一次函数图像与实际问题
利用一次函数的图像解决实际问题

解法1:
解法2:
①要使y甲=y乙,就是要使
将两函数的图像在同一坐标
3000x=2000x+40000,解得
系中画出,观察图像可知:这两
x=40,即当x=40时,租哪家租金 个函数图像的交点是
都相同.
(40,120000),也就是当x=40时,y
②要使y甲>y乙,就是要使 3000x>2000x+40000,解得 x>40,即当x>40时,租乙家的房 屋更合算. ③要使y甲<y乙,就是要使 3000x<2000x+40000,解得 x<40,即当x<40时,租甲家的房 屋更合算.
(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),
则小芳比预计时间早几分钟到达乙地?
解:(1)由函数图像可以得出小芳家距离 甲地的路程为10 km,花费时间为0.5 h,故 小芳骑车的速度为10÷0.5=20(km/h),
由题意可得出点H的纵坐标为20,横坐标
. 为
41 3 36 2
说明:由此可以看出,有些一元一次方程和一元一次不等式问 题,可以借助一次函数来考虑,借助一次函数的图像,往往能 使方程和不等式的意义更加直观和形象.
活动2 一起探究 某电脑工程师张先生准备开一家小型电脑公司,欲租一处临街房屋,现 有甲、乙两家出租屋,甲家已经装修好,每月租金为3000元;乙家未装修,每月 租金为2000元,但若装修成与甲家房屋同样的规格,则需要花装修费4万元. (1)设租用时间为x个月,承租房屋所付租金为y元,分别求租用甲、乙两家的 租金y与租用时间x之间的函数关系式. (2)根据求出的两个函数表达式,试判断租用哪家的房屋更合算.
设直线EF的解析式为y3=k3x+b3,将点E
一次函数图像练习题及答案

一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基本概念之一,也是初中数学中的重点内容。
掌握一次函数的概念和图像特点,对于解决实际问题和理解其他函数类型都有很大帮助。
在这篇文章中,我将给出一些一次函数图像的练习题及其答案,希望能够帮助读者更好地理解和应用一次函数。
练习题一:已知函数f(x) = 2x + 3,求出函数的图像。
解答一:一次函数的一般形式为y = kx + b,其中k和b分别代表斜率和截距。
根据给定的函数f(x) = 2x + 3,我们可以得知斜率k = 2,截距b = 3。
根据斜率和截距的意义,我们可以得到以下图像特点:1. 斜率k = 2表示每增加1个单位的x,y的值增加2个单位。
2. 截距b = 3表示当x = 0时,y的值为3,即函数的图像与y轴相交于点(0, 3)。
根据上述特点,我们可以画出函数f(x) = 2x + 3的图像。
首先,我们将点(0, 3)标记在坐标系上,然后根据斜率k = 2,我们可以找到另外一个点(1, 5),再连接这两个点,就得到了一次函数的图像。
练习题二:已知函数g(x)的图像如下图所示,请写出函数g(x)的表达式。
解答二:根据给定的函数图像,我们可以得知函数g(x)与x轴相交于点(-2, 0)和(3, 0),并且函数图像在x轴的右侧上升。
根据这些特点,我们可以推测函数g(x)的表达式为g(x) = ax + b。
为了确定a和b的值,我们可以利用已知的两个点(-2, 0)和(3, 0)。
将这两个点的坐标代入函数表达式,可以得到以下方程组:-2a + b = 03a + b = 0解这个方程组,我们可以得到a = 0,b = 0。
因此,函数g(x)的表达式为g(x) = 0。
练习题三:已知函数h(x)的图像如下图所示,请写出函数h(x)的表达式。
解答三:根据给定的函数图像,我们可以观察到函数h(x)与x轴相交于点(0, -3),并且函数图像在x轴的右侧下降。
几何直观在解决一次函数实际问题中的应用分析

几何直观在解决一次函数实际问题中的应用分析一次函数是数学中的基础概念,也是我们日常生活中经常会遇到的数学概念。
它在解决实际问题中有着重要的应用价值,而几何直观则是一种直观的解决问题的思维方式。
本文将从几何直观的角度出发,分析一次函数在解决实际问题中的应用。
一、什么是一次函数一次函数是指函数y = kx + b,其中k和b为常数,x为自变量,y为因变量。
一次函数的图像通常是一条直线,因此也被称为线性函数。
一次函数在数学中有着广泛的应用,从代数求解到几何问题都离不开一次函数的概念。
二、一次函数在实际问题中的应用1.物体运动的描述一次函数可以用来描述物体的运动情况。
假设一个物体以匀速直线运动,我们可以用一次函数来描述其位置随时间的变化。
设物体在t时刻的位置为S(t),速度为v,则S(t) = vt + S0,其中S0为物体在t=0时刻的位置。
这就是一个典型的一次函数应用,通过一次函数来描述物体的运动情况,这种描述方法在物理学和工程学中有着广泛的应用。
2.成本与产量的关系在经济学中,我们通常会用一次函数来描述成本与产量之间的关系。
假设生产某种产品的成本与产量之间存在线性关系,我们可以用一次函数来描述这种关系。
设产量为x,成本为C,则C(x) = kx + b,其中k为单位产量成本,b为固定成本。
通过分析这个一次函数,我们可以得到成本与产量之间的关系,从而帮助企业决策。
3.直线的建模在工程学和物理学中,我们常常需要对各种物理现象进行建模,而直线是一种简单而常见的模型。
通过建立一次函数的数学模型,我们可以对各种物理现象进行数学分析和预测。
用一次函数来描述线性传感器的输出与输入之间的关系,用一次函数来描述材料的应力与应变之间的关系等等。
几何直观是一种直观的解决问题的思维方式,通过观察、图形和几何关系来理解和解决问题。
在解决一次函数实际问题中,几何直观可以帮助我们更直观地理解和解决问题,从而更好地应用一次函数。
一次函数图象的应用课件

目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。
在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。
一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。
根据斜率的正负,可以判断直线是上升还是下降。
下面我们来看几个具体的例子。
1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。
根据斜率的正值,我们知道这条直线上升。
当x增加1个单位时,y增加2个单位。
当x减小1个单位时,y减小2个单位。
通过这些关系,我们可以画出该函数的函数图像。
2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。
根据斜率的负值,我们知道这条直线下降。
当x增加1个单位时,y减小3个单位。
当x减小1个单位时,y增加3个单位。
同样地,我们可以通过这些关系画出该函数的函数图像。
通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。
这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。
二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。
我们将通过以下两个实际应用问题来说明。
1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。
已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。
我们希望找到销售多少件产品时,公司能够实现盈亏平衡。
根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。
将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。
初中数学《一次函数的图像》典型例题及答案解析

【答案】B
【解析】
由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为5、15、25、35、45等等,所以观察备选答案B错误.故选B.
15.下表是弹簧挂重后的总长度L(cm)与所挂物体重量x(kg)之间的几个对应值,则可以推测L与x之间的关系式是()
【解析】
【分析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】
分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y= AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
初中数学《一次函数的图像》典型例题及答案解析
1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:
m
1
2
3
4
v
0.01
2.9
8.03
15.1
则m与v之间的关系最接近于下列各关系式中的( )
A.v=2m-1B.v=m2-1C.v=3m-3D.v=m+1
【答案】B
【解析】
【分析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故D正确;
故选:D.
【点睛】
本题考查的是函数图像,熟练掌握图像是解题的关键.
9.函数y= 的图象为( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分x 0和x 两种情况去掉绝对值符号,再根据解析式进行分析即可。
一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
借助两个一次函数图像解决简单实际问题 北师大版数学八年级上册

2.(安徽·中考)甲、乙两人准备在一段长为1200 m的笔直 公路上进行跑步,甲、乙跑步的速度分别为4 m/s和 6 m/s,起跑前乙在起点,甲在乙前面100 m处,若同时起 跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙 两人之间的距离y(m)与时间t(s)的函数图象是( )
选C.设乙追上甲用x s,则6x-4x=100,x=50,乙跑完 全程用时1200÷6=200(s).
s/n mile 10 8 6 4
2
0
24
P l2
A l1
B
t/min
6 8 10 12 14 16
(6) l1与 l2对应的两个一次函数s=k1t+b1与 s=k2t+b2中,k1,k2的实际意义各是什么?可疑 船只A与快艇B的速度各是多少?
k1表.2 n mile/min, 快艇B的速度是0.5 n mile/min
1、从两个函数图象获取信息的方法是各个击破
2、从函数图象中获取信息的关键是找到关键点 (图象与坐标轴交点,已知点,两个函数图象交 点) 3、能理解一次函数y=kx+b中,k和b的实际意义
1.甲、乙两商店销售同一种产品的销售价y(元)与销售量x (件)之间的图象如图所示.下列说法:①买2件甲、乙两家 销售价一样;②买1件买乙家的合算;③买3件买甲家的合 算;④买乙家的1件销售价约为3元,其中正确的说法是 (D) A.①② B.②③④ C.②③ D.①②③
通过本课时的学习,需要我们掌握:
1.通过函数图象获取信息,发展形 象思维.
2.利用函数图象解决简单的实际问 题,发展数学的应用能力.
作业布置:
1、《名校课堂》61、62页
课堂小结(1分钟)
1、 通过关键点确定对应的函数关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调
进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资调出的速度(吨/小时)及从开始调进到全部调出所需要的时间是()A.10,10 B.25,8.8 C.10,8.8 D.25,9
2、一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打
开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过________分钟,容器中的水恰好放完.
3、设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.
4、一条笔直的公路上依次有B、A、C三地,BC两地相距300千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地,甲、乙两车到A地的距离y1、y2(千米)与行驶时间t(时)的关系如图所示,则甲、乙两车相遇时离A地的距离为千米.
5、甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距y甲(千米),乙与学校相离y乙(千米),甲离开学校的时间为x(分钟).y甲、y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)电动车的速度为千米/分钟;
(2)甲步行所用的时间为分;
(3)求乙返回到学校时,甲与学校相距多远?
6、甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.
7、在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地之间的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实
际意义;
(3)若两人之间保持的距离不超过3km时,能够用
无线对讲机保持联系,请直接写出甲、乙两人能够用
无线对讲机保持联系时x的取值范围.。