风机喘振与失速
风机喘振与失速原理

攻角減小 1 2 3 4 1
攻角增大 3 4
c:氣流速度 v:葉片轉動速度 w:氣流對業片之速度
2
葉片轉常Surge現象主要發生於軸流式風機,當風機產生Surge(激變或喘振),將 導致機身劇烈震動以及風壓迅速降低。對於風機本身易造成傷害。 • 由於Surge現象主因為通過葉片之氣流不穩定所造成,欲了解Surge須先了解” 攻角”。 • 如圖a為正常流動時空氣的移動現象,但圖b則可看到在高攻角下,空氣在葉 片的尾端出現紊流。此時空氣的能量快速消散,造成流動阻力變大、風機壓 力降低。
攻角
氣流方向
氣流方向
Stall
• 當Surge發生時造成風機壓力降低,此即所謂Stall(失速)現象。 • Stall發生之過程以下列兩圖說明:左圖為氣流剛開始進入轉動葉片之示意圖。 • 假設2、3葉片間發生Surge現象,則23之間的慢速空氣造成堵塞現象,導致 原本欲進入23葉片之間的空氣轉而流往12葉片間與34葉片之。流往12葉片間 之空氣因為攻角減小,不會發生Surge。但流往34葉片之間的空氣會因為攻 角變大,反而促使Surge的發生又堵塞34葉片之間通道。依此順序,堵塞通 道逐漸往逆葉片轉動方向傳遞,形成所謂Stall現象。 • Stall現象會形成一個到數個不穩定氣流區,當葉片經過就會受到震盪,久之 可能造成葉片斷裂。
电站轴流式风机的失速喘振与防治

轴流式风机当调节叶片(动叶调节风机为动叶片,静叶调节风机为入口调节叶片)角度固定在某一位置时,在正常工作区域内,风机的压力随风机流量的减小而增加,当流量减小到某一值时压力达到最大、当流量进一步减小时,风机压力和运行电流突然降低,振动和噪音增大这一现象被称为风机失速。 风机失速后有两种不同表现,一是风机仍能稳定运行,即压力、风量、电流保持相对稳定,但噪音增加;风机及其进、出口气流压力承周期性脉动;风机振动常常比正常运行高。这种现象称之为旋转失速。另一是风机即压力、风量、电流大幅度波动,噪音异常之大,风机不能稳定运行,风机可能很快遭受灭性损坏,这种现象称之为喘振。
图8 轴流风机防失速装置
图9 轴流风机有无防失速装置性能曲线比较
9 防止运行中轴流风机失速措施
1)运行人员应了解风机所在系统的阻力构成,特别是那些阻力较大又易于堵塞的设备(如预热器、暖风器、消声器等)的正常阻力范围。 2)在实际运行中若这些设备阻力超出了范围可能导致风机失速时,应控制该风机的出力,并及时采取措施消除堵塞。
从两次风机失速时的开度均大于停磨后两风机稳定运行时的开度(参见下表)说明:风机失速主要原因是在停磨过程中,在减小磨煤机通风量的同时,未能及时将一次风机的出力降到应有值,即一次风机入口门调节不到位,造成总一次风量低于两台一次风机当时开度下的失速流量,从而导致一台风机失速。
停磨过程中一次风机失速时与停磨后稳定运行时风机有关参数比较
2) 在轴流风机的进出口之间加旁路再循环风(烟)道;当风机失速时,打开旁路风道门,使一部分风(烟)量从风机出口流向风机入口,即使一部分风(烟)量在风机内循环,以增加风机的风(烟)量,使风机脱离失速区运行。但这增加了风机的耗功,是很不经济的。
加装防失速装置 为消除轴流风机的失速,多年来学者们进行了大 量的研究和实验工作,并提出了一些能把失速区向小 风量方向推移,戓者把压力曲线上的波谷减弱直到完 全消除的办法。但戓因结构复杂,戓因对风机效率影 响大,或噪音问题而未能得到广泛应用。直到1974年 原苏联伊万诺夫提出了一种简单有效的装置--空气分 流器来消除旋转失速,并在矿井局扇上获得广泛应 用。取得了美、英、法、原西德、印度、丹麦等多国 专利后,在轴流风机上加装防失速装置才在静调轴流 风机上得到较广泛使用。如德国kkk公司的KSE、我国 淮南煤碳学院和西安热工院均成功地设计出了类似的 防丢速装置并分别应用到矿井和电站轴流风机上。下 面以西安热工院开发的该型防失速装置为例进行介绍
风机失速喘振

一、风机的失速、喘振
失速:叶片的冲角超过临界值,气流会离开叶片凸面,发生边界层分离现象,产生大区域的涡流,此时风机的全压下降,这种情况称为风机“失速现象”。
喘振:轴流风机在不稳定工况区运行时,还可能发生流量、全压和电流的大幅度波动,气流会发生往复流动,风机及管道会产生强烈的振动,噪声显著增高,这种不稳定工况称为喘振。
喘振:
1现象
(1)风压和风量急剧波动。
(2)风机发出不正常的响声。
(3)风机电流大幅度波动。
(4)风机轴承振动明显增大。
2处理
(1)如果风机发生喘振一定要判明是否是由引风机进口、送风机出口风门关闭所造成的,若是风门引起,应立即开启风门。
(2)若是出力不平衡所致,适当调整两侧风机出力,使之趋于平衡,消除喘振。
(3)如果采取措施仍不能将振动减小,当振动超过跳闸值时,将喘振的风机停止运行。
(4)待风机的喘振消除后,重新将机组的负荷带到正常。
喘振与失速区别

谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。
失速是风机本身特性引起的喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。
我的理解轴流风机的喘振与失速是不同的情况可以简单概括如下:喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时;失速一般发生在动叶可调轴流风机的高负荷区。
主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。
喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。
避免喘振主要采用合适的调节方式抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反避免抢风主要有:1。
不采用不稳定性能风机2.同时在低负荷运行时可以单台运行3.采取动叶调节4.开启旁路风一、风机失速图1:风机失速轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。
当风机流量减小时,w的方向角改变,气流冲角增大。
当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。
由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。
因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。
若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。
结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。
叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。
动叶可调轴流风机失速与喘振现象及预防措施分析

动叶可调轴流风机失速与喘振现象及预防措施分析摘要本文就动叶可调轴流风机失速以及喘振现象的原因进行分析,并提出相应的预防措施,以期能够避免或减少失速于喘振的发生。
关键词动叶可调轴流风机;失速;喘振;预防0 引言动叶可调轴流风机能够调节的范围较广,低负荷的区域工作效率比较高且反应的速度比较快,使得动叶可调轴流通风机被广泛应用于电力行业中。
但是由于风机在工作时工作点常出现不稳定的运行,容易导致风机发生失速和喘振等现象。
1动叶可调轴流风机的失速与喘振现象1.1失速现象轴流风机叶片通常是机翼流线型,当冲角<临界冲角或为0时,气流将绕过机翼使其流线平稳,如图1(a)。
而一旦冲角超过某一个临界值,叶片背面的流动恶化,使其边界遭遇破坏,叶片背部的尾端涡流加宽,增加了阻力,降低了升力,阻塞叶道,出现失速现象,如图1(b)。
1.2喘振现象由于瞬间内风机能头及流量发生周期性、不稳定反复变化,使得动叶可调轴流风机产生喘振现象。
动叶可调轴流风机具有驼峰型曲线的性能,使得其存在峰值点,而峰值点左侧是喘振区,右侧是稳定的工作区。
一旦风机工作点掉落到喘振区,就会发生喘振现象,给设备以及建筑物造成危害。
1.3两者之间的区别和联系动叶可调轴流风机发生失速现象时仍可继续运行;而出现喘振现象时无法正常运行。
失速主要是由于叶片结构产生出空气动力的工况,有规律可循,且影响的因素有叶轮自身、气流以及叶片的结构等;但喘振现象的发生主要是由于外界条件造成的。
失速与喘振之间的关系较为密切,失速可以诱发喘振。
2实例分析动叶可调轴流风机失速与喘振的原因2.1实例分析失速原因针对某电厂4号机组中,由于风机的保护系统出现跳闸现象,使得辅机出现减负荷动作的故障,导致一次风管的阻力增加以及一次风量的减少,引发了B侧出现风机失速现象(见图2)。
正常情况下系统的压力通常在P。
处,而A、B两侧一次风机运行的工况点分别是A。
、B。
但当出现减负荷动作故障时,系统的压力将从P。
风机的失速与喘振

风机的失速与喘振一、风机的失速从流体力学得知,当气流顺着机翼叶片流动时,作用于叶片上有两种力,即垂直于叶片的升力与平行于叶片的阻力,当气流完全贴着叶片呈线型流动时,这种升力大于阻力。
当气流与叶片进口形成正冲角,此正冲角达到某一临界值时,叶片背面流动工况开始恶化,冲角超过临界值时,边界层受到破坏,在叶片背面尾端出现涡流区,即“失速”现象,此时作用于叶片的升力大幅度降低,阻力大幅度增大,对于风机来讲压头降低。
二、产生失速的原因1、风机在不稳定工况区域运行。
2、锅炉受热面积灰严重或风门、挡板操作不当,造成风烟系统阻力增加。
3、并联运行的二台风机发生“抢风”现象时,使其中一台风机进入不稳定区域运行。
依据运行经验,当风机运行中出现下列现象时,说明风机发生了失速。
1、失速风机的风压或烟压、电流发生大幅度变化或摆动。
2、风机噪音明显增加,严重时机壳、风道或烟道也发生振动。
3、当发生“抢风”现象时,会出现一台风机的电流、风压上升,另一台下降。
当机组运行中发生“抢风”现象时,应迅速将二台风机切手动控制,手动调整风机动叶开度,待开度一致、电流相接后将二台风机导叶同时投入自动。
为防止机组运行中风机“抢风”现象发生,值班员在调整时调整幅度不要太大,并尽量使二台并联运行的风机导叶开度、电流基本一致。
三、风机的喘震当风机的Q-H特性曲线不是一条随流量增加而下降的曲线,而是驼峰状曲线,那么它在下降区段工作是稳定的,而在上升区段工作是不稳定的。
当风机在不稳定区工作时,所产生的压力和流量的脉动现象称为喘震。
一般送风机为轴流式,运行中要防止送风机的喘振。
喘振产生主要是因为风机性能曲线为“驼峰形”。
当风机工作在不稳定区,流量降低时风压也降低,造成风道中压力大于风机出口压力而引起反向倒流,倒流的结果,又使风道内的压力急剧下降,风机的送风量突然上升,再次造成风机出口压力小于风道压力。
如此往复形成喘振。
喘振对风机危害很大,严重时会造成风机断叶片,及其它部位的机械损坏。
火力发电厂引风机失速与喘振的策略

火力发电厂引风机失速与喘振的策略摘要:为解决火力发电厂引风机失速与喘振的问题,本文从引风机的选型与设计、风烟道阻力的影响、运行控制、监控引风机的失速等方面着手,提高引风机运行的稳定性,为火力发电厂的发展做出贡献。
关键词:火力发电厂;引风机;失速;喘振引风机是火力发电厂中重要的辅机之一,其主要任务在于排出燃烧生产的飞灰与烟气,除此之外还可以对空气经流中各种力进行克服。
由此可见,维修人员很有必要结合实际情况提出解决火力发电厂引风机失速与喘振的建议。
1引风机的选型与设计引风机的选型工作极为重要,且通常情况下主要由设计单位负责引风机的选型设计。
设计单位选型设计期间主要根据火力发电厂提供的各项参数,提供的参数除了燃煤需要的风量之外还需要对煤炭种类改变导致的介质温度变化、参数因素变化、管道变化等带来的影响进行全面考虑[1]。
实际上还有很多的影响因素,需要火力发电厂检修人员科学地选择引风机型号,保证引风机风量增加具有一定的裕度,确保设计单位风机使用参数时应对计算过程中导致的阻力计算误差进行考虑,因为这种误差是客观存在的,还必须对引风机的压力裕度进行全面考虑。
2风烟道阻力的影响电厂运行期间以设计为基础安装试运,确定了风烟系统的管道特性,但是随着风烟系统管道阻力受到随机组运行多种因素的影响发生较大的改变,不利于引风机的正常运行,容易出现喘振与失速的情况。
具体有几点:受到脱硝塔堵、空气预热器堵塞或者是严重积灰的影响,增大了烟道阻力,不利于引风机的正常运行。
环保低碳排放要求的脱硝系统运行出力不断增加,产生较多的硫酸氢铵,堵塞了空气预热器。
因此,检修人员应通过科学合理的措施对脱硝塔氨气逃逸率,对吹灰频次进行合理地安排,避免引风机出现喘振与失速的问题;挡板卡涩或烟封门不当操作增加了烟道的阻力。
检修人员应定期开展检修工作,第一时间发现挡板与烟风门开度不一、卡涩或指示不同的问题;锅炉或尾部烟道出现漏风的问题,容易增大烟气体积,增加了烟气的流动速度,相应地降低了炉膛内部温度,无法充分或完全地燃烧,容易出现烟道的尾部受热面存在堵灰的问题,增加了风烟道的阻力,风机运行的工况点进入到比较稳定的区域,因而初选失速的问题[2]。
风机失速喘振问题

失速是风机本身特性引起的喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。
我的理解轴流风机的喘振与失速是不同的情况可以简单概括如下:喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时;失速一般发生在动叶可调轴流风机的高负荷区。
主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。
一、风机失速图1:风机失速轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。
当风机流量减小时,w的方向角改变,气流冲角增大。
当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。
由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。
因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。
若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。
结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。
叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。
也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。
这种现象称为旋转失速。
与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。
从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。
为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量二、风机喘振:图1:风机喘振图2:风机喘振报警线风机的喘振是指风机在不稳定区工况运行时,引起风量、压力、电流的大幅度脉动,噪音增加、风机和管道剧烈振动的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,风机失速与喘振
1、失速是叶片结构特性造成的一种流体动力现象,如:失速区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受风机系统的容积和形状的影响。
2、喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受风机管道系统容积的支配,其流量、压力功率的波动是由不稳定工况区造成的,但是试验研究表明,喘振现象的出现总是与叶道内气流的脱流密切相关,而冲角的增大也与流量的减小有关。
所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。
3、喘振时风机的流量和压力周期性地反复变化,电流也摆来摆去,也就是说一台风机运行也可能发生喘振,而且是风机低负荷时。
而失速通常发生在两台风机并列运行在大负荷时,失速发生时,失速风机风压、风量、振动、风机电机电流等参数突变后不发生波动,这是失速与喘振的最大区别。
抢风是失速和喘振的一种通俗性的说法
二、喘振与失速的区别
当风机处于不稳定工作区运行时,可能会出现流量全压的大幅度波动,引起风机及管路系统周期性的剧烈振动,并伴随着强烈的噪声,这种现象叫作喘振。
风机在下列条件下才会发生喘振:
1.风机在不稳定工作区运行,且风机工作点落在性能曲线的上升段。
2.风机的管路系统具有较大的容积,并与风机构成一个弹性的空气动力系统。
3.系统内气流周期性波动频率与风机工作整个循环的频率合拍,产生共振。
风机并联运行时,有时会出现一台风机流量特别大,而另一台风机流量特别小的现象,若稍加调节则情况可能刚好相反,原来流量大的反而减小。
如此反复下去,使之不能正常并联运行,这种现象称为抢风现象。
从风机性能曲线分析:具有马鞍形性能曲线的风机并联运行时,可能出现“抢风”现象。
所谓抢风,是指并联运行的两台风机,突然一台风机电流(流量)上升,加一台风机电流(流量)下降。
此时,若关小大流量风机的调节风门试图平衡风量时,则会使另一台小流量风机跳至最大流量运行。
在调整风门投自动时,风机的动叶或静叶频繁地开大、关小,严重时可能导致风机电机超电流而烧坏。
为避免风机出现抢风现象,在低负荷时可以单台运行,当单台风机运行满足不了需要时,再启动第二台参加并联运行。
当冲角增加到某一个临界值时,流体在叶片凸面的流动遭到了破坏,边界层严重分离,阻力大大增加,升力急剧减小。
这种现象称为脱流或失速。
在叶轮叶栅上,流体对每个叶片的绕流情况不可能完全一致,因此脱流也不可能在每个叶片上同时产生。
一旦某一个或某些叶片上首先产生了脱流,这个脱流就会在整个叶栅上逐个叶片地传播。
这种现象称为旋转脱流。