法拉第电磁感应定律的应用正式版

合集下载

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用电磁感应是一种重要的物理现象,它是基于法拉第电磁感应定律而产生的。

法拉第电磁感应定律表明,当导体中的磁通量变化时,导体两端会产生感应电动势,从而产生感应电流。

这一定律被广泛应用于各个领域,包括能源、工业和科学研究等。

在本文中,我们将探讨利用法拉第电磁感应定律解释电磁感应现象的现实应用。

1. 电力发电电力发电是法拉第电磁感应定律的一个典型应用。

发电机利用磁场与导体之间的相互作用来产生电动势。

当转子在磁场中旋转时,导线回路中的磁通量随之变化,从而产生感应电动势。

这个电动势可以被引导出来,用来驱动发电机产生电流。

电力发电是利用法拉第电磁感应定律进行实现的重要方法。

2. 变压器的工作原理变压器是电力系统中常见的设备,也是利用法拉第电磁感应定律的应用之一。

变压器通过改变电流的电压大小来实现能量的传输和转换。

它由两个线圈组成,一个是高压线圈,另一个是低压线圈。

当高压线圈中的电流变化时,会产生变化的磁场,从而在低压线圈中感应出电动势,实现电能的转换。

3. 感应加热感应加热是利用法拉第电磁感应定律来实现的一种加热方法。

通过在导体周围产生变化的磁场,可以感应出导体中的涡流,从而产生热量。

这种加热方法在工业生产中被广泛应用,特别是在金属加热和熔化的过程中。

4. 感应传感器和电磁测量利用法拉第电磁感应定律,我们可以设计出各种感应传感器和用于电磁测量的设备。

例如,感应传感器可以用于检测磁场、电流、位移和速度等物理量。

通过测量感应电动势或感应电流的大小,我们可以获取到所需的数据信息。

5. 磁悬浮列车技术磁悬浮列车技术是一项先进的交通运输技术,也是法拉第电磁感应定律的应用之一。

磁悬浮列车利用电磁感应产生的力来实现悬浮和推进。

当列车通过轨道时,轨道中的线圈会产生变化的磁场,从而引起列车上的磁体感应出电动势。

利用这种电动势产生的力,使列车浮在轨道上并推进。

总结:法拉第电磁感应定律作为一项重要的物理定律,具有广泛的应用领域。

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用

法拉第电磁感应定律与应用法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的。

该定律描述了磁场变化引起的感应电动势,并成为电磁学的基石之一。

本文将对法拉第电磁感应定律的原理进行简要介绍,并探讨其在实际应用中的作用。

法拉第电磁感应定律的表达式为:在闭合电路中,感应电动势的大小与磁场变化率成正比。

具体地说,当磁场通过一个线圈发生变化时,感应电动势会在线圈中产生。

这个电动势的大小取决于磁场变化的速率以及线圈的匝数。

根据法拉第电磁感应定律的原理,人们发明了许多基于磁感应原理的设备和技术。

下面,我们将介绍其中几个重要的应用。

1.发电机:发电机是一种利用法拉第电磁感应定律产生电能的装置。

它的基本原理是通过旋转磁场产生的感应电动势使电流产生,从而输出电能。

发电机广泛应用于电力、交通等领域,成为现代社会不可或缺的设备。

2.变压器:变压器也是利用法拉第电磁感应定律的重要应用之一。

它是将交流电压通过电磁感应原理转换为合适的电压,以便在输电和配电中使用。

变压器有助于提高电力传输的效率,同时也保证了电力系统的安全性。

3.感应炉:感应炉是利用法拉第电磁感应定律的热处理设备。

它利用高频交变磁场在导体中产生涡流,通过融化、加热和焊接等过程实现热处理的目标。

感应炉广泛应用于金属加工和冶炼等工艺中,为工业生产提供了高效、环保的解决方案。

4.电磁感应测量仪器:电磁感应定律的应用还包括各种测量技术。

例如,电磁感应测量仪器可以通过测量变化的磁场来确定物体的磁性、密度和位置等参数。

这些测量仪器在物理实验、地球物理勘探和医学设备中发挥着重要作用。

总之,法拉第电磁感应定律是电磁学研究的基础,其应用广泛涉及各个领域。

通过理解和应用这一定律,我们能够更好地利用磁场变化来产生电能、进行能量转换以及实现各种测量和热处理等过程。

在未来的发展中,法拉第电磁感应定律将继续发挥重要作用,并促进科学技术的进步。

探索法拉第电磁感应定律的实验及应用

探索法拉第电磁感应定律的实验及应用

探索法拉第电磁感应定律的实验及应用引言:法拉第电磁感应定律是电磁学的基本定律之一,它描述了导体中的电流随时间变化而产生的感应电动势。

本文将通过实验探索法拉第电磁感应定律,并阐述其在生活中的实际应用。

实验一:磁铁穿过线圈实验目的:验证法拉第电磁感应定律中的电磁感应现象。

实验原理:当磁铁穿过线圈时,由于磁感线的变化,线圈中的电流也发生了变化,从而产生了感应电动势。

实验步骤:1. 准备一根磁铁和一个线圈。

2. 将线圈接入一个示波器,调节示波器使其显示电压随时间的变化曲线。

3. 将磁铁快速穿过线圈的中心。

4. 观察示波器上电压随时间的变化曲线,并记录结果。

实验结果:在磁铁穿过线圈的瞬间,示波器上显示的电压出现了明显的变化,随后回归到零值。

实验分析:根据法拉第电磁感应定律,当磁场穿过线圈时,导体中的电流会随之产生。

因此,在磁铁穿过线圈的瞬间,线圈中会产生瞬时电流,进而产生感应电动势。

实验二:电磁感应的应用——发电机实验目的:探究法拉第电磁感应定律在发电机中的应用。

实验原理:发电机是利用导体在磁场中运动引起电磁感应的装置,通过转动磁铁和线圈的相对运动产生电能。

实验步骤:1. 准备一个磁铁和一个线圈。

2. 将线圈连接到一块电阻上,并将电阻接入电路中。

3. 保持磁铁静止,转动线圈。

4. 观察电路中电阻上的电压,并记录结果。

实验结果:当线圈转动时,电路中的电压明显升高,电阻上出现了电流。

实验分析:在发电机中,当磁铁通过线圈时,线圈会受到磁通量的变化,从而产生感应电动势。

将线圈连接到电路中,电流便会通过电阻产生功率,从而发电。

实际应用:1. 发电机:法拉第电磁感应定律的应用使得发电成为可能。

利用发电机,我们可以将机械能转化为电能,满足我们生活和工业上的用电需求。

2. 电磁感应传感器:电磁感应技术在温度计、压力传感器、位移传感器等多种传感器中广泛应用。

传感器中的线圈产生的感应电流和感应电压可以通过测量来得知温度、压力等物理量的变化。

法拉第电磁感应定律的应用

法拉第电磁感应定律的应用

法拉第电磁感应定律的应用法拉第电磁感应定律,简称法拉第定律,是描述电磁现象的重要定律之一。

它是由英国物理学家迈克尔·法拉第在1831年提出的,对于理解电磁感应现象和应用电磁感应具有重要意义。

本文将探讨法拉第电磁感应定律的应用,并介绍一些相关领域中的实际案例。

I. 电磁感应的基本原理法拉第电磁感应定律指出:当导体中的磁通量发生变化时,导体中会产生感应电动势。

这是由于磁场的变化引起了电场的涡旋,从而产生了感应电动势。

法拉第定律可以通过以下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

负号表示感应电动势的方向与磁通量变化的方向相反。

根据法拉第电磁感应定律,我们可以应用电磁感应的原理来设计和改进许多实际应用。

II. 发电机的工作原理发电机是应用法拉第电磁感应定律的典型实例。

发电机通过旋转导线圈在磁场中产生感应电动势,从而产生电能。

当发电机的转子(通常是电动机)旋转时,旋转导线圈切割磁力线,磁通量的变化导致了感应电动势的产生。

这个感应电动势经过整流和调整后,可以转化为直流电或交流电,供给各种不同的电子设备使用。

III. 电磁铁的应用电磁铁是另一个应用法拉第电磁感应定律的重要工具。

电磁铁是由可控电流通过线圈产生的磁场所形成的。

通过改变通过线圈的电流,可以改变电磁铁的磁力强度。

这种特性使得电磁铁在许多领域有广泛的应用。

例如,电磁铁可以用于磁悬浮列车中的悬浮和推动系统,通过改变电流大小来控制磁力,实现列车的悬浮和推动。

此外,电磁铁还可以用于工业自动化中的物体吸附和分拣,通过改变电流来控制物体的吸附和释放。

IV. 电磁感应的应用于传感器技术法拉第电磁感应定律也被广泛应用于传感器技术中。

传感器是一种能够将非电信号转换为电信号的设备,用于检测和测量各种物理量。

例如,电磁感应传感器可以用于测量速度、位置、姿态等参数。

通过将物理量与磁通量或磁场变化联系起来,传感器可以产生与之相关的感应电动势,并将其转换成电信号进行处理和测量。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

电磁感应法拉第定律和电磁感应的应用

电磁感应法拉第定律和电磁感应的应用

电磁感应法拉第定律和电磁感应的应用电磁感应是电磁学中的基本原理之一,它是物理学家法拉第在19世纪提出的。

电磁感应法拉第定律描述了磁场变化引起电场变化,从而产生电流的现象。

本文将介绍电磁感应法拉第定律的原理和公式,并探讨其在实际应用中的重要性。

一、电磁感应法拉第定律的原理电磁感应法拉第定律是指当导体磁通量的变化率发生时,会在闭合电路中产生感应电动势。

根据法拉第定律,感应电动势的大小和变化率与磁通量的变化率成正比。

具体表达式如下:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,dt表示时间的变化量。

根据法拉第定律,只有当磁通量的变化率不为零时,才会产生感应电动势。

这意味着电磁感应是由磁场发生变化引起的,而磁场的变化可以通过改变磁场强度或者改变导体与磁场的相对运动实现。

二、电磁感应法拉第定律的公式根据电磁感应法拉第定律,感应电动势与磁通量的变化率成正比。

根据公式ε = -dΦ/dt ,我们可以推导出电磁感应法拉第定律的公式。

首先,我们假设导体所围成的电路是一个简单的线圈,磁通量Φ只与线圈的磁场面积以及磁感应强度B有关。

则磁通量Φ可以表示为Φ = B * A ,其中A表示线圈的面积。

然后,我们对磁通量Φ进行微分,得到dΦ/dt = B * dA/dt 。

因此,感应电动势ε可以表示为ε = - B * dA/dt 。

根据以上推导,我们可以得出电磁感应法拉第定律的最终公式为ε= - N * dΦ/dt ,其中N表示线圈的匝数。

这个公式表明,感应电动势的大小与线圈匝数、磁通量的变化率以及负号之间存在着特定的关系。

三、电磁感应的应用电磁感应法拉第定律对现代社会有着广泛的应用,下面将介绍几个常见的应用领域。

1. 发电机原理发电机就是利用电磁感应法拉第定律的原理来发电的装置。

通过转动导体线圈,使其在磁场中发生运动,从而改变磁通量的大小,进而在导线中产生感应电动势,最终输出电能。

2. 变压器原理变压器是利用电磁感应法拉第定律来实现电能的传输和变换的设备。

法拉第电磁感应定律的应用

法拉第电磁感应定律的应用
法拉第电磁感应定律
的应用(一)
知识回顾:
感应电动势的有无取决于: 磁通量是或变化
感应电动势的大小取决于: 磁通量的变化率的快慢
E求解
法拉第电磁感应定律:
(n为线圈的匝数) 通常计算平均感应电动势 重要的推论:
(θ为v与B夹角) 多用于计算瞬时感应电动势
1.面积S不变时,E=nSΔB/Δt的应用:
B=(10+10t)T (3)磁场的磁感应强度随时间变化的图 象如图所示:
通过电阻R的电流又各为为多少?
2.E=BLV的应用:
㈠与电路知识和力学知识的结合 例2:如图所示,裸金属线组成滑框,金属棒ab可滑动, 其电阻为r,长为L,串接电阻R,匀强磁场为B,当ab以 V向右匀速运动过程中,求:
(1)棒ab产生的感应电动势E? (2)通过电阻R的电流I , ab间的电压U? (3)若保证ab匀速运动,所加外力F的大小, 在时间t秒内的外力做功W大小 ,功率P? (4)时间t秒内棒ab生热 ,电阻R上生热 ?
弧 bac)求bc两点的电势差是多少?
b
解:设金属的电阻率为ρ,导线截面为S,圆环电阻为R,画
出等效电路如图示,则 R1=R/3 R2=2R/3
b
R并= 2R/9 = 2/9× ρ 2πr / S
E r1 v
r
a R2
电动势 E= Brv 内阻 r 1= ρr/S
R1 cc
㈡切割长度L满足某种变化关系的情况
2,在圆环和金属棒上消耗的总功率? M
ER
R R
N
例9:把总电阻为2R的均匀电阻丝焊接成一半径为 a的圆环,水平固定在竖直向下的磁感应强度为B的匀强 磁场中,如图所示,一长度为2a,电阻为R,粗细均匀的金 属棒MN放在圆环上,它与圆环始终保持良好的接触,当 金属棒以恒定速度v向右移动经过环心O时,求: 1,棒上的电流I大小,棒两端的电压U?

电磁感应中的法拉第定律及应用

电磁感应中的法拉第定律及应用

电磁感应中的法拉第定律及应用在电磁感应中,法拉第定律是一个基本的物理定律。

它描述了通过导体中的磁通量变化产生的电动势。

本文将探讨法拉第定律的原理和应用,并介绍一些实际应用案例。

一、法拉第定律的原理法拉第定律是由英国物理学家迈克尔·法拉第于1831年提出的。

它可以总结为以下公式:ε = -ΔΦ/Δt其中,ε表示感应电动势,ΔΦ表示磁通量的变化量,Δt表示时间的变化量。

该公式表明,当导体中的磁通量发生变化时,就会在导体中感应出电动势。

根据法拉第定律,可以得出以下重要结论:1. 磁通量变化越大,感应电动势越大。

当磁通量Φ在时间Δt内发生改变时,导体中的感应电动势ε与ΔΦ/Δt成正比。

2. 磁通量变化的速率越快,感应电动势越大。

当ΔΦ在Δt内发生快速变化时,导体中的感应电动势ε也会增加。

3. 磁通量与感应电动势的方向成正比。

根据楞次定律,感应电动势的方向使得导体周围的磁场发生变化,并与磁通量的变化方向相反。

二、法拉第定律的应用法拉第定律在实际中有广泛的应用。

以下是几个常见的应用案例:1. 变压器变压器是利用法拉第定律的基本原理来实现的。

当交流电通过变压器的初级线圈时,产生的交变磁场会穿透次级线圈,导致次级线圈中的磁通量发生变化。

根据法拉第定律,次级线圈中就会感应出电动势,从而实现将电能从初级线圈传递到次级线圈的功能。

2. 发电机发电机也是基于法拉第定律的工作原理来运行的。

当发电机的转子旋转时,导致导线和磁场相对运动,从而改变了导线中的磁通量。

根据法拉第定律,这个变化就会导致感应电动势的产生,进而产生电能。

3. 感应电磁炉感应电磁炉是利用法拉第定律的原理来加热物体的。

感应电磁炉的底部是一个线圈,当通过该线圈的交流电通路变化时,就会产生交变磁场。

将放置在炉上的锅具中的导体材料,如铁,会被感应电动势加热,从而使其快速加热。

4. 手电筒手电筒中的发光二极管(LED)也是通过法拉第定律的应用来工作的。

LED的正极和负极通过电路连接,当电池供电时,电流通过LED并产生磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《法拉第电磁感应定律的应用(一)》教学设计
广州市花都区实验中学物理科陈丽华
一.教材分析
本节是《电磁感应》一章的核心知识之一,与电路联系紧密,也是深化发电原理的基础。

教材容量大,逻辑性强,方法性强。

具体分析时思维维度多,能力要求高。

本课有两个三级主题:“法拉第电机”、“电磁感应中的电路”。

法拉第电机是把理论与实践相结合,通过将电机模拟化、抽象化,引导学生观察,分析感应电动势产生的原因,将电机的感应电动势与导体切割磁感线相结合;电磁感应中的电路通过感应电流与感应电动势的关系,结合闭合电路进行对比,明确两者本质上的区别,通过讨论与交流,让学生找出等效电源、外电路、电流方向,进而引导学生建立等效电路,结合闭合电路的欧姆定律求解电流、电压、电功率等问题。

二.教学目标
依据《物理课程标准》要求和学生学习的实际出发,本节课的教学目标如下:
1.知识与技能:
(1)理解法拉第电机的原理;
(2)掌握法拉第电机感应电动势的计算;
(3)理解电磁感应现象电路中的电源及外电路。

2.过程与方法:
(1)通过电磁感应中的电路的认识,在观察、分析、分类、归纳、转化、转换、综合等思维过程中,体会等效法的应用,加深学生对电磁感应内在规律的认识,凸现理论与应用的完美统一,培养严谨的物理思维习惯、方法。

(2)通过法拉第电机的探究,重结论,更重过程,明确探究的内涵,重温建立物理模型的方法。

3.情感态度与价值观:
(1)通过电磁感应的闭合电路的探究,分析物理知识的内在联系,发展对科学的好奇心和求知欲。

(2)通过实际问题的研究,引导学生理论联系实际,增强把理论用于实践的主动性和积极性。

三.重点和难点
(1)熟悉各种情况下感应电动势的表达
(2)能画出等效电路图,并能联系闭合电路解题
(3)形成学生的思维个性
四.学生基本情况分析:
学生对本节兴趣较浓,探知欲较旺,教师应及时激励,凸现物理应用性的同时培养学生
思维的连贯性、系统性。

物理选修生基础较好,有解惑冲动,教师要充分利用这一因素,加强引导,合理设置探究情境,营造静中有动的课堂氛围。

这一节课老师要放开手脚,大干一场,但要抓住思维要点,突出重难点,做到深入浅出。

五.教学设计思路:
本节以加深巩固法拉第电磁感应定律为前提;以培养学生的分析、解决问题的能力为终极目标;理论联系实际,局部联系整体;让学生领略科技应用之广。

本节课容量大,它要巩固前一节知识,更要为第六节:法拉第电磁感应定律的应用(二)作分工和铺垫。

这一节学生的认知程度直接影响下一节课的教学效果。

为此我深挖教材,紧紧围绕应用这一主题,我抓磁通量变化,抓电路结构,分类探究,归纳总结,突出物理方法,培养物理习惯,让学生独立地熟悉在不同情况下感应电动势的结论表达,这样学生既学到了知识,也初步领略出物理思维的严密性,逻辑性,更提高了能力。

六.教学用具准备:
电机、导线、小灯泡、三角板(尺子)、圆规、教材、多媒体平台、投影仪


→ →
1. 引入课题---给出法拉第电机实物模型
先给出法拉第电机原理图和实物模型图,明确产生持续电流的内在根源,推导盘式和杆式情况之下感应电动势的表达。

介绍部分生产、生活中常见的应用实例。

2. 设置情境
教学时设置盘转式、杆转式电源;提供圆形、方形、扇形、三角形各式外电路;动生和感生示意;作业第五题设置有各种相对速度及内电路。

分类设置情境,在B 、L 、V 变化因素上下功夫,分解难点,突出重点。

3. 主题教学
①、给出世界第一台发电机原理图后,让学生现场观察现象,结合原理示意图,联系法拉第电磁感应定律,并分析o 、a
两点电势高低,再结合实物图,示意图弄清起电原因。

②、结合电路图分清内电路、外电路,弄清电流方向。

先从最简单的杆匀速直线切割磁感线情况开始,让学生交流讨论电路,建立基本的感应电路模型。

③、例题分析
例:
把电阻为18
Ω的均匀导线变成如图1-5-4所示的金属圆环,
圆环直径D=0.80m
,将圆环垂直于匀强磁场方向固定,磁场的磁感应强度为B=0.50T ,磁场方向垂直于纸面向里。

一根每米电阻为1.25Ω的直导线PQ ,沿圆环平面向左以3.0m/s 的速度匀速滑行,速度方向与PQ 垂直,滑行中直导线与圆环紧密接触(忽略接触处的电阻),当它通过圆环直径位置时,求: ⑴直导线产生的感应电动势,并指明 P
该段直导线中电流的方向。

v VV B
⑵此时圆环上发热手损耗的电功率。

Q 图1-5-4
由方形(图1-5-3)拓展到圆形电路(图1-5-4)结构,在得出相关的函数式后,用有效的B、L、V数值代入感应电动势的表达式中,然后利用右手定则判别出电流方向。

这里师生要同步动手判断。

在计算功率时我先要求学生根据图1-5-4自己画出常用的等效电路图,彻底搞清电路的结构,从而得出所问外电阻的发热功率。

这里要条理分明,已知与所问要紧密结合,答题时强调各物理量务必交代到位。

图1-5-6是图1-5-4的基础上化对称为不对称电路,教学时强调学生独立作出等效图,注意知识与能力的迁移与升华,完全可以让学生在黑板上来现场解答。

此时老师要巡察,个别学生单独指导。

要针对讲台上同学的情况作具体的分析,作出等效图、分析疑难点到位、解题要规范化。

④、限于学生的基础和条件,实践和拓展拓展部分可暂时忽略。

⑤、课堂解答练习题1、2。

第一题要凸现非电阻(电容)电路,要凸现仅B参量变化(无速度变化)的情景,拓宽学生眼界,感应形式由动生向感生小转移。

第二题化例题中的数值计算为字母计算。

突出了L参量变化的又一情景。

总之,在探究完B、L、V三个参量独立变化的基础上,学生对法拉第电磁感应定律的认知又上一阶段。

4.主要涉及的物理函数式
E=n△Φ/△t、E=BLV、E=BL2W/2、P=U2/R、E=I(R+r)、
R外=R1R2/(R1+R2)、F=BIL、Q=UC、Φ=BS、V=WR
5.巩固提高
通过分类、对比、现场演练、讨论、示范交流、作业等一系列措施强化课堂效果,锤练思维品质,突出物理的应用特性。

6.分析杆切割磁感线的情况下相关电动势、电流、等效电路的关联问题,通过书上的例题,建立一套局部→整体→局部,磁→电,电→磁互相联系的解题思路。

引导学生探究相关的功率问题,切实培养综合解题能力和解题速度。

7.布置作业
练习1、2题:随堂消化
4、5题:课外作业
通过第4题使学生了解并掌握转动和平动两种情况下的感应电动势表达。

第5题给出了相对速度的情况。

课堂教学和课外作业相互联系,相互补充。

第1、2题有现场巩固,完善思维的作用。

第4、5还有综合提升思维的效果
八、教学反思:
新课程重视探究式学习,学生如此,老师更要如此。

本教学设计在实施中紧扣教材,在探究中锻炼学生思维,教程自然、流畅,学生思维表现沉稳有力。

但是例题和作业可根据学生情况再适度加工、整形,以进一步突出重点知识。

适度直接引导学生注意P20页上四个图的对比概括,力争图文并茂。

相关文档
最新文档