很简单,就是给定密码字母X和明文字母Y,密文字母是位于X行和Y列的那个字母。这样就决定了加密一天消息与消息一样长的密钥字符串,通常,迷药字符串事是密钥的重复。 使用查表的方式多加密几次就能很轻易的总结出规律:将A-Z以0-25编号,那么加密过程就是,在代换表的第一行中找到消息字母,如W,然后向后移D次(即3次),所得的字母就是密文了。如果数到末位,那么下一次移位就是从头(即A)继续也就是说,可以将A-Z看成一个环,加密过程就是找到消息字母后,将指针往环的某个特定方向移位,次数就是密钥字母所代表的数字,这其实是一个模26的过程。 扩展一下,以上加密仅能对26个字母进行加密,而且不能区分大小写,但其实英文中除了字母外,还有标点符号,还有空格。如果考虑到大部分英文字符,那个维吉尼亚代换表将比较大,而且有点浪费空间,如果能将被加密的字符有N个如果把这N个字符建成一个环,那么加密过程即使模N的过程,即C(I)=K(I)+P(I)modN,其中,K,C,P分别代表的是密钥空间,密文空间,消息(明文)空间。 四.主要代码 #include #include #include char Vigenere(char m,char k) { if (m==' ') return m; else { if (m>=65&&m<=90)m=m+32; m=((m-97)+(k-97)); if (m>25)m=m%26; m=m+97; return m;

算法分析实验报告--分治策略

《算法设计与分析》实验报告 分治策略 姓名:XXX 专业班级:XXX 学号:XXX 指导教师:XXX 完成日期:XXX

一、试验名称:分治策略 (1)写出源程序,并编译运行 (2)详细记录程序调试及运行结果 二、实验目的 (1)了解分治策略算法思想 (2)掌握快速排序、归并排序算法 (3)了解其他分治问题典型算法 三、实验内容 (1)编写一个简单的程序,实现归并排序。 (2)编写一段程序,实现快速排序。 (3)编写程序实现循环赛日程表。设有n=2k个运动员要进行网球循环赛。现 要设计一个满足以下要求的比赛日程表:(1)每个选手必须与其它n-1个选手各赛一次(2)每个选手一天只能赛一场(3)循环赛进行n-1天 四、算法思想分析 (1)编写一个简单的程序,实现归并排序。 将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行 排序,最终将排好序的子集合合并成为所要求的排好序的集合。 (2)编写一段程序,实现快速排序。 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有 数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数

据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

(3)编写程序实现循环日赛表。 按分治策略,将所有的选手分为两组,n个选手的比赛日程表就可以通 过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割, 直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让 这2个选手进行比赛就可以了。 五、算法源代码及用户程序 (1)编写一个简单的程序,实现归并排序。 #include #include #define MAX 10 using namespace std; void merge(int array[],int p,int q,int r) { int i,k; int begin1,end1,begin2,end2; int* temp = new int[r-p+1]; begin1 = p; end1 = q; begin2 = q+1; end2 = r; k = 0; while((begin1 <= end1)&&(begin2 <= end2)) { if(array[begin1] < array[begin2])

回溯法论文-回溯法的分析与应用

沈阳理工大学算法实践与创新论文

摘要 对于计算机科学来说,算法的概念是至关重要的,算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。为了更加的了解算法,本篇论文中,我们先研究一个算法---回溯法。 回溯法是一种常用的重要的基本设计方法。它的基本做法是在可能的范围之内搜索,适于解一些组合数相当大的问题。圆排列描述的是在给定n个大小不等的圆 C1,C2,…,Cn,现要将这n个圆排进一个矩形框中,且要求各圆与矩形框的底边相切。圆排列问题要求从n个圆的所有排列中找出有最小长度的圆排列。图着色问题用数学定义就是给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。其优化版本是希望获得最小的 K值。符号三角形问题要求对于给定的n,计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。 在本篇论文中,我们将运用回溯法来解决着图的着色问题,符号三角形问题,图排列问题,将此三个问题进行深入的探讨。 关键词: 回溯法图的着色问题符号三角形问题图排列问 题

目录 第1章引言 (1) 第2章回溯法的背景 (2) 第3章图的着色问题 (4) 3.1 问题描述 (4) 3.2 四色猜想 (4) 3.3 算法设计 (5) 3.4 源代码 (6) 3.5 运行结果图 (10) 第4章符号三角形问题 (11) 4.1 问题描述 (11) 4.2 算法设计 (11) 4.3 源代码 (12) 4.4 运行结果图 (16) 第5章圆的排列问题 (17) 5.1 问题描述 (17) 5.2 问题分析 (17) 5.3 源代码 (18) 5.4 运行结果图 (22) 结论 (23) 参考文献 (24)

分治算法实验(用分治法实现快速排序算法)

算法分析与设计实验报告第四次附加实验

while (a[--j]>x); if (i>=j) { break; } Swap(a[i],a[j]); } a[p] = a[j]; //将基准元素放在合适的位置 a[j] = x; return j; } //通过RandomizedPartition函数来产生随机的划分 template vclass Type> int RandomizedPartition(Type a[], int p, int r) { int i = Random(p,r); Swap(a[i],a[p]); return Partition(a,p,r); } 较小个数排序序列的结果: 测试结果 较大个数排序序列的结果:

实验心得 快速排序在之前的数据结构中也是学过的,在几大排序算法中,快速排序和归并排序尤其是 重中之重,之前的快速排序都是给定确定的轴值,所以存在一些极端的情况使得时间复杂度 很高,排序的效果并不是很好,现在学习的一种利用随机化的快速排序算法,通过随机的确 定轴值,从而可以期望划分是较对称 的,减少了出现极端情况的次数,使得排序的效率挺高了很多, 化算法想呼应,而且关键的是对于随机生成函数,通过这一次的 学习终于弄明白是怎么回事了,不错。 与后面的随机实 验和自己的 实验得分助教签名 附录: 完整代码(分治法) //随机后标记元素后的快速排序 #i nclude #in elude #inelude #include using namespacestd; template < class Type> void S &x,Type &y); // 声明swap函数 inline int Random(int x, int y); // 声明内联函数 template < class Type> int Partition(Type a[], int p, int r); // 声明 Partition 函数template int RandomizedPartition(Type a[], int p, int r); // 声明 RandomizedPartition 函数 int a[1000000]; //定义全局变量用来存放要查找的数组 更大个数排序序列的结果:

回溯法求一组解或最优解论文 算法设计

作者简介:黄芳(1990—),女,安徽省凤阳县,安徽中医学院学士,学号:09713019,班级:09计算机 回溯法求一组解或最优解论文 黄芳 (安徽中医学院 医药信息工程学院, 安徽 合肥 230031) 摘 要:回溯法是解决多约束条件下合理分配问题的总要方法之一,有“通用的解题法”之称,用它可以系统的搜索一个问题的所有解或任一解,且回溯法是一个既带有系统性又带有跳跃性的搜索算法。它在问题的解空间树中,按深度优先策略,从根节点出发用搜索解空间树。回溯法解决问题时,应明确定义问题的解空间,问题的解空间至少应包含问题的一个最优解。 关键字:回溯 状态空间树 算法 最优解 结点 程序设计 中图分类号: TP310.6 文献标识码: A A method of solutions back or the optimal solution paper HUANG Fang (School of Medical information engineering , Anhui University of Traditional Chinese Medicine , Hefei230031,China) Abstract :Back in the law is to solve the constraint condition reasonable distribution of total to method, is one of "general problem-solving method" say, it can be a systematic search of all solution or any solution, and back in the law is a systematic and a leap with both the search algorithm. It in the question solution space tree, press depth first strategy, starting from the root node with search solution space tree. Back in the method to solve the problem, should clearly define the problem solution space, the problem of the solution space should be included at least an optimal solution. Key words :recall arithmetic node program design state space tree the optimal solution 0 引 言 引言在程序设计中,有相当一类问题是求一组解、全部解或最优解的问题,它们不是根据某种确定的计算法则,而是利用试探和回溯的搜索技术求解。回溯的一般方法为了应用回溯法,所要求的解必须能表示成一个n 元组(1x ,…,n x ),通常要求所有的解满足一组综合的约束条件.用回溯法解决问 题时,应明确定义问题的解空间,问题的解空间应至少包含问题的一个最优解,定义了问题的解空间后,还应将解空间很好的组织起来,使得能用回溯法方便地搜索整个解空间. 1 回溯法的定义 回溯法(探索与回溯法)是一种选优搜索 法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走 不通就退回再走的技术为回溯法,而满足回

算法之2章递归与分治

算法分析(第二章):递归与分治法 一、递归的概念 知识再现:等比数列求和公式: 1、定义:直接或间接地调用自身的算法称为递归算法。 用函数自身给出定义的函数称为递归函数。 2、与分治法的关系: 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归经常同时应用在算法设计之中,并由此产生许多高效算法。 3、递推方程: (1)定义:设序列01,....n a a a简记为{ n a},把n a与某些个() i a i n <联系起来的等式叫做关于该序列的递推方程。 (2)求解:给定关于序列{n a}的递推方程和若干初值,计算n a。 4、应用:阶乘函数、Fibonacci数列、Hanoi塔问题、插入排序 5、优缺点: 优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。 缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。 二、递归算法改进: 1、迭代法: (1)不断用递推方程的右部替代左部 (2)每一次替换,随着n的降低在和式中多出一项 (3)直到出现初值以后停止迭代 (4)将初值代入并对和式求和 (5)可用数学归纳法验证解的正确性 2、举例: -----------Hanoi塔算法----------- ---------------插入排序算法----------- ()2(1)1 (1)1 T n T n T =?+ = ()(1)1 W n W n n W =?+? (1)=0

算法分析实验报告--分治策略

分治策略 姓名:XXX 专业班级:XXX 学号:XXX 指导教师:XXX 完成日期:XXX

一、试验名称:分治策略 (1)写出源程序,并编译运行 (2)详细记录程序调试及运行结果 二、实验目的 (1)了解分治策略算法思想 (2)掌握快速排序、归并排序算法 (3)了解其他分治问题典型算法 三、实验内容 (1)编写一个简单的程序,实现归并排序。 (2)编写一段程序,实现快速排序。 (3)编写程序实现循环赛日程表。设有n=2k个运动员要进行网球循环赛。现 要设计一个满足以下要求的比赛日程表:(1)每个选手必须与其它n-1个选手各赛一次(2)每个选手一天只能赛一场(3)循环赛进行n-1天 四、算法思想分析 (1)编写一个简单的程序,实现归并排序。 将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行 排序,最终将排好序的子集合合并成为所要求的排好序的集合。 (2)编写一段程序,实现快速排序。 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有 数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数 据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据 变成有序序列。 (3)编写程序实现循环日赛表。 按分治策略,将所有的选手分为两组,n个选手的比赛日程表就可以通 过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割, 直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让

这2个选手进行比赛就可以了。 五、算法源代码及用户程序 (1)编写一个简单的程序,实现归并排序。 #include #include<> #define MAX 10 using namespace std; void merge(int array[],int p,int q,int r) { int i,k; int begin1,end1,begin2,end2; int* temp = new int[r-p+1]; begin1 = p; end1 = q; begin2 = q+1; end2 = r; k = 0; while((begin1 <= end1)&&(begin2 <= end2)) { if(array[begin1] < array[begin2]) { temp[k] = array[begin1]; begin1++; } else { temp[k] = array[begin2]; begin2++; } k++; } while(begin1 <= end1) { temp[k++] = array[begin1++]; }

递归与分治实验报告

递归与分治实验报告 班级:计科1102 姓名:赵春晓学号:2011310200631 实验目的:进一步掌握递归与分治算法的设计思想,通过实际问题来应用递归与分治设计算法。 实际问题:1集合划分问题,2输油管道问题,3邮局选址问题,4整数因子分解问题,5众数问题。 问题1:集合划分 算法思想:对于n个元素的集合,可以划分为由m个子集构成的集合,例如{{1,2}{3,4}}就是由2个子集构成的非空子集。假设f(n,m)表示将n个元素划分成由m个子集构成的集合的个数。那么1)若m == 1 ,则f(n,m)= 1 ;2)若n == m ,则f(n,m)= 1 ;3)若不是上面两种情况则有下面两种情况构成:3.1)向n-1个元素划分成的m个集合里面添加一个新的元素,则有m*f(n-1,m)种方法;3.2)向n-1个元素划分成的m-1个集合里添加一个由一个元素形成的独立的集合,则有f(n-1,m-1)种方法。 实验代码: #include #include using namespace std ; int jihehuafen( int n , int m ) { if( m == 1 || n == m ) return 1 ; else return jihehuafen( n - 1 , m - 1 ) + m*jihehuafen( n - 1 , m ) ; } int main() { ifstream fin("C:/input.txt") ; ofstream fout("C:/output.txt") ; int N , M , num ; fin >> N >> M ; num = jihehuafen( N , M) ; fout << num << endl ; return 0 ; } 问题2:输油管道 算法思想:由于主管道由东向西铺设。故主管道的铺设位置只和各油井的y坐标有关。要使主管道的y坐标最小,主管道的位置y坐标应是各个油井y坐标的中位数。先用快速排序法把各个油井的y坐标排序,然后取其中位数再计算各个油

算法设计与分析

Ex.1(p20)若将y ← uniform(0, 1) 改为y ← x, 则上述的算法估计的值是什么?解:若将y ← uniform(0, 1) 改为y ← x,此时有,则k++,即,此时k++,由于此时x ← uniform(0, 1),所以k/n=,则此时4k/n=2。所以上述算法估计的值为2。Ex.2(p23) 在机器上用估计π值,给出不同的n值及精度。解:由ppt上p21可知,的大小,其中k为落入圆内的数目,n为总数,且π=,即需要计算4k/n。我们先令x ← un iform(0, 1),y ← uniform(0, 1)。计算 的值,如果小于等于1,那么此时k++。最后计算4k/n的值即可估计此时的π值。代码的主要部分为: 执行结果为:

结果分析:随着N的取值不断地增加,得到的π值也就越来越精确。 Ex.3(p23) 设a, b, c和d是实数,且a ≤ b, c ≤ d, f:[a, b] → [c, d]是一个连续函数,写一概率算法计算积分: 注意,函数的参数是a, b, c, d, n和f, 其中f用函数指针实现,请选一连续函数做实验,并给出实验结果。 解:的值为y=,y=0,x=a,x=b围成的面积。根据之前的例子我们可以知道 = k(b-a)d/n。其中k是落在函数y=,x=a,x=b以及y=0所包围区间内的个数。代码的主要部分为: 运行结果为:

结果分析: 随着N的取值不断地增加,得到的积分值越来越精确。 Ex4(p24). 设ε,δ是(0,1)之间的常数,证明:若I是的正确值,h是由HitorMiss算法返回的值,则当n ≥ I(1-I)/ε2δ时有: Prob[|h-I| < ε] ≥ 1 –δ 上述的意义告诉我们:Prob[|h-I| ≥ ε] ≤δ, 即:当n ≥ I(1-I)/ ε2δ时,算法的计算结果的绝对误差超过ε的概率不超过δ,因此我们根据给定ε和δ可以确定算法迭代的次数 () 解此问题时可用切比雪夫不等式,将I看作是数学期望。 证明:由切比雪夫不等式可知: P( | X - E(X) | < ε ) ≥ 1 - D(X) / ε2 由题目知,E(X)=I。且根据题意,我们可知,在HotorMiss算法中,若随机选取n个点,其中k个点在积分范围内,则。且k的分布为二项分布B(n,I)(在积分范围内或者不在 积分范围内),则。又因为k=x*n,所以D(X)=I(1-I)/n。再将E(X)和D(X)带入切比雪夫不等式中即可得到 Ex5(p36). 用上述算法,估计整数子集1~n的大小,并分析n对估计值的影响。解:由题知,集合的大小,通过计算新生成的集合中元素的个数来估计原集合的大小,代码的主体部分如下:

算法分析与设计部分含计算的复习题及参考答案

二、简答题: 1.备忘录方法和动态规划算法相比有何异同简述之。 2.简述回溯法解题的主要步骤。 3.简述动态规划算法求解的基本要素。 4.简述回溯法的基本思想。 5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。 6.简要分析分支限界法与回溯法的异同。 7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面 8.贪心算法求解的问题主要具有哪些性质简述之。 9.分治法的基本思想是什么合并排序的基本思想是什么请分别简述之。 10.简述分析贪心算法与动态规划算法的异同。 三、算法编写及算法应用分析题: 1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。 2.按要求完成以下关于排序和查找的问题。 ①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。 ②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。 ③给出上述算法的递归算法。 ④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。 3.已知1()*() i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。 4.根据分枝限界算法基本过程,求解0-1背包问题。 已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。 5.试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少,请写出该算法。 6.试用动态规划算法实现下列问题:设A 和B 是两个字符串。我们要用最少的字符操作,将字符串A 转换为字符串B ,这里所说的字符操作包括: ①删除一个字符。 ②插入一个字符。 ③将一个字符改为另一个字符。 请写出该算法。 7.对于下图使用Dijkstra 算法求由顶点a 到顶点h 的最短路径。 8.试写出用分治法对数组A[n]实现快速排序的算法。 9.有n 个活动争用一个活动室。已知活动i 占用的时间区域为[s i ,f i ],活动i,j 相容的条件是:sj ≥f i ,问题的解表示为(x i | x i =1,2…,n,),x i 表示顺序为i 的活动编号活动,求一个相容的活动子集,且安排的活动数目最多。 10.设x 1、x 2、x 3是一个三角形的三条边,而且x 1+x 2+x 3=14。请问有多少种不同的三角形给出解答过程。 11.设数组A 有n 个元素,需要找出其中的最大最小值。 ①请给出一个解决方法,并分析其复杂性。 ②把n 个元素等分为两组A1和A2,分别求这两组的最大值和最小值,然后分别将这两组的最大值和

回溯算法实验

中原工学院信息商务学院 实验报告 实验项目名称回溯划算法的应用 课程名称算法设计与分析 学院(系、部)中原工学院信息商务学院学科专业计算机科学与技术系班级学号计科132班17号姓名程一涵 任课教师邬迎 日期2014年12月9日

实验五回溯算法的应用 一、实验目的 1.掌握回溯算法的基本概念 2.熟练掌握回溯算法解决问题的基本步骤。 3.学会利用回溯算法解决实际问题。 二.问题描述 题目一:N皇后问题 要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。规则:皇后能吃掉同一行、同一列、同一对角线的任意棋子。求所有的解要求:键盘输入皇后的个数n (n ≤ 13) 输出有多少种放置方法 输入输出实例:

三.算法设计 首先,确定第一行皇后的位置,再确定第二行的位置,并且要注意不能同行同列同对角线,若是发现有错则返回上一层,继续判断。满足约束条件时,则开始搜索下一个皇后的位置,直到找出问题的解。 四.程序调试及运行结果分析 五.实验总结 通过这次试验,使得我们面对问题时的解题思路变得更加灵活和多变,并且使我们的编写能力稍稍的提高一些。初步了解了回溯算法,回溯算法实际是一个类似枚举的搜索尝试方法,他的主题思想是在搜索尝试的过程中寻找问题的解,当发现已不满足求解条件时,就回溯返回,尝试别的路径。他特别适用于求解那些涉及到寻求一组解的问题或者求满足某些约束条件的最优解的问题。此算法具有结构清晰,容易理解且可读性强等优点,并且通过稍加变通也可以适用于其他类似问题

附录:程序清单(程序过长,可附主要部分) #include #include using namespace std; int a[20],n; backdate(int n); int check(int k); void output(int n); int main() { int n; cout<<"请输入皇后的个数:"; cin>>n; cout<<"位置排列是:"<0) { a[k]=a[k]+1; while((a[k]<=n) && (check(k)==0)) a[k]=a[k]+1; if(a[k]<=n) if(k==n) { num++; output(n); } else { k=k+1; a[k]=0; } else k=k-1; } cout<<"一共有"<

算法设计与分析习题答案1-6章

习题1 1. 图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在 叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。请将该问题的数据模型抽象出来,并判断此问题是否有解。 七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点 1, 一次步行 2, 经过七座桥,且每次只经历过一次 3, 回到起点 该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。 2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。请用伪代码描述这个版本的欧几里德算法 =m-n 2.循环直到r=0 m=n n=r r=m-n 图 七桥问题 南区

3 输出m 3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代码和C++描述。 编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。 #include using namespace std; int main() { double value=0; for(int n=1;n<=10000 ;++n) { value=value*10+1; if(value%2013==0) { cout<<"n至少为:"< using namespace std; int main () {

算法设计与分析学习总结

算法分析与设计 学习总结 题目:算法分析与设计学习总结 学院信息科学与工程学院专业2013级计算机应用技术 届次 学生姓名 学号2013110657 二○一三年一月十五日

算法分析与设计学习总结 本学期通过学习算法分析与设计课程,了解到:算法是一系列解决问题的清晰指令,代表着用系统的方法描述解决问题的策略机制。算法能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂性和时间复杂度来衡量。算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。计算机系统中的操作系统、语言编译系统、数据库管理系统以及各种各样的计算机应用系统中的软件,都必须使用具体的算法来实现。算法设计与分析是计算机科学与技术的一个核心问题。 设计的算法要具有以下的特征才能有效的完成设计要求,算法的特征有:(1)有穷性。算法在执行有限步后必须终止。(2)确定性。算法的每一个步骤必须有确切的定义。(3)输入。一个算法有0个或多个输入,作为算法开始执行前的初始值,或初始状态。(4)输出。一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。 (5)可行性。在有限时间内完成计算过程。 算法设计的整个过程,可以包含对问题需求的说明、数学模型的拟制、算法的详细设计、算法的正确性验证、算法的实现、算法分析、程序测试和文档资料的编制。算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法和并行算法。 经典的算法主要有: 1、穷举搜索法 穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,bing从中找出那些符合要求的候选解作为问题的解。 穷举算法特点是算法简单,但运行时所花费的时间量大。有些问题所列举书来的情况数目会大得惊人,就是用高速计算机运行,其等待运行结果的时间也将使人无法忍受。我们在用穷举算法解决问题是,应尽可能将明显不符合条件的情况排除在外,以尽快取得问题的解。 2、迭代算法 迭代法是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或方程组)的过程,为实现这一过程所使用的方法统称为迭代法。迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1)选一个方程的近似根,赋给变量x0。 (2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0。 (3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。 若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。 3、递推算法 递推算法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的。 4、递归算法 递归算法是一种直接或间接的调用自身的算法。 能采用递归描述的算法通常有这样的特征:为求解规模为n的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模

回溯法

第8章回溯法 (1) 8.1概述 (1) 8.1.1 问题的解空间树 (1) 8.1.2 回溯法的设计思想 (2) 8.1.3 回溯法的时间性能 (3) 8.1.4 一个简单的例子——素数环问题 (4) 8.2图问题中的回溯法 (5) 8.2.1 图着色问题 (5) 8.2.2 哈密顿回路问题 (8) 8.3组合问题中的回溯法 (10) 8.3.1 八皇后问题 (10) 8.3.2 批处理作业调度问题 (13) 习题8 (16)

第8章回溯法 教学重点回溯法的设计思想;各种经典问题的回溯思想教学难点批处理作业调度问题的回溯算法 教学内容 和 教学目标 知识点 教学要求 了解理解掌握熟练掌握问题的解空间树√ 回溯法的设计思想√ 回溯法的时间性能√ 图着色问题√ 哈密顿回路问题√ 八皇后问题√ 批处理作业调度问题√ 8.1 概述 回溯法(back track method)在包含问题的所有可能解的解空间树中,从根结点出发,按照深度优先的策略进行搜索,对于解空间树的某个结点,如果该结点满足问题的约束条件,则进入该子树继续进行搜索,否则将以该结点为根结点的子树进行剪枝。回溯法常常可以避免搜索所有的可能解,所以,适用于求解组合数较大的问题。 8.1.1 问题的解空间树 复杂问题常常有很多的可能解,这些可能解构成了问题的解空间(solution space),并且可能解的表示方式隐含了解空间及其大小。用回溯法求解一个具有n个输入的问题,一般情况下,将问题的可能解表示为满足某个约束条件的等长向量X=(x1, x2, …, x n),其中分量x i(1≤i≤n)的取值范围是某个有限集合S i={a i,1, a i,2, …, a i,r i },所有可能的解向量构成了问题的解空间。例如,对于有n个物品的0/1背包问题,其可能解由一个等长向量{x1, x2, …, x n}组成,其中x i=1(1≤i≤n)表示物品i装入背包,x i=0表示物品i没有装入背包,则解空间由长度为n的0/1向量组成。当n=3时,其解空间是:

实验1++递归与分治算法

淮海工学院计算机工程学院实验报告书 课程名:《算法分析与设计》 题目:实验1 递归与分治算法 班级: 学号: 姓名:

实验1 递归与分治算法 实验目的和要求 (1)进一步掌握递归算法的设计思想以及递归程序的调试技术; (2)理解这样一个观点:分治与递归经常同时应用在算法设计之中。 (3)分别用蛮力法和分治法求解最近对问题; (4)分析算法的时间性能,设计实验程序验证分析结论。 实验内容 设p1=(x1, y1), p2=(x2, y2), …, pn=(xn, yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近的点对。 实验环境 Turbo C 或VC++ 实验学时 2学时,必做实验 数据结构与算法 核心源代码 蛮力法: #include #include #include int ClosestPoints(int x[ ], int y[ ], int n); int main() { int x[3],y[3]; printf("请输入各点的横坐标: "); for(int i=0;i<4;i++) { scanf("%d",&x[i]); } printf("请输入各点的纵坐标: "); for(int j=0;j<4;j++)

{ scanf("%d",&y[i]); } ClosestPoints(x,y,4); return 0; } int ClosestPoints(int x[ ], int y[ ], int n) { int index1, index2; //记载最近点对的下标 int d, minDist = 1000; //假设最大距离不超过1000 for (int i = 0; i < n - 1; i++) for (int j = i + 1; j < n; j++) //只考虑i<j的点对 { d =sqrt ((x[i]-x[j])* (x[i]-x[j]) + (y[i]-y[j])* (y[i]-y[j])); if (d < minDist) { minDist = d; index1 = i; index2 = j; } } cout<<"最近的点对是:"< #include const int n = 4; struct point //定义点的结构体 { int x, y; };

相关文档
最新文档