离子晶体、分子晶体和原子晶体

合集下载

离子晶体、分子晶体和原子晶体课件

离子晶体、分子晶体和原子晶体课件

分子晶体可以以不同的形态出现,如柱状、层状等。
分子晶体的制备方法
溶液挥发法
通过挥发溶液中的溶剂来 使分子晶体结晶。
熔融法
将物质熔化后再进行结晶, 得到分子晶体。
凝固法
通过控制溶液温度变化使 分子晶体在溶液中凝固成 形。
分子晶体的物理性质
功能团的影响
分子晶体的物理性质受分子中 不同的功能团的影响。
离子晶体、分子晶体和原 子晶体
在我们的课件中,我们将探讨离子晶体、分子晶体和原子晶体的性质、结构 以及制备方法。此外,我们还将介绍它们的物理性质和特点。
离子晶体的性质和结构
独特的化学组成
离子晶体由阳离子和阴离 子组成,形成稳定的晶格 结构。
高熔点
由于离子之间的强电荷相 互作用,离子晶体通常具 有较高的熔点。
极性分子
极性分子组成的分子晶体通常 具有特殊的电荷分布和化学性 质。
分子间力的影响
范德华力等分子间相互作用对 分子晶体的物理性质起着重要 的影响。
原子晶体的性质和类的原子组成,形成简单周期性排列。
2 高熔点
由于原子之间的强原子键作用,原子晶体通常具有较高的熔点。
3 晶体形状具规律性
原子晶体通常具有规则的几何形状,如立方体、六方晶等。
2 刚性和脆性
离子晶体的离子间相互作用较强,因此它们通常是刚性且易于破裂的。
3 光学性质
离子晶体对光的透射、反射和吸收呈现出特殊的光学性质。
分子晶体的性质和结构
1
复杂的分子结构
分子晶体由复杂的有机分子构成,形成稳定的晶格结构。
2
低熔点
由于分子之间的弱范德华力作用,分子晶体通常具有较低的熔点。
3
各种晶体形态

离子晶体、分子晶体、原子晶体

离子晶体、分子晶体、原子晶体

2、物理特性:
(1)较低的熔点和沸点,易升华; (2)较小的硬度; (3)一般都是绝缘体,熔融状态也不导电。
原因:分子间作用力较弱
3、典型的分子晶体:
–非金属氢化物:H2O,H2S,NH3,CH4,HX –酸:H2SO4,HNO3,H3PO4 –部分非金属单质:X2,O2,H2, S8,P4, C60 –部分非金属氧化物: CO2, SO2, NO2, P4O6, P4O10 –大多数有机物:乙醇,冰醋酸,蔗糖
思考1 原子晶体的化学式是否可以代表其分子式?
不能。因为原子晶体是一个三维的网状结构,无 小分子存在。
思考2 以金刚石为例,说明原子晶体的微观结构与分 子晶体有哪些不同? (1)组成微粒不同,原子晶体中只存在原子,没有
分子。 (2)相互作用不同,原子晶体中存在的是共价键。
4、原子晶体熔、沸点比较规律
①二氧化硅中Si原子均以sp3杂化,分别 与4个O原子成键,每个O原子与2个Si原子 成键; ②晶体中的最小环为十二元环,其中有6 个Si原子和6个O原子,含有12个Si-O键; 每个Si原子被12个十二元环共有,每个O原 子被6个十二元环共有,每个Si-O键被6个 十二元环共有;每个十二元环所拥有的Si 原子数为6×1/12=1/2,拥有的O原子数为 6×1/6=1,拥有的Si-O键数为12×1/6=2, 则Si原子数与O原子数之比为1:2。
Na+
(1)NaCl的晶体结构
立方结构(基本结构单元是立方体)
晶胞:
讨论:
晶体中最小的重复单元
6 1、每个Na 离子周围有____个Cl-离子,每 个Cl- 离子周围有____个Na+ 离子。 6
+
2、每个Na+离子周围与Na+最近且等距离的 Na+有____个,每个Cl- 离子周围与Cl-最近且 12 12 等距离的Cl-有____个。

高中化学晶体类型的判断

高中化学晶体类型的判断

高中化学晶体类型的判断
高中化学中,晶体是由原子、分子或离子以规则的方式排列而成的固体物质。

晶体的类型可以通过晶体的结构以及组成元素来判断。

晶体的结构类型可以分为离子晶体、共价晶体和分子晶体。

离子晶体是由正负离子通过离子键结合而成的晶体。

在离子晶体中,正负离子按照一定的比例排列在空间中形成晶格结构。

典型的离子晶体有氯化钠(NaCl)、氧化铁(Fe2O3)等。

判断一个固体是否为离子晶体可以通过分析其组成元素的离子性质以及晶体的导电性等特征。

共价晶体是由原子通过共价键结合而成的晶体。

在共价晶体中,原子之间共用电子形成化学键。

典型的共价晶体有金刚石(C)和石墨(C)。

判断一个固体是否为共价晶体可以通过分析其组成元素的原子性质
以及晶体的导电性等特征。

分子晶体是由分子通过范德华力或氢键等相互作用力结合而成的晶体。

在分子晶体中,分子之间以一定的方式排列形成晶格。

典型的分子晶体有冰(H2O)和葡萄糖(C6H12O6)等。

判断一个固体是否为分子晶体可以通过分析其组成元素的分子结构以及晶体的物理性质等
特征。

除了上述的结构类型判断,还有其他的方法可以用于判断晶体的类型。

例如,可以通过晶体的形态学特征,如晶面、晶胞大小等来判断晶体的类型。

此外,也可以通过X射线衍射等实验手段来确定晶体的结构类型。

总之,判断晶体的类型需要综合考虑晶体的结构、组成元素以及物理性质等特征。

通过对这些特征的分析,我们可以确定晶体的类型,并进一步了解其性质和应用。

离子晶体、分子晶体、金属晶体、原子晶体

离子晶体、分子晶体、金属晶体、原子晶体
那么每个中心Si原子共占有O原子数
即Si原子与O原子的个数比为1∶2。
二、物质熔沸点高低判断的方法
1.原子晶体中原子间键长越短,共价键越稳定,物质熔沸点越高,反熔沸点越高,反之越低。
3.分子晶体中分子间作用力越大,物质熔沸点越高,反之越低。其中组成和结构相似的分子,相对分子质量越大,分子间作用力越大。(但这不包括具有氢键的分子晶体其熔沸点出现反常得高的现象,
5.原子晶体的熔点高低与其内部的结构密切相关:对结构相似的原子晶体来说,原子半径越小,键长越短,键能越大,晶体的熔点就高。
二、分子晶体
1.分子晶体定义:分子间通过分子间作用力构成的的晶体称为分子晶体。
(1)构成分子晶体的粒子是分子,粒子间的相互作用是分子间作用力
(2)原子首先通过共价键结合成分子,分子作为基本构成微粒,通过分子间作用力结合成分子晶体。
2. 分子晶体的类别:多数非金属单质(除了金刚石、晶体硅、晶体硼、石墨等),多数非金属氧化物(如干冰、CO、冰等)、非金属气态氢化物(如NH3,CH4等)、稀有气体、许多有机物等。
3.常见的分子晶体的晶体结构
(1)碘晶体的晶胞是长方体,碘分子除了占据长方体的每个顶点外,在每个面上还有一个碘分子。
⑵CsCl型
CsCl型离子晶体中,每个离子被8个带相反电荷的离子包围,阴离子和阳离子的配位数都为8。常见的CsCl型离子晶体有铯的卤化物(氟化物除外)、TlCl的晶体等。
⑶ZnS型
ZnS型离子晶体中,阴离子和阳离子的排列类似NaCl型,但相互穿插的位置不同,使阴、阳离子的配位数不是6,而是4。常见的ZnS型离子晶体有硫化锌、碘化银、氧化铍的晶体等。
(3)大多数离子晶体易溶于极性溶剂(如水)中,难溶于非极性溶剂(如汽油、煤油)中。当把离子晶体放在水中时,极性水分子对离子晶体中的离子产生吸引作用,使晶体中的离子克服了离子间的作用而电离,变成在水中自由移动的离子。

离子晶体、分子晶体、原子晶体

离子晶体、分子晶体、原子晶体

ClNa+
二、分子晶体
分子间作用力和氢键:(氢键的形成过程)
分子间作用力和氢键对一些物质的熔、沸点的关系
分子晶体:
分子间通过分子间作用力相 结合的晶体,叫做分子晶体。 实例:如干冰 定义:
分子晶体的物理性质:
熔、沸点低,硬度小,在水 形成分子晶体的物质:
中的溶解度存在很大的差异。 H2、Cl2、He 、HCl 、H2O、CO2等
原子晶体的物理性质:
熔沸点很高,硬度很大,难溶于水,一般不导电。
常见的原子晶体:
金刚石、金刚砂(SiC)、晶体硅、石英(SiO2)
Si
o
180º
109º 28´
共价键
109º 28´
共价键
小结
1、离子晶体、分子晶体、原子晶体结构与性质关系的比较: 晶体类型 结 构成晶体粒子 构 性
熔、沸点 导电性 粒子间的相互 作用力
离子晶体
分子晶体
原子晶体
硬 度

溶解性
2、化学键和分子间作用力的比较:
化学键 概念 能量 性质影响 分子间作用力
3、影响晶体物理性质的因素:

离子晶体 分子晶体 原子晶体

因 素
共价键
氢键
氢键的形成过程
返回
温度/℃ H2O 温度/100 ℃ 沸点/℃ 250 75 沸点 250 熔点 CBr 200 沸点 4 × × 50 200 150 I2 CI4 150 25 HF 100 CCl 熔点 × 100 4 × CBr4 I 0 H2Te 50 2 100 150Br 50 SbH3 2 -25 0 2Se 200 300 400 H 500 × NH3 100 H S HI 0 Br 2 2 200 -50 50 250 -50 CCl4 -50 × AsH Cl 3 相对分子质量 SnH4 2 -100 HCl 相对分子质量 -100 -75 HBr CF × Cl 4 2 -150 × PH3 GeH4 -150 × -100 -200 F2 CF 4 SiH 4× -200 -125 F2 -250 -250

离子、分子、原子晶体

离子、分子、原子晶体

离子晶体、分子晶体、原子晶体离子晶体离子晶体是由阴、阳离子组成的,离子间的相互作用是较强烈的离子键。

离子晶体的代表物主要是强碱和多数盐类。

离子晶体的结构特点是:晶格上质点是阳离子和阴离子;晶格上质点间作用力是离子键,它比较牢固;晶体里只有阴、阳离子,离子晶体中可能含有分子如:CuSO4·5H2O就含有分子。

性质特点,一般主要有这几个方面:有较高的熔点和沸点,因为要使晶体熔化就要破坏离子键,离子键作用力较强大,所以要加热到较高温度。

硬而脆。

多数离子晶体易溶于水。

离子晶体在固态时有离子,但不能自由移动,不能导电,溶于水或熔化时离子能自由移动而能导电。

离子晶体的空间结构对称性1) 旋转和对称轴n重轴, 360度旋转, 可以重复n次:2) 反映和对称面晶体中可以找到对称面:3) 反演和对称中心晶体中可以找到对称中心:离子晶体熔沸点高低比较离子所带电荷越高,离子半径越小,则离子键越强,熔沸点越高。

例如:Al2O3 > MgO > NaCl > CsCl.。

原子晶体相邻原子之间通过强烈的共价键结合而成的空间网状结构的晶体叫做原子晶体原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。

原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。

常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。

(但碳元素的另一单质石墨不是原子晶体,石墨晶体是层状结构,以一个碳原子为中心,通过共价键连接3个碳原子,形成网状六边形,属过渡型晶体。

)对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。

离子晶体分子晶体原子晶体的区别

离子晶体分子晶体原子晶体的区别

离子晶体分子晶体原子晶体的区别
离子晶体、分子晶体和原子晶体都是晶体的类型,它们的区别主要在于晶体的组成和结构。

离子晶体是由正负离子通过离子键结合而成的晶体。

通常,离子晶体的成分是由金属离子和非金属离子组成的化合物。

离子晶体的结构可由阴离子和阳离子构成的空间排列组成。

这些空间交替排列,形成一种定期的三维晶格结构。

离子晶体的结构稳定,常常具有高熔点,高硬度和高电导率等特点。

分子晶体是由分子间通过范德华力相互作用形成的晶体。

通常,分子晶体的成分是由原子间共享电子而形成的分子。

这些分子通过弱的范德华力互相作用,并形成一种定期的三维晶格结构。

分子晶体的结构可由分子排列而成的晶格构成。

分子晶体的结构稳定,常常具有较低的熔点、较低的硬度和较低的电导率等特点。

原子晶体是由原子间通过金属键或共价键相互作用而形成的晶体。

通常,原子晶体的成分是由金属原子或非金属原子组成的晶体。

这些原子通过强的金属键或共价键相互作用,并形成一种定期的三维晶格结构。

原子晶体的结构可由原子排列而成的晶格构成。

原子晶体的结构稳定,常常具有高熔点、高硬度和良好的导电性能等特点。

总之,离子晶体、分子晶体和原子晶体的区别在于它们的组成和结构。

离子晶体
由离子间的离子键结合而成,分子晶体由分子间的范德华力相互作用形成,而原子晶体由原子间的金属键或共价键相互作用而形成。

离子晶体与原子晶体、分子晶体的异同教案二

离子晶体与原子晶体、分子晶体的异同教案二

离子晶体、原子晶体、分子晶体是化学中非常重要的晶体类型,它们在材料领域中具有广泛的应用。

虽然这些晶体的结构和性质有一些共同之处,但它们之间也存在一些显著的差异。

本文将重点介绍这些晶体之间的异同点。

一、离子晶体离子晶体是由离子构成的晶体,通常含有一个或多个金属离子和一个或多个非金属离子。

在离子晶体中,离子之间由电子静电作用相互吸引,从而形成有序排列的晶体。

离子晶体具有高熔点和硬度,并且在溶液中具有良好的导电性。

离子晶体的晶格结构通常是三维点阵,其具有高度周期性的结构,其中离子按照一定规律排列。

在离子晶体中,通常有六种离子排列方式,括简介立方体、体心立方体、四方晶系、正交晶系、蜂窝晶系和六方晶系。

离子晶体中的化学键通常是离子键。

二、原子晶体原子晶体是由单个原子构成的晶体,具有高度有序排列的结构。

在原子晶体中,原子之间形成共价键或金属键,并且通常是同种原子构成的晶体。

原子晶体具有高度的硬度,并且在高温下不易熔化。

原子晶体的晶格结构也通常是三维点阵,其中包括立方晶系、正交晶系、单斜晶系、菱形晶系和六方晶系。

原子晶体中的化学键通常是共价键或金属键。

三、分子晶体分子晶体是由分子构成的晶体,通常由两个或多个原子共同构成的分子。

在分子晶体中,分子之间由范德华力相互吸引,并且通常是由非金属构成的晶体。

分子晶体具有较低的硬度和熔点,通常不具有良好的导电性。

分子晶体的晶格结构也通常是三维点阵,其中包括单斜晶系、三斜晶系、正交晶系、单轴晶系和六方晶系。

分子晶体中的化学键通常是共价键或范德华力。

四、异同点分析从上述介绍中可以看出,离子晶体、原子晶体和分子晶体之间存在一些明显的异同点。

具体分析如下:(1)异同点1.化学成分:离子晶体由离子构成,原子晶体由单个原子构成,分子晶体由分子构成,这三种晶体的化学成分不同。

2.结构特点:这三种晶体的晶格结构均为三维点阵,但具体的晶格结构和空间排列规律则存在差异。

3.化学键类型:离子晶体的化学键为离子键,原子晶体的化学键为共价键或金属键,分子晶体的化学键为共价键或范德华力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考:
为什么NaCl的熔沸点比CsCl高?
Na+ 与Cs+ 均带一个单位正电荷, 阴离子均为氯离子。 Na+半径比Cs+ 小 Na+与Cl- 的相互作用比Cs+与Cl- 的相互作用强 NaCl晶体中的离子键较强,
NaCl晶体的熔沸点较高。
练习 1 某离子晶体的结构(局部如图),X位 于立方体的顶点,Y位于立方体的中心,则该晶 (XY2) 体的化学式是
几何外形的固体。 2、分类:
依据:构成晶体 的粒子种类及粒 子之间的作用
离子晶体
分子晶体
原子晶体 金属晶体
离子晶体
1、定义: 离子间通过离子键结合而成的晶体 2、特点: (1)、晶体不导电,在熔融状态或水 溶液中导电,不存在单个分子 (2)、硬度较高,密度较大, 难 熔沸点较高。 压缩,难挥发, 熔点℃ NaCl 801 沸点℃ 1413
A:B:C = 1/8×8 : 1/2×6 : 1 = 1 : 3 : 1
练习 3 某物质的晶体中含A、B、C三种元素, 其排列方式如图,则该离子晶体的化学式是 (AB3C)
A : B : C = 1/8×8 : = 1 : 3 : 1
12×1/4 : 1
练习4、下列物质中,属于离子晶体的是 ________;含共价键的离子晶体是_______。 KBr、NaOH、HCl、CO2 、NH4Cl、I2
X
Y
X : Y = 1/8×4 1 = 1 :2
:
练习2 某物质的晶体中,含A、B、C三种元素,其排 列方式如图所示(其中前后两面心上的原子不能画
出)。晶体中的A、B、C的原子个数比依次为:
(A)1:3:1 (B) 2:3:1 (C)2:2:1 (D)1:3:3
立方晶胞顶点粒子为8个晶胞共有
棱上粒子为4个晶胞共有 面上粒子为2个晶胞共有
ClNa+
NaCl晶体不导电,但在熔融状态或水 溶液时能导电?
1、当晶体受热熔化时,由于温度的升高,离 子的运动加快,克服了阴、阳离子间的引力,产 生了能自由移动的阴、阳离子,所以熔融的NaCl 能导电。
2、当晶体溶于水时,由于水分子的作用,使 Na+和Cl-之间的作用力减弱,NaCl成为能自由移 动的水合钠离子和水合氯离子,所以NaCl水溶液 能导电。
[练习]
1.指出下列物质中的化学键类型。
KBr
2.下列物质中哪些是离子化合物?哪些是共价 化合物?哪些是只含离子键的离子化合物?哪 些是既含离子键又含共价键的离子化合物?
CCl4
N2
CaO
H2S NaOH
KCl HCl Na2SO4 NH4Cl O2 Na2O2
HNO3


1、定义: 经过结晶过程而形成的具有规则的
CsCl
645
1290
3、离子晶体熔沸点高低的影响因素 离子所带的电荷(Q)和离子半径(r) Q越大、r越小,则离子键越强熔沸点越高 如:NaF > NaCl>NaBr >NaI 4 、晶型代表
NaCl型 CsCl型 5 、离子晶体的构成和作用力: 阴、阳离子和离子键 6、哪些物质属于离子晶体?
强碱、部分金属氧化物、绝大部分盐类。
练习5、下列说法正确的是( ) A.离子晶体中只含离子键 B. 不同元素组成的多原子分子里的化学 键一定是极性键 C.共价化合物分子里一定不含离子键 D.非极性键只存在于双原子单质分子里
离子晶体、分子晶体 和原子晶体
第一课时
复习巩固
1.什么是化学键?什么是离子键、共价键?
相邻的两个或多个原子之间强烈的相互作用叫化 学键;使阴、阳离子结合成化合物的静电作用叫 做离子键;原子之间通过共用电子对所形成的相 互作用叫做共价键;
2、以上作用力的实质是什么?
3、常见的离子化合物与共价化合物有哪些?
相关文档
最新文档