应用数理统计作业
应用数理统计作业题及参考答案(第一章)

应⽤数理统计作业题及参考答案(第⼀章)第⼀章数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的⼦样,求最⼤顺序统计量()n X 与最⼩顺序统计量()1X 的分布函数与密度函数。
解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤= ,,,.()()()()1n n n f x F x n F x f x -'=??=.(){}{}1121i n F x P X x P X x X x X x =≤=->>> ,,,. {}{}{}121n P X x P X x P X x =->>>{}{}{}121111n P X x P X x P X x =-?-≤??-≤??-≤()11nF x =-?-()()()()1111n f x F x n F x f x -'=??=?-.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的⼦样1X ,2X ,…,5X ,试问:(i )⼦样的平均值X ⼤于13的概率为多少?(ii )⼦样的极⼩值(最⼩顺序统计量)⼩于10的概率为多少?(iii )⼦样的极⼤值(最⼤顺序统计量)⼤于15的概率为多少?解:()~124X N ,,5n =,4~125X N ??∴ ??,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>> ,,,{}{}{}5551111011101110i i i i P X P X P X ===->=-?-()12~012X Y N -=,, {}{}121012*********X X P X P P P Y ---∴<=<=<-=<-{}()111110.84130.1587P Y φ=-<=-=-=.{}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-? {}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成⽴。
应用数理统计作业题及参考答案(第三章)

第三章 假设检验P1313.2 一种元件,要求其使用寿命不得低于1000(小时)。
现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知该种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:本题需检验0H :0μμ≥,1H :0μμ<.元件寿命服从正态分布,0σ已知,∴当0H成立时,选取统计量X u μ-=,其拒绝域为{}V u u α=<.其中950X =,01000μ=,25n =,0100σ=.则 2.5u ==-.查表得0.05 1.645u =-,得0.05u u <,落在拒绝域中,拒绝0H ,即认为这批元件不合格。
3.3 某厂生产的某种钢索的断裂强度服从正态分布()2N μσ,,其中40σ=(kg / cm 2)。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(kg / cm 2)。
设总体方差不变,问在0.01α=下能否认为这批钢索质量有显著提高?解:本题需检验0H :0μμ=,1H :0μμ>.钢索的断裂强度服从正态分布,0σ已知,∴当0H成立时,选取统计量u =,其拒绝域为{}1V u u α-=>.其中040σ=,9n =,020X μ-=,0.01α=.则 1.5u ==.查表得10.990.01 2.33u u u u αα-==-=-=,得0.99u u <,未落在拒绝域中,接受0H ,即认为这批钢索质量没有显著提高。
3.5 测定某种溶液中的水分。
它的10个测定值给出0.452%X =,0.035%S =。
设总体为正态分布()2N μσ,,试在水平5%检验假设:(i )0H :0.5%μ>; 1H :0.5%μ<. (ii )0H :0.04%σ≥; 1H :0.04%σ<. 解:(i )总体服从正态分布,0σ未知,当0H成立时,选取统计量t =(){}1V t t n α=<-.查表得()()0.050.9599 1.8331t t =-=-.而()4.114 1.83311t t n α==-<-=-.落在拒绝域中,拒绝0H .(ii )总体服从正态分布,μ未知, 当0H 成立时,选取统计量222nSχσ=,其拒绝域为(){}221V n αχχ=<-.查表得()20.059 3.325χ=.而()()()2222100.035%7.65610.04%n αχχ⨯==>-.未落在拒绝域中,接受0H .3.6 使用A (电学法)与B (混合法)两种方法来研究冰的潜热,样品都是-0.72℃的冰块,下列数据是每克冰从-0.72℃变成0℃水的过程中的吸热量(卡 / 克):方法A :79.98,80.04,80.02,80.04,80.03,80.03,80.04,79.97,80.05,80.03,80.02,80.00,80.02方法B :80.02,79.94,79.97,79.98,79.97,80.03,79.95,79.97假定用每种方法测得的数据都服从正态分布,且它们的方差相等。
“应用数理统计”课外作业设计

学号姓名学院专业成绩典型燃煤中汞的赋存规律摘要:近年来,燃煤引起的汞污染越来越受到人们关注。
中国能源结构以燃煤为主,但由于中国煤质地区差异较大,造成现有烟气脱汞技术对煤质适应性较差,因此针对中国典型煤种中汞的赋存规律进行研究,对促进烟气脱汞技术的发展和环境保护具有重要意义。
论文针对烟煤和无烟煤,通过总汞测定、X射线荧光光谱分析等手段,对15个典型煤样中汞的赋存状态和规律进行了实验研究。
随着煤炭变质程度的增高,煤中总汞含量有增高趋势,各地区煤总汞含量差别较大,在本实验范围内,汞含量大致呈现北低南高的特征。
α= 0. 05时,煤样中的总汞含量与硅含量、硫含量、氯含量的相关性系数分别为0.509、0.600和0.682,具有较好的相关性。
关键词:CO2;赋存规律;相关性1提出问题并分析问题大气中的汞有两种不同类型的排放源:天然源和人类源。
主要还是以人类活动排放为主。
在自然界中汞以各种形式存在,例如以硫化汞的形式存在于岩石中。
这些汞经过一系列的自然过程进入大气。
天然源释放到大气中的主要是Hg0,还有一些二甲基汞、挥发性无机汞化合物等。
煤中汞的赋存形式是影响汞排放的一个重要因素。
有学者提出煤中存在与有机煤岩组分结合的有机汞化合物,但主要还是以与无机物结合形式存在[1]。
对于煤中汞的存在形式,许多学者都进行了研究。
Finkelman在煤中发现了含汞的硫化物和硒化物,Cahill和Shiley发现煤中的方铅矿含汞,Dvornikov还提出煤中的汞主要以辰砂、金属汞和有机汞化合物的形式存在[1]。
煤在地质化学中被归为亲硫元素,因而,煤中的汞主要存在于黄铁矿(FeS2)和朱砂(HgS)中[2]。
文献[1]的研究证实了煤中大多数汞以固溶物形式分布于黄铁矿中,特别是后期成因的黄铁矿。
与煤中汞的含量分布研究相比,我国对煤中汞的赋存状态研究相对薄弱。
目前对煤中汞赋存状态的研究,采集的样品大多为我国西南地区的高硫煤或某些高汞煤,主要讨论煤中的汞与黄铁矿或硫分之间关系。
应用数理统计作业题及参考答案(第二章)(2)

应用数理统计作业题及参考答案(第二章)(2)第二章参数估计(续)P682.13 设总体X 服从几何分布:{}()11k P X k p p -==-,12k = ,,,01p <<,证明样本均值11ni i X X n==∑是()E X 的相合、无偏和有效估计量。
证明:总体X 服从几何分布,∴()1=E Xp,()21-=p D X p.1 ()()1111111=====??==∑∑ nn i i i i E XE X E X n E X nn n p p .∴样本均值11ni i X X n==∑是()E X 的无偏估计量。
2 ()22221111111==--===??=∑∑nn i i i i p p D XD X D X n nn np np . ()()()()1111ln ln 1ln 1ln 1-??=-=+--??;X f X p p p p X p .()111ln 111111fX p X X pppp p--=-=+?--;.()211222ln 111fX p X ppp ?-=-+-;.()()()()211122222ln 111111f X p X X I p E E E p p p p p --=-=--+=+--??????; ()()()()1222221111 111111111??-= +-=+-=+? ?---??pE X ppp p p p p p ()()() ()2221111111-+=+==---p ppp pp p pp .()()()222111111??'???? ???????===--n p pe p D X n I p n nppp .∴样本均值11ni i X X n==∑是()E X 的有效估计量。
3证法一:()21lim lim0→∞→∞-== n n p D X np,01p <<.∴样本均值11ni i X X n==∑是()E X 的相合估计量。
应用数理统计试题及答案

课程考试(考查)试题卷试卷编号:考试课程:应用数理统计 考试时间:110 分钟 课程代码: 7102551 试卷总分: 100分1(10分)、设总体随机变量2~(150,25)X N ,从中抽取容量为25的简单随机子样,求(1)X 的分布;(2){}140147.5P X <≤。
2(10分)、设12n X X X (,,,)是取自正态总体2N(,)μσ的一个子样,求2μσ及的最大似然估计。
3(10分)、某地为研究农业家庭与非农业家庭的人口状况,独立、随机的调查了50户农业居民和60户农业居民,经计算知农业居民家庭平均每户4.5人,非农业居民家庭平均每户3.75人。
已知农业居民家庭人口分布为21N(,1.8)μ,非农业居民家庭人口分布为22N(,2.1)μ。
试问12μμ-的99%的置信区间。
4(10分)、已知某铁矿区的磁化率服从正态分布2N(,)μσ,现根据容量n 52=的子样可得X 0.132,S 0.0735==。
若给定0.05α=,试求该区磁化率的数学期望的区间估计。
5(10分)、某地区磁场强度2~(56,20)X N ,现有一台新型号的仪器,用它对该地区进行磁测。
抽查41个点,算得平均强度为X 61.1,=。
若标准差不变。
试以显著水平(0.05)α=检验该仪器测量值有无系统偏差?6(10分)、已知维尼纶丝度在正常条件下服从正态分布2~(,0.048)X N μ。
某日抽取5个样品,测得丝度为:1.32,1.55,1.36,1.40,1.44 。
试问生产是否正常(0.05)α=? 7(10分)、给出正交表安排试验的步骤。
8(15分)、对某种药剂是否适应是通过对患者两项指标的测试来判断的。
设总体1X 表示“适应该药剂”和2X 表示“不适应该药剂”。
1X 和2X 分别服从正态分布1212N(,V)N(,V)V μμμμ和,其中,,均未知。
但根据已有的资料估计出 122411V 6214μμ∧∧∧⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,试求(1)Bayes 判别;(2)3X 5⎛⎫= ⎪⎝⎭属哪个总体?(3)错判概率9(15分)、设有8个二维向量,数据如下:试用欧氏距离和最长距离法分类123456782244X X X X 5343-4-2-3-1X X X X 322-3⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,,,,附表1:标准正态分布表9772.09750.0995.09505.09608.06915.0)(296.1575.265.176.15.0x x Φ附表2:t 分布临界值表:α=>α)}()({n t n t p2281.28125.1102622.28331.193060.28595.18025.005.0==ααn附表3:2χ分布临界值表:α=χ>χα)}()({22n n p831.0145.1833.12071.115484.0711.0143.11488.94216.0352.0348.9815.73975.095.0025.005.0====ααααn1、解: (1): 26.3(52,)36X N =;(5分) (2) {}1.86 1.2650.853.8(1.71)(1.14)16.3 6.30.95640.872910.8293P X ⨯-⨯⎛⎫⎛⎫<≤=Φ-Φ=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭=+-=(5分) 2、解:由题意,似然函数为: /1211111(,,,;)()exp[()]i nnx n i ni i L x x x ex θθθθθ-===∏=-∑ ;(3分) 21111ln ln ;ln nni i i i d n L n x L x dx θθθθ===--=-+∑∑(3分)解似然方程:2110ni i nx θθ=-+=∑,(2分) 得最大似然估计值为:11ni i x n θ∧==∑(2分)3、解:由题意知,20.05,12,10, 1.96(4),1.96121.962;138.3,(4)2139X n ασμ==-<=⨯⎛⎫===≈ ⎪⎝⎭0.0250.025查表得:Z 分由于Z 分所以至少需要调查人(2分)4、解010:0.6;:0.60.6,60,0.551.645,0.79 1.64560%H p H p U p n p Z U α∧∧≥<=======->-假设:(2分)其中(3分)计算(3分)可以认为执行环保条例的厂家不低于(2分)5、解:/23.5811141617.5220|212223173.52.551.96 2.55,X T U Z α=+++++⨯++++====<(3分)计算(3分)因为(3分)因此认为两总体差异显著(1分)6、解 :)2(3046.03225.5)2(3225.5,3046.05.120722.366)2(4.1060,5.12072;2.366)2(,6.4161,5.24502,10098,5222,36575)2(,13760,4.20,204,5.49,4952122121221212111分分分分分x y x b y a L L b ny yL x n xL y x n y x L ny x n y x n yxy x Y y X xxxxy ni iyy ni ixx ni i i xy ni ini ini i i ni i ni i+=∴=-=====-=-==-===========-∧-∧∧-==-=--=----===-=-=∑∑∑∑∑∑∑∑7、解:正交表用符号()mp L n 表示(2分),其中L 表示正交表;p 表示试验次数,在表中则表示行数(2分),m 表示最多可安排的因素数,在表中则表示列数(2分);n 表示水平数(2分)。
数理统计习题作业

数理统计习题作业班级:学号:姓名:习题一1. 设是来自服从参数为的泊松分布的样本,试写出样本的联合分布律。
2.设2(,)N ξμσ:,其中μ已知,2σ未知,12(,,,)n ξξξL 是总体ξ的样本,问下列那些是统计量?那些不是?并简述其理由.(1) 12ξξσ++;(2) 1()ni i ξμ=-∑;(3) 12min{,,,}n ξξξL ;(4) 2123ξξξσ++; (5) 221()ni i ξμσ=-∑;(6) 221()ni i S ξμ=-∑.3.从总体2(52,6.3)N ξ:中抽取一容量为36的样本,求样本均值ξ落在50.8到53.8之间的概率.4. 假设某种类型的电阻器的阻值服从均值μ=200欧姆,标准差σ=10欧姆的正态分布,在一个电子线路中使用了25个这样的电阻。
(1) 求这25个电阻平均值落在199欧姆到202欧姆之间的概率。
(2) 求这25个电阻总阻值不超过5100欧姆的概率。
5. 设总体分布2(150,25)N ξ:,现在从中抽取25个样本,求(140147.5)P ξ<<.6. 设某城市人均年收入服从均值μ=1.5万元,标准差σ=0.5万元的正态分布。
现随机调查了100个人,求他们的年均收入在下列情况下的概率:(2) 小于1.3万元; (3) 落在区间[1.2, 1.6].7. 假设总体分布为(12,2)N ,今从中抽取样本125(,,,)ξξξL ,试问 (1) 样本均值ξ大于13的概率是多少? (2) 样本的最小值小于10的概率是多少? (3) 样本的最大值大于15的概率是多少?8.设总体2(0,0.3)N ξ:,1210(,,,)ξξξL 是从总体ξ抽取的一个样本,求1021( 1.44)i i P ξ=>∑.9.设12,,,n ξξξL 是相互独立且同分布的随机变量,且都服从2(0,)N σ,求证 (1) 22211()nii n ξχσ=∑:; (2)22211()(1)ni i n ξχσ=∑:.10.设125,,,ξξξL 是相互独立且同分布的随机变量,且都服从标准正态分布,求常数C ,服从t 分布.11.设总体2(0,)N ξσ:,12(,)ξξ为总体ξ的样本,求证212212()(1,1)()F ξξξξ+-:.12. 通过查表求(1)20.05(4)χ,20.01(6)χ,20.025(10)χ;(2) 0.01(8)t ,0.95(9)t ,0.01(50)t ;(3) 0.05(4,1)F ,0.01(5,4)F ,0.90(3,2)F .13. 通过查表求以下各题的λ值(1) 设22(6)χχ:,2()0.05P χλ>=;(2) 设(5)t t :,()0.05P t λ>=; (3) 设(5,3)F F :,()0.05P F λ>=;(4) 设(5,3)F F :,()0.05P F λ<=.习题二1. 设),,,(21n ξξξΛ为抽自二项分布),(p m b 样本,试求p 的矩估计量和极大似然估计量。
应用数理统计参考题

应用数理统计(2000年)一、填空1 、设X1,X2,…X10 来自总体N(0,1) 的样本,若2 2 2y=k i(x i+2x2+3x3)+k2(x4+x5+…+X10) ~x (2),贝U k i= _________ k2= __________2、设x i,X2,…X2m来自总体N(4,9)的样本,若y=W(x2i-4)2,且Z= c(xi 二4),服z J y从t 分布,贝U c= ___ ,z~t( __ )3、设X i,X2,…X2m 来自总体N( p, 2)的样本,已知y=(X2-X i)2+(X4-X3)2+…+(X2m-X2m-i)2,且Z=cy为2的无偏估计,则c= ____4、上题中,Dz= __5、由总体F(x)与G(x)中依次抽得容量为i2和ii的样本,已计算的游程总个数U=i2,试在水平a =0.05下检验假设H。
:F(x)= G(x),其结论为 ___________ (U°.05(12, 11)=8)61 °X2 1二、设X i,X2,…X61 来自总体N(0,1)的样本,令y=^ x2,试求P{互兰丄}y y 15(t0.975(60)=2)三、设总体X的密度函数为(1+a)x: 0<x<1Lf(x)= F0, 其它而(X i,X2,…X n )为来自X的样本,试求〉的极大似然估计量。
2 2四、设x~N( p, 2),y~ N( p, 2)今抽取X的样本X i,X2,…X8;y的样本y i,y2, (8)计算得x =54.03,y =57.11,s;=3.25, £=2.751 .试在水平a =0.0下检验假设H0:p i=p,H i: p i> p22. 试求a =0.0时,p- p 的估计区间(t0.99(14)=2.6245)五、欲考察因子A,B,C,D及交互作用AXC,且知B也可能与其它因子存在交互作用,试在L8(27)上完成下列表头设计。
应用数理统计第三章习题测验及答案

习题三2.设总体的分布密度为:(1),01(;)0,x x f x ααα+<<=⎧⎨⎩其它1(,,)n X X L 为其样本,求参数α的矩估计量1ˆα和极大似然估计量2ˆα .现测得样本观测值为:0.1,0.2,0.9,0.8,0.7,0.7,求参数α的估计值 .解 计算其最大似然估计:()()11111(,)11ln (,)ln(1)ln nnnn i i i i nn ii L x x x x L x x n x αααααααα===⎡⎤=+=+⎣⎦=++∏∏∑K K1121ln (,)ln 01ˆ10.2112ln n n i i n ii d n L x x x d nx ααααα====+=+=--=∑∑K 其矩估计为:()1 3.40.10.20.90.80.70.766X =+++++= 3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以:12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑, 12ˆˆ0.3077,0.2112αα≈≈.3. 设元件无故障工作时间X 具有指数分布,取1000个元件工作时间的记录数据,经分组后得到它的频数分布为:如果各组中数据都取为组中值,试用最大似然法求参数的点估计. .解 最大似然估计:11(,),ln ln i nx n nx n i L x x e e L n nx λλλλλλλ--====-∏K711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05X λ==.4. 已知某种灯泡寿命服从正态分布,在某星期所生产的该种灯泡中随机抽取10只,测得其寿命(单位:小时)为:1067,919,1196,785,1126,936,918,1156,920,948 设总体参数都未知,试用极大似然法估计这个星期中生产的灯泡能使用1300小时以上的概率.解 设灯泡的寿命为x ,2~(,)x N μσ,极大似然估计为:2211ˆˆ,()ni i x x x n μσ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.81μσ== . 经计算得,这个星期生产的灯泡能使用1300小时的概率为0.0075.5. 为检验某种自来水消毒设备的效果,现从消毒后的水中随机抽取50升,化验每升水中大肠杆 菌的个数(假定一升水中大肠杆菌个数服从Poisson 分布),其化验结果如下:试问平均每升水中大肠杆菌个数为多少时,才能使上述情况的概率为最大? 解 设x 为每升水中大肠杆菌个数,~()x P λ,Ex λ=,由3题(2)问知,λ的最大似然估计为x ,所以().150/1*42*310*220*117*0ˆ=++++==X L λ所以平均每升氺中大肠杆菌个数为1时,出现上述情况的概率最大 .8. 设1,...,n X X 是来自总体X 的样本,并且EX =μ,DX = 2σ,2,X S 是样本均值和样本方差,试确定常数c ,使22X cS -是2μ的无偏估计量 .解2222222222()E X cS EX cES DX E X c c nσσμσμ-=-=+-=+-=所以1c n =.9. 设1ˆθ,2ˆθ是θ的两个独立的无偏估计量,并且1ˆθ的方差是2ˆθ的方差的两倍 .试确定常数c 1, c 2,使得11ˆc θ+22ˆc θ为θ的线性最小方差无偏估计量 . 解: 设22122,2D D θσθσ==112212121221(()11E c c c c c c c c c c θθμμμμ+=+=+=+==-),,()()222222211221211(2221D c c c c c c θθσσσ+=+=+-g g )()222111121321c c c c +-=-+当1212*33c -=-=,上式达到最小,此时21213c c =-= .10. 设总体X 具有如下密度函数,1,01(,)0,x x f x θθθθ-<<=>⎧⎨⎩,0其它1,...,n X X 是来自于总体X的样本,对可估计函数1()g θθ=,求()g θ的有效估计量ˆ()gθ,并确定R -C 下界 .解 因为似然函数1111L(,),ln ln (1)ln i i nn n n n i i x x x x L n x θθθθθ--====+-∑∏∏K111ln ln ln ln ()0i i i d n L x n x n x g d n n θθθθ⎛⎫⎛⎫=+=---=---= ⎪ ⎪⎝⎭⎝⎭∑∑∑ 所以取统计量1ln i T x n=-∑ 11111101ln ln ln ln i E X x x dx xdx x x x dx θθθθθθ--===-=-⎰⎰⎰得1ET θ==()g θ,所以1ln i T x n=-∑是无偏估计量 令()c n θ= 由定理2.3.2知 T 是有效估计量,由221()1()g DT c n n θθθθ-'===- 所以 C -R 方差下界为21n θ.11. 设1,...,n X X 是来自于总体X 的样本,总体X 的概率分布为:||1||(,)()(1),1,0,1,012x x f x x θθθθ-=-=-≤≤1) 求参数θ的极大似然估计量ˆθ; 2) 试问极大似然估计ˆθ是否是有效估计量?如果是,请求它的方差ˆD θ和信息量()I θ; 3 试问ˆθ是否是相合估计量?(书上没有这个问题) 解 1)()()111(,)1122ln ln (n )ln(1)iii ix x nx n x n i i i L x x L x x θθθθθθθ--=∑⎛⎫⎛⎫∑=-=- ⎪ ⎪⎝⎭⎝⎭=+--∏∑∑Kn 1ln 01(1)n xi xi d n L xi d θθθθθθ-⎛⎫=-=-= ⎪--⎝⎭∑∑∑ 得到θ最大似然估计量1ˆxi nθ=∑ 2)()()110011,10122Exi E xi E xi n n θθθθθ⎛⎫⎛⎫==-++-= ⎪ ⎪⎝⎭⎝⎭∑∑所以11Exi E xi n nθ==∑∑ 所以ˆθ是无偏估计量,()(1)n c θθθ=-,由定理2.3.2得到1ˆxi nθ=∑是θ有效估计量信息量c()1()(1)I n θθθθ==-3)1(1)ˆD 0,(n )c()nθθθθ-==→→∞ 所以,T 也是相合估计量 .12 从一批螺钉中随机地取16枚,测得其长度(单位:cm)为:2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15, 2.12,2.14,2.10,2.13,2.11,2.14,2.11设钉长分布为正态,在如下两种情况下,试求总体均值μ的90%置信区间,1)若已知σ=0.01cm ; 2)若σ未知;解 因为 2.125,16,0.171,X n s ===()0.950.9510.95, 1.65,15 1.7532t αμ===-1) 计算0.950.952.1209, 2.1291X b a X αμμ-===+== 所以 置信区间为[]1.1212.129,2) 计算((0.950.9515 2.1175,15 2.1325X t b X t α-==+== 所以 置信区间为[]2.1152.135,.13 随机地取某种炮弹9发做试验,测得炮口速度的样本标准差s=11(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为95%的置信区间 .解 由题意标准差σ的置信度为0.95的置信区间为0.9750.0252222(1)(1)(,)(8)(8)n S n S χχ-- 计算得0.9750.0252222(1)(1)11,9,0.05,7.431,21.072(8)(8)n S n S S n a b αχχ--=======所以 置信区间为 [7.431,21.072].14. 随机地从A 批导线中抽取4根,并从B 批导线中抽取5根,测得其电阻(Ω)为:A 批导线:0.143,0.142,0.143,0.137B 批导线:0.140,0.142,0.136,0.138,0.140设测试数据分别服从21(,)N μσ和22(,)N μσ,并且它们相互独立,又212,,μμσ均未知,求参数12μμ-的置信度为95%的置信区间 .解 由题意,这是两正太总体,在方差未知且相等条件下,对总体均值差的估计:置信区间为121221(2)X Y tn n S n α--±+- 计算得2626A B 120.14125,0.1392,8.25*10, 5.2*10,4,5,0.05x y S S n n α--======= 26W W 0.9756.5710,0.00255,(7) 2.365,0.0022,0.0063S S t a b -====-=g所以[0.0022,0.0063]-.15. 有两位化验员A 、B ,他们独立地对某种聚合物的含氯量用相同方法各作了10次测定,其测定值的方差2s 依次为0.5419和0.6065,设2A σ与2B σ分别为A 、B 所测量数据的总体的方差(正态总体),求方差比2A σ/2B σ的置信度为95%的置信区间 . 解 由题意,这是两正太总体方差比的区间估计:置信区间为22AA22BB1212(,)1(1,1)(1,1)22S S S S F n n Fn n -----计算得 22A B 120.5419,0.6065,10,0.05S S n n α=====22AA22B B0.9750.0250.2217, 3.6008(9,9)(9,9)S S S S a b F F ====所以置信为 [0.2217,3.6008].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<应用数理统计>实验习题二
1.某切割机在正常工作时,切割每段金属棒的平均长度为10.5cm.今从一批产品中随机地抽取15段,测得其长度(单位:cm)如下
10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7
设金属棒长度服从正态分布,且标准差没有变化,(04.02=σ),
试问(1)该机工作是否正常(05.0=α)?
(2)上题中假定切割的长度服从正态分布,问该机切割的金属棒的平均长度有无显著变化(05.0=α)?
(3)如果只假定切割的长度服从正态分布,问该机切割的金属棒长度的标准差有无显著变化(05.0=α)?
>> clear all
>>
x=[10.4,10.6,10.1,10.4,10.5,10.3,10.3,10.2,10.9,10.6,10.8,10.5,10.7,10.2,10.7];
>> [h,p,ci,u]=ztest(x,10.5,0.2,0.05,1)
h =
p =
0.6507
10.3951 Inf
u =
-0.3873
一>> [h,p,ci,u]=ztest(x,10.5,0.2,0.05,0)
h =
p =
0.6985
ci =
10.3788 10.5812
-0.3873
二[h,sig]=ztest(x,10.5,0.2,0.05,0)
h =
sig =
0.6985
三
x=[10.4,10.6,10.1,10.4,10.5,10.3,10.3,10.2,10.9,10.6,10.8,10.5,10.7,1 0.2,10.7];
>> [p,sig]=xtest(x,0.2,0.05,0)
p =
1
sig =
2.下表列出了18个5~8岁儿童的重量和体积.
(1) 画出散点图;
(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y
+=并作回归分析;。