利用一次函数解决实际问题
运用一次函数解决实际问题教案

一次函数是初中数学学习的一个主要内容,它在数学中是一个非常基础的知识点,但是在现实生活中却具有重要的应用价值。
一次函数的解法能够帮助我们解决许多实际问题,比如求解直线方程、计算速度、距离等。
如何将一次函数的知识点应用到实际问题中,是初中数学学习最为重要的一环,下面将介绍一些教学案例,帮助学生更好地理解和掌握一次函数的应用。
一、直线方程问题:在解决直线方程问题时,一次函数是非常有用的。
比如说,兔子在跑步时,经过起点时速度是20米每秒,然后随着时间推移速度逐渐增加,最后在10秒钟时超过终点,求兔子的速度公式。
首先我们可以使用速度等于距离除以时间的公式:v=d/t。
因为兔子是在一条直线上跑步,所以可以将问题转化为一个直线方程。
在这个例子中,兔子的起点坐标为(0,0),速度为20米每秒,所以直线方程为y=20x。
这个方程描述的是兔子的速度随着时间而变化的过程。
二、距离问题:距离问题也是一次函数非常有效的应用场景。
比如,一个人从起点出发,以10米每秒的速度向前行走,每40秒钟会有一个休息的时间,休息时不计算时间消耗,请计算出这个人在3分钟内行走的距离。
在这个例子中,我们可以将这个问题转化为一个一次函数的形式。
人的速度为10米每秒,因此他每走1秒的距离就是10米,一段时间内走的距离就是这段时间内的秒数*10米,如果这段时间中有多段时间休息,那么可以将这段时间分成多个小段,然后求各小段内的距离总和即可。
因此,这个问题转化成一次函数的形式为f(x)=10x-40*floor(x/40)。
三、速度问题:速度问题也是一次函数的应用场景之一。
比如,在一辆汽车行驶的过程中,它的速度随时间而变化,如果我们知道汽车在某一时刻的速度,可以计算出汽车行驶的距离、时间和最终速度。
在解决速度问题时,我们需要使用以下公式:v=dx/dt,其中v表示速度,d表示距离,t 表示时间。
因为速度是在一条直线上变化的,所以我们可以使用一次函数来描述速度-时间的关系,将速度公式转化为直线方程。
4.5 第1课时 利用一次函数解决实际问题 湘教版数学八年级下册课时习题(含答案)

4.5 一次函数的应用第1课时利用一次比例函数解决实际问题要点感知1函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时第4题图第5题图5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发________小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x(度)0<x≤140(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费M元,小刚家某月用电290度,交电费153元,求M的值.参考答案预习练习1-17.4预习练习2-1 D2-2大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.或8.(1)s=10t(2)9.根据图形可得:甲的速度是=8(米/秒),乙的速度是:=7(米/秒),∴根据题意得:100-×7=12.5(米).当甲跑到终点时,乙落后甲12.5米.答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入,得解得则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=x-7(140<x≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),M=0.75-0.5=0.25.答:M的值为0.25.。
4.4.1一次函数的应用(教案)

3.逻辑推理:引导学生运用一次函数相关知识进行逻辑推理,培养他们分析问题、解决问题的逻辑思维能力。
4.数学抽象:培养学生从实际问题中抽象出数学模型,理解并运用一次函数的概念及其性质。
5.数学表达:通过一次函数图像的绘制和解释,提高学生的数学表达能力,使他们能够清晰、准确地描述数学问题和解答过程。
6.团队合作:鼓励学生在解决问题时进行合作交流,培养他们的团队协作能力和沟通能力。
三、教学难点与重点
1.教学重点
(1)一次函数的定义及其图像特点:y=kx+b(k≠0,k、b为常数),强调k、b的物理意义,斜率k代表直线的倾斜程度,截距b代表直线与y轴的交点。
-通过实例让学生理解k、b在图像中的具体表现,如:当k>0时,图像呈现上升趋势;当k<0时,图像呈现下降趋势;b>0时,图像与y轴正向相交;b<0时,图像与y轴负向相交。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)一次函数在实际问题中的应用:行程问题、价格问题、速度与时间问题等,掌握将实际问题转化为一次函数模型的方法。
-以行程问题为例,讲解如何根据速度和时间计算路程,以及如何利用一次函数图像分析物体的运动状态。
(3)一次函数图像的绘制方法:掌握根据实际问题绘制一次函数图像的步骤,包括确定坐标轴、标定关键点、绘制直线等。
一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。
在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。
一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。
根据斜率的正负,可以判断直线是上升还是下降。
下面我们来看几个具体的例子。
1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。
根据斜率的正值,我们知道这条直线上升。
当x增加1个单位时,y增加2个单位。
当x减小1个单位时,y减小2个单位。
通过这些关系,我们可以画出该函数的函数图像。
2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。
根据斜率的负值,我们知道这条直线下降。
当x增加1个单位时,y减小3个单位。
当x减小1个单位时,y增加3个单位。
同样地,我们可以通过这些关系画出该函数的函数图像。
通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。
这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。
二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。
我们将通过以下两个实际应用问题来说明。
1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。
已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。
我们希望找到销售多少件产品时,公司能够实现盈亏平衡。
根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。
将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。
一次函数解决实际问题典型例题

本次课课堂教学内容 一次函数解决实际问题一、学习目标1、掌握一次函数的图像与性质2、能够运用一次函数的性质解决生活中实际问题二、知识梳理1.正比例函数性质:一般地,形如y=kx(k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 (1) 解析式:y=kx (k 是常数,k ≠0) 必过点:(0,0)、(1,k ) (2) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (3) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (4) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 2.一次函数及性质一般地,形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数k(称为斜率)表示直线y=kx+b (k ≠0)的倾斜程度,b 称为截距 一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(1)解析式:y=kx+b(k 、b 是常数,k ≠0) 必过点:(0,b )和(kb-,0) (2)走向: 依据k 、b 的值分类判断,见下图(3)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(4)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (5)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.(6)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数3.一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.k>0k<04.正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移,).上加下减,左加右减5.直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2 (2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y轴上同一点: b1=b26.待定系数法一般步骤(一设二代三解四还原):(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.7.一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.8.一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.9.一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bcx b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b cx b a +-的图象交点. 10.关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ;三、例题讲解【考点1 一次函数的应用—方案最优化问题】【例1】为促进青少年体育运动的发展,某教育集团需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元. (1)求篮球和足球的单价;(2)根据实际需要,集团决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,若购买篮球x 个,学校购买这批篮球和足球的总费用为y (元),求y 与x 之间的函数关系式;(3)在(2)的条件下,由于集团可用于购买这批篮球和足球的资金最多为10500元,求购买篮球和足球各多少个时,能使总费用y 最小,并求出y 的最小值.【变式1】学校需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价分别为多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若学校购买这批篮球和足球的总费用为W(元),在(2)的条件下,求哪种方案能使总费用W最小,并求出W的最小值.【例2】湖南洞庭湖区盛产稻谷和棉花,销往全国各地,湖边某货运码头,有稻谷和棉花共3000吨,其中稻谷比棉花多500吨.(1)求稻谷和棉花各是多少吨;(2)现有甲、乙两种不同型号的集装箱共58个,将这批稻谷和棉花运往外地,已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在58个集装箱全部使用的情况下,共有几种方案安排使用甲、乙两种集装箱?(3)在(2)的情况下,甲种集装箱每箱收费1000元,乙种集装箱每箱收费1200元,乙种集装箱老板想扩大市场,提出惠民措施:每箱可优惠m元(m<250).问怎么安排集装箱这批货物总运输费最少?【考点2 一次函数的应用—行程问题】【例3】甲车从A地出发匀速驶向B地,到达B地后,立即按原路原速返回A地;乙车从B 地出发沿相同路线匀速驶向A地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A地,两车距各自出发地的路程y千米与甲车行驶时间x小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数.(2)求甲车从B地返回A地的过程中,y与x的函数关系式(不需要写出自变量x的取值范围).(3)直接写出乙车出发多少小时,两车恰好相距80千米.【变式2】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的图象如图所示:(1)根据图象,分别写出y1、y2关于x的关系式(需要写出自变量取值范围);(2)当两车相遇时,求x的值;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.【例4】甲、乙两车同时从A地出发驶向B地.甲车到达B地后立即返回,设甲车离A地的距离为y1(千米),乙车离A地的距离为y2(千米),行驶时间为x(小时),y1,y2与x 的函数关系如图所示.(1)填空:A、B两地相距千米,甲车从B地返回A地的行驶速度是千米/时;(2)当两车行驶7小时后在途中相遇,求点E的坐标;(3)甲车从B地返回A地途中,与乙车相距100千米时,求甲车行驶的时间.【例5】杭州市水厂的水价调整与阶梯式水价改革方案已出台,自2010年9月1日(用水时间)起执行,为鼓励居民节约用水,对居民生活用水实行水费阶梯制(见表).…“一户一表”用水量不超过17立方米超过17立方米且不超过30立方米的部分单价(元/立方米) 2.40 3.35 …小芳家十月份用水x立方米.(1)当x≤17时,小芳家这月付水费多少元?(2)若小芳家这月用水20立方米,应付水费多少元?(3)若小芳家这月付了水费60.9元,她家该月用水多少立方米?【例6】某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤,超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015设超市每天从甲养殖场调运鸡蛋x斤,总运费为W元.(1)超市每天从乙养殖场调运鸡蛋(1200﹣x)斤(用含x的代数式表示).(2)求W与x的函数关系式.(3)如果合理安排调运,可以节省运费,每天最少需总运费2610 元(直接填空).【例7】如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1 B.x<﹣1 C.x≥3 D.x≥﹣1【变式】如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b13<x时,x的取值范围为.四、课堂检测1.小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.y295250=x B.y300250=x C.y295250=x+5 D.y300250=x+52.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点 B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等 D.从出发到13.7秒的时间段内,乙队的速度慢3.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4 B.y=x+4 C.y=x+8 D.y=﹣x+84.某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15 B.9:20 C.9:25 D.9:305.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.46.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.7.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.8.某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:项目空调彩电进价(月/台)5400 3500售价(月/台)6100 3900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?9.快车和慢车分别从甲、乙两地同时出发,匀速相向而行,快车到达乙地后,慢车继续前行,设出发x小时后,两车相距y千米,图中折线表示从两车出发至慢车到达甲地的过程中y 与x之间的函数关系式,根据图中信息,解答下列问题.(1)甲、乙两地相距千米,快车从甲地到乙地所用的时间是小时;(2)求线段PQ的函数解析式(写出自变量取值范围),并说明点Q的实际意义.(3)求快车和慢车的速度.本次课课后练习1.一次函数y 1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2 C.b1>b2D.当x=5时,y1>y22.如图所示,直线l1:y32=x+6与直线l2:y52=-x﹣2交于点P(﹣2,3),不等式32x+6 52->x﹣2的解集是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣23.等腰三角形周长为20cm,底边长y cm与腰长x cm之间的函数关系是()A.y=20﹣2x B.y=20﹣2x(5<x<10)C.y=10﹣0.5x D.y=10﹣0.5x(10<x<20)4.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是.5.如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.6.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05 mL.若小明同学在洗手时,没有把水龙头拧紧,当小明离开xh后水龙头滴了ymL水,则y与x之间的函数关系式为_______.7.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.8.某农产品店利用网络将优质土特产销往全国,其中销售的核桃和花生这两种商品的相关信息如下表.根据下表提供的信息,解答下列问题:商品核桃花生规格1kg/袋2kg/袋利润10元/袋8元/袋(1)已知今年上半年,该店销售上表规格的核桃和花生共3000kg,获得利润21000元,求上半年该店销售这种规格的核桃和花生各多少袋?(2)根据之前的销售情况,估计今年下半年,该店还能销售上表规格的核桃和花生共2000kg,其中,核桃的销售量不低于600kg.假设今年下半年,销售上表规格的核桃为x(kg),销售上表规格的核桃和花生获得的总利润为W(元),写出W与x之的函数关系式,并求下半年该店销售这种规格的核桃和花生至少获得的总利润.9.2019年元旦期间,某商场打出促销广告,如表所示:优惠条件一次性购物不超过200元一次性购物超过200元优惠办法一律按九折优惠其中200元仍按九折优惠超过200元部分按八折优惠小颖一次性购物x元,实际付款y元(1)写出y与x之间的函数关系式及自变量x的取值范围;(2)这次购物小颖实际付款196元,问:所购物品的原价是多少元?10.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.。
八年级数学下册《利用一次函数解决实际问题》教案、教学设计

(3)采用启发式教学法,引导学生通过观察、分析、归纳,发现一次函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:以生活中的一次函数实例引入新课,让学生感受到数学与生活的紧密联系;
(2)探究:引导学生通过小组讨论、自主探究,从实际问题中抽象出一次函数关系;
3.探究性作业:鼓励学生自主探究一次函数的性质,发现规律,提高学生的探究能力和创新意识。
例题:研究一次函数y=kx+b(k、b为常数,且k≠0)的图像,探讨k、b的取值对图像的影响。
4.小组合作作业:安排一些需要团队合作完成的作业,培养学生的团队协作能力和沟通能力。
例题:小组合作设计一个一次函数应用实例,并撰写解题报告,分析解题过程。
3.一次函数在实际问题中的求解方法。
总之,在本节课的教学过程中,我将注重启发式教学、分层教学和师生互动,努力提高学生的学习兴趣和积极性,确保教学目标的实现。
五、作业布置
为了巩固本章节所学知识,检验学生对一次函数的理解和应用能力,我设计了以下几类作业:
1.基础知识巩固题:包括一次函数的定义、性质、图像等方面的练习,旨在帮助学生巩固一次函数的基本概念。
例题:已知一次函数y=2x+3,求该函数的斜率和截距。
2.实际问题应用题:设计一些与生活息息相关的问题,让学生运用一次函数知识解决,提高学生解决实际问题的能力。
例题:某商店进行打折促销活动,原价为100元的商品,每增加1元,折扣力度增加0.01。请列出商品价格与折扣力度之间的关系,并计算在哪个价格区间购买最划算。
(三)情感态度与价值观
1.增强数学在实际生活中的应用意识,认识到数学知识在解决实际问题中的重要性;
一次函数解决实际问题的步骤

一次函数解决实际问题的步骤
解决实际问题时,我们需要对一次函数进行彻底理解和正确运用。
首先,需要将实际问题抽象化,找出问题中的自变量和因变量,它们之间的关系就是一次函数的关系。
其实,自变量和因变量就是我们生活、工作中常说的“因素”和“结果”,二者之间的函数关系就是我们常说的“原因和结果”。
一次函数的解决步骤分为以下几个阶段:
一、抽象化。
将实际问题抽象成数学模型。
这一步主要是识别相关的变量,并将它们形式化。
经过抽象处理后的问题,表述方式更为精确,便于详细分析。
二、建立函数方程。
分析问题,找出变量之间的关系,建立一次函数关系式。
这个公式就是我们的数学模型,帮助我们理解问题并找到解决方案。
三、解出函数。
使用相关知识,如一次函数的性质、解法等,求出一次函数的解。
四、根据获取的结果,将其转化为实际问题中的答案。
这就是将数学模型的解转化回实际语境的过程。
五、验证结果。
对于解决实际问题,我们需要检验解决方案是否可行。
将结果带入原问题中,看是否能得到合理的解答。
六、总结经验。
回顾并掌握解决问题的过程和方法,为解决类似问题积累经验。
这就是解决实际问题的一次函数步骤,希望大家能通关实践,熟练掌握这些步骤,更好的运用一次函数解决实际问题。
初中数学知识点总结:利用一次函数解决实际问题

知识点总结
应用一次函数知识解决最值问题
一次函数中的自变量取值范围是全体实数,其图象是一条直线,所以此函数既没有最大值,也没有最小值,但由于在实际问题中,所列函数表达式中自变量往往有一定的限制,故就有了最大或最小值,在求函数最值时,就先求出函数表达式,并确定出增减性,再根据题目条件确定出自变量的取值范围,然后结合增减性确定出最大值或最小值。
常见考法
(1)根据图象获取信息解决问题;
(2)设计一个方案,比较哪个方案更优。
误区提醒
(1)不能正确的建立一次函数模型;
(2)忽视变量的实际意义。
【典型例题】(2010辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、分段函数问题 6.(2018·南京中考)小明从家出发,沿一条直道跑步, 经过一段时间原路返回,刚好在第16min回到家中. 设小明出发第tmin时的速度为vm/min,离家的距离为 sm,v与t之间的函数关系如 图所示(图中的空心圈表示 不包含这一点).
(1)小明出发第2min时离家的距离为 200 m; (2)当2<t≤5时,求s与t之间的函数表达式; 解:(2)当2<t≤5时,s=100 ×2+160(t-2)=160t-120. 故s与t之间的函数表达式为 s=160t-120(2<t≤5).
(3)画出s与t之间的函数图象. 解:(3)当0≤t≤2时,s=100t; 设小明第amin时开始返回, 则5<t≤a时,s=80(t-5)+ 160×5-120=80t+280, ∴80a+280=80×(16-a),解得a=6.25.当6.25<t≤16 时,s=80×6.25+280-80(t-6.25)=1280-80t.
解析:设y甲=kx,把(2000, 1600)代入,得2000k=1600, 解得k=0.8,∴y甲=0.8x. 当0<x<2000时,设y乙=ax,
把(2000,2000)代入,得2000k=2000,解得k=1, ∴y乙=x.当x≥2000时,设y乙=mx+n,把(2000,2000), (4000,3400)代入,
解题技巧专题:利用一次函数 解决实际问题
——明确不同类型的图象的端点、折点、交点等的意义
类型一 费用类问
1.(2018·无锡中考)一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以 往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果 店每售出1kg该水果可获利润10元,未售出的部分每kg将亏损6元,以x(单位:kg, 2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所 获得的利润. (1)求y关于x的函数表达式; 2)当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少 于22000元?
(1)暂停排水需要多少时间?排水孔的排水速度是多少? 解:(1)暂停排水需要的时间为 2-1.5=0.5(h). ∵排水时间为3.5-0.5=3(h), 一共排水900m3, ∴排水孔的排水速度是900÷3=300(m3/h).
(2)当2≤t≤3.5时,求Q关于t的函数解析式. 解:(2)当2≤t≤3.5时,设Q关于t的函数解析式为Q=kt +b,易知图象过点(3.5,0). ∵当t=1.5时,排水300×1.5=450 (m3),此时Q=900-450=450, ∴点(2,450)在直线Q=kt+b上. 把(2,450),(3.5,0)代入Q=kt+b,
二、分段函数问题 8.根据卫生防疫部门的要求,游泳池必须定期换水、清 洗.某游泳池周五早上8:00打开排水孔开始排水,排水 孔的排水速度保持不变,期间因清洗游泳池需要暂停排水, 游泳池的水在11:30全部排完.游 泳池内的水量Q(m3答下列问题:
三、两个一次函数图象结合的问题 3.(2018·金华中考)某通讯公司就上宽带网推出A,B, C三种月收费方式.这三种收费 方式每月所需的费用y(元)与上 网时间x(h)的函数关系如图所示,
则下列判断错误的是( D ) A.每月上网时间不足25h时,选 择A方式最省钱 B.每月上网费用为60元时,B方 式可上网的时间比A方式多 C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱
(1)表示乙离A地的距离与时间关系的图象是
(填l1
或l2);甲的速度是 30 km/h,乙的速度是 20 km/h;
解析:由题意可知,乙的函数
图象是l2,甲的速度是 =30
(km/h),乙的速度是 =20
(km/h).故答案为l2,30,20.
(2)甲出发多长时间两人恰好相距5km? 解:设甲出发xh两人恰好相距5km. 由题意30x+20(x-0.5)+5= 60或30x+20(x-0.5)-5=60, 解得x=1.3或1.5. 答:甲出发1.3h或1.5h两人恰好 相距5km.
四、分类讨论思想 4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两 家农贸商店,平时以同样的价格出售品质相同的小龙虾, “龙虾节”期间,甲、乙两家商店 都让利酬宾,付款金额y甲,y乙 (单位:元)与原价x(单位:元)之 间的函数关系如图所示:
(1)直接写出y甲,y乙关于x的函数关系式;
解:(1)y甲=0.8x,y乙=
二、分段函数问题 2.为更新果树品种,某果园计划新购进A,B两个品 种的果树苗栽植培育,若计划购进这两种果树苗共45 棵,其中A种树苗的单价为7元/棵, 购买B种树苗所需费用y(元)与购买 数量x(棵)之间存在如图所示的函 数关系.
(1)求y与x的函数解析式; 解:(1)当0≤x≤20时,设y与x的函 数解析式为y=ax,把(20,160) 代入y=ax中,得a=8. 即y与x的函数解析式为y=8x; 当x>20时,设y与x的函数解析式为y=kx+b,把(20, 160),(40,288)代入y=kx+b中,
得
解得
∴y乙=
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙 虾更省钱? 解: (2)当0<x<2000时,0.8x <x,到甲商店购买更省钱; 当x≥2000时,若到甲商店购买更 省钱,则0.8x<0.7x+600,解得 x<6000;
类型二 路程类问题
一、两个一次函数图象结合的问题 5.A,B两地相距60km,甲、乙两人从两地出发相向 而行,甲先出发,图中l1,l2 表示两人离A地的距离s(km) 与时间t(h)的关系,请结合图 象解答下列问题:
得
解得 即y与x的函数解析式为y=6.4x+32. 综上所述,y与x的函数解析式为
(2)若在购买计划中,B种树苗的数量不超过35棵,但 不少于A种树苗的数量,请设计购买方案,使总费用 最低,并求出最低费用. 解:(2)∵B种树苗的数量不超过 35棵,但不少于A种树苗的数量,
∴
∴22.5≤x≤35.
类型三 工程类问题
一、两个一次函数图象结合的问题 7.甲、乙两工程队分别同时开挖两条600米长的管道, 所挖管道长度y(米)与挖掘时间 x(天)之间的关系如图所示,
则下列说法中:①甲队每天挖100米;②乙队开挖2天 后,每天挖50米;③甲队比乙队提前3天完成任务; ④当x=2或6时,甲、乙两队 所挖管道长度都相差100米. 正确的有 ①②④ (填序号).