利用一次函数图象解决实际问题专项训练(含答案)

合集下载

4.5 第1课时 利用一次函数解决实际问题 湘教版数学八年级下册课时习题(含答案)

4.5 第1课时 利用一次函数解决实际问题 湘教版数学八年级下册课时习题(含答案)

4.5 一次函数的应用第1课时利用一次比例函数解决实际问题要点感知1函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时第4题图第5题图5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发________小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x(度)0<x≤140(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费M元,小刚家某月用电290度,交电费153元,求M的值.参考答案预习练习1-17.4预习练习2-1 D2-2大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.或8.(1)s=10t(2)9.根据图形可得:甲的速度是=8(米/秒),乙的速度是:=7(米/秒),∴根据题意得:100-×7=12.5(米).当甲跑到终点时,乙落后甲12.5米.答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入,得解得则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=x-7(140<x≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),M=0.75-0.5=0.25.答:M的值为0.25.。

一次函数的图象专题练习题(最新版) 含答案

一次函数的图象专题练习题(最新版) 含答案

一次函数的图象专题练习题1.画函数图象的方法.可以概括为_______,__ __,__ __三步,通常称为__ __.2.如果点M 在函数y =x -1的图象上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)3.(1)若点A(a ,-3)在函数y =-3x的图象上,则a =____; (2)下列各点M (1,2),N (3,32),P (1,-1),Q (-2,-4)中,在函数y =2x x +1的图象上的点是__________. 4. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( )5. 小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )6. 某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分7. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()8. 李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程s(米)与所用时间t(分)之间的关系如图所示.(1)求a,b,c的值;(2)求李老师从学校到家的总时间.9. 如果两个变量x,y之间的函数关系如图,则函数值y的取值范围是() A.-3≤y≤3 B.0≤y≤2C.1≤y≤3 D.0≤y≤310. 如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度11. 甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.112. 有一个水箱,它的容积是500升,水箱内原有水200升,现需将水箱注满,已知每分钟注入水10升.(1)写出水箱内水量Q(升)与时间t(分)的函数关系式;(2)求自变量t的取值范围;(3)画出函数的图象.13.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()14. 如图①,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为____cm,匀速注水的水流速度为____cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.答案:1. 描点 连线 描点法2. C3. (1) 1 (2) 点N4. D5. B6. B7. A8. (1)李老师停留地点离他家路程为:2000-900=1100(米),900÷45=20(分).a =20,b =1100,c =20+30=50 (2)20+30+1100110=60(分).答:李老师从学校到家共用60分钟 9. D10. C11. B 点拨:①②④正确12. (1)Q =200+10t (2)令200≤Q≤500,则0≤t≤30 (3)图略13. B14. (1) 14 5(2) “几何体”下方圆柱的高为a ,则a·(30-15)=18×5,解得a =6,所以“几何体”上方圆柱的高为11 cm-6 cm =5 cm ,设“几何体”上方圆柱的底面积为S cm 2,根据题意得5(30-S )=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24 cm 2。

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)姓名:___________班级:___________考号:___________1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,图中的折线表示两车之间距离()kmy与慢车行驶时间()h x之间的函数关系图象,请根据图象提供的信息回答:(1)快车的速度是______km/h.(2)求线段BC所表示的函数关系式.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,直接写出第二列快车出发多长时间与慢车相距200km.2.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中12,分别表示甲、乙l l两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)求点A的坐标,并说明其实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系(图3)中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.3.快车甲和慢车乙分别从A、B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及A、B两站间的距离;(2)求快车从B返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.4.甲、乙两人从相距4千米的两地同时、同向出发,乙每小时走4千米,小狗随甲一起同向出发,小狗追上乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直匀速跑下去.如图,折线A B C--,A D E--分别表示甲、小狗在行进过程中,y与甲行进时间x(h)之间的部分函数图象.离乙的路程()km(1)求AB所在直线的函数解析式;(2)小狗的速度为______km/h;求点E的坐标;(3) 小狗从出发到它折返后第一次与甲相遇的过程中,求x为何值时,它离乙的路程与离甲的路程相等?5.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米).图中的折线表示y与x之间的函数关系图像.求:(1)甲、乙两地相距______千米;(2)求动车和普通列车的速度;(3)求C点坐标和直线CD解析式;(4)求普通列车行驶多少小时后,两车相距1000千米.6.甲、乙两车分别从A,B两地同时出发,匀速行驶,先相向而行.途中乙车因故停留1小时,然后以原速继续向A地行驶,甲车到达B地后,立即按原路原速返回A地(甲车掉头的时间忽略不计),到达A地后停止行驶,原地休息;甲、乙两车距B地的路程y(千米)与所用时间x (时)之间的函数图象如图,请结合图象信息解答下列问题:(1)乙车的速度为千米/时,在图中的()内应填上的数是.(2)求甲车从B地返回A地的过程中,y与x的函数关系式.(3)两车出发后几小时相距120千米,请直接写出答案:时.7.甲、乙两人从A地前往B地,先到终点的人在原地休息.已知甲先出发30s后,乙才出发.在运动过程中,甲、乙两人离A地的距离分别为1y(单位:m)、2y(单位:m),都是甲出发时间x(单位:s)的函数,它们的图象如图①.设甲的速度为1v m/s,乙的速度为2v m/s.(1)12:v v=______,=a______;(2)求2y与x之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s(单位:m)与甲出发时间x(单位:s)之间的函数图象.8.小明从学校出发,匀速骑行前往距离学校2400米的图书馆,小明出发的同时,同学小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,两人距离学校的路程y(单位:米)与小明从学校出发的时间x(单位:分钟)的函数图象如图所示.(1)点C的坐标为_________;(2)求直线BC的表达式;(3)若小明在图书馆停留7分钟后沿原路按原速返回,请补全小明距离学校的路程y与x的函数图象;(4)在(3)的基础上,小明能否在返校途中追上小阳?若能,请计算此时两人与学校之间的距离;若不能,请说明理由.9.如图,已知:平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点A(﹣2,﹣2),点B是第二象限内一点,且点B的横、纵坐标分别是一元二次方程x2﹣36=0的两个根.过点B作BC⊥x轴于点C.(1)直接写出k的值和点B的坐标:k=;B(,);(2)点P从点C出发,以每秒1个单位长度的速度沿x轴向右运动,设运动时间为t,若△BPO 的面积是S,试求出S关于t的函数解析式(直接写出t的取值范围)(3)在(2)的条件下,当S=6时,以PQ为一边向直线PQ下方作正方形PQRS,求点R 的坐标.10.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.根据图像回答下列问题:(1)乙车行驶小时追上了甲车.(2)乙车的速度是;(3)m=;(4)点H的坐标是;(5)n=.11.已知矩形ABCD中,AB=4米,BC=6米,E为BC中点,动点P以2米/秒的速度从A 出发,沿着△AED的边,按照A→E→D→A顺序环行一周,设P从A出发经过x秒后,△ABP 的面积为y(平方米),求y与x间的函数关系式.12.某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB 上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.(1)请直接写出:当x=20时,y的值为_________;当x=40时,y的值为________;(2)兴趣小组成员发现了y与x的函数关系,并画出了部分函数图像(如图2中的线段OM,但不包括点O,因此点O用空心画出)①请直接写出:a=_______;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;(2)小黄在距离学校多少米处遭遇堵车?从小黄遇到堵车到小吴追上小黄用了多少时间?(3)小吴和小黄何时相距520m?15.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.16.甲乙两人沿相同的路线同时登山甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲距地面的高度y(米)与登山时间x(分)之间的函数关系式为:y 甲.(2)若乙提速后,乙的速度是甲登山速度的3倍,登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?答案:21200 430v=15 6v∴=⨯30 a∴=⨯。

一次函数实际应用(带解析)

一次函数实际应用(带解析)

一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

初三数学中考复习《一次函数的应用》专项训练(含答案)

初三数学中考复习《一次函数的应用》专项训练(含答案)

初三数学中考复习 一次函数的应用 专项训练1. 大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广生的业余文化生活,大剧院制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y 与x 的函数关系式;(2)请计算并确定出最节省费用的购票方案.2. 小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元. (1)求y 与x 的函数关系式;(2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的35,那么他的月收入最高能达到多少元?3. 某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.4. 昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?5. 胡老师计划组织朋友暑假去革命圣地两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.6. 科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?7. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5 kg樱桃,请你求出这次快寄的费用是多少元?8. “十一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?9. 由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量;(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x 的范围.10. 周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____km/h,H点坐标为__________________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?11. 根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.12. 小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与小明的步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?13. 某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?14. 某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:A型客车B型客车载客量(人/辆) 45 28租金(元/辆) 400 250经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:车辆数(辆) 载客量(人) 租金(元)A型客车x 45x 400xB型客车13-x ____________ ______________ (2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?15. 为了节约资源,科学指导居民改善居住条件,小强向房管部门提出了一个购买商品房的政策性方案:人均住房面积(平方米) 单价(万元/平方米)不超过30(平方米)部分0.4超过30平方米部分0.9设一个3口之家购买商品房的人均面积为x平方米,缴纳房款y万元.(1)请求出y关于x的函数关系式;(2)若某3口之家欲购买120平方米的商品房,求其应缴纳的房款.16. 保障我国海外维和官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/吨)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案. 参考答案:1. 解:(1)按优惠方案①可得y 1=20×4+(x -4)×5=5x +60(x≥4),按优惠方案②可得y 2=(5x +20×4)×90%=4.5x +72(x≥4) (2)因为y 1-y 2=0.5x -12(x≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24,∴当x =24时,两种优惠方案付款一样多.②当y 1-y 2<0时,得0.5x -12<0,解得x <24,∴4≤x <24时,y 1<y 2,优惠方案①付款较少.③当y 1-y 2>0时,得0.5x -12>0,解得x >24,当x >24时,y 1>y 2,优惠方案②付款较少2. 解:(1)由题意得y =20×4x+12×8×(22-x)+900,即y =-16x +3012 (2)依题意得4x≥35×8×(22-x),∴x≥12.在y =-16x +3012中,∵-16<0,∴y 随x 的增大而减小.∴当x =12时,y 取最大值,此时y =-16×12+3012=2820.答:当小李每月加工A 型服装12天时,月收入最高,可达2820元 3. 解:(1)因为购买大型客车x 辆,所以购买中型客车(20-x)辆.y =62x +40(20-x)=22x +800(2)依题意得20-x <x.解得x >10,∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22×11+800=1042(万元),此时需购买大型客车11辆,中型客车9辆,答:购买大型客车11辆,中型客车9辆时,购车费用最省为1042万元4. 解:(1)设线段AB 所表示的函数关系式为y =kx +b ,依题意有⎩⎪⎨⎪⎧b =192,2k +b =0,解得⎩⎪⎨⎪⎧k =-96,b =192.故线段AB 所表示的函数关系式为:y =-96x +192(0≤x≤2)(2)12+3-(7+6.6)=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=1(小时),3+1=4(时).答:他下午4时到家 5. 解:(1)甲旅行社的总费用:y 甲=640×0.85x=544x ;乙旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x-20)=480x +1920(2)当x =32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社6. 解:(1)设y =kx +b(k≠0),则⎩⎪⎨⎪⎧b =299,2000k +b =235,解得⎩⎪⎨⎪⎧k =-4125,b =299,∴y=-4125x +299(2)当x =1200时,y =-4125×1200+299=260.6(克/立方米),答:该山山顶处的空气含氧量约为260.6克/立方米7. 解:(1)由题意得,当0<x≤1时,y =22+6=28;当x >1时,y =28+10(x-1)=10x +18.∴y=⎩⎪⎨⎪⎧28(0<x≤1)10x +18(x >1)(2)当x =2.5时,y =10×2.5+18=43,∴这次快寄的费用是43元8. 解:(1)设OA 段图象的函数表达式为y =kx ,∵当x =1.5时,y =90,∴1.5k =90,∴k=60,∴y=60x(0≤x≤1.5),∴当x =0.5时,y =60×0.5=30,故他们出发半小时时,离家30千米(2)设AB 段图象的函数表达式为y =k′x+b ,∵A(1.5,90),B(2.5,170)在AB上,∴⎩⎪⎨⎪⎧1.5k′+b =90,2.5k′+b =170,解得⎩⎪⎨⎪⎧k′=80,b =-30,∴y=80x -30(1.5≤x≤2.5) (3)∵当x =2时,y =80×2-30=130,∴170-130=40,故他们出发2小时时,离目的地还有40千米9. 解:(1)设y 1=k 1x +b 1,把(0,1200)和(60,0)代入到y 1=k 1x +b 1,得⎩⎪⎨⎪⎧b 1=1200,60k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-20,b 1=1200.∴y 1=-20x +1200,当x =20时,y 1=-20×20+1200=800(2)设y 2=k 2x +b 2,把(20,0)和(60,1000)代入到y 2=k 2x +b 2中,得⎩⎪⎨⎪⎧20k 2+b 2=0,60k 2+b 2=1000, 解得⎩⎪⎨⎪⎧k 2=25,b 2=-500,∴y 2=25x -500,当0≤x≤20时,y =-20x +1200,当20<x≤60时,y =y 1+y 2=-20x +1200+25x -500=5x +700,y≤900,则5x +700≤900,x≤40,当y 1=900时,900=-20x +1200,x =15,∴发生严重干旱时x 的范围为15≤x≤4010. 解:(1)由函数图象可以得出,小芳家距离甲地的路程为10 km ,花费时间为0.5 h ,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H 的纵坐标为20,横坐标为:43+16=32,故点H 的坐标为(32,20)(2)设直线AB 的解析式为:y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得:y 1=-20x +30,∵AB∥CD,∴设直线CD 的解析式为:y 2=-20x +b 2,将点C(1,20)代入得:b 2=40,故y 2=-20x +40,设直线EF 的解析式为:y 3=k 3x +b 3,将点E(43,30),H(32,20)代入得:k 3=-60,b 3=110,∴y 3=-60x +110,解方程组⎩⎪⎨⎪⎧y =-60x +110,y =-20x +40,得⎩⎪⎨⎪⎧x =1.75,y =5,∴点D 坐标为(1.75,5),30-5=25(km ),所以小芳出发1.75小时候被妈妈追上,此时距家25 km (3)将y =0代入直线CD 的解析式有:-20x +40=0,解得x =2,将y =0代入直线EF 的解析式有:-60x +110=0,解得x =116,2-116=16(h )=10(分钟),故小芳比预计时间早10分钟到达乙地11. 解:(1)暂停排水需要的时间为:2-1.5=0.5(小时).∵排水时间为:3.5-0.5=3(小时),一共排水900 m 3,∴排水孔排水速度是:900÷3=300(m 3/h ) (2)当2≤t≤3.5时,设Q 关于t 的函数表达式为Q =kt +b ,易知图象过点(3.5,0).∵t =1.5时,排水300×1.5=450,此时Q =900-450=450(m 3),∴(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数表达式为Q =-300t +105012. 解:(1)s =⎩⎪⎨⎪⎧ 50t (0≤t≤20),1000(20<t≤30),50t -500(30<t≤60)(2)设小明的爸爸所走的路程s 与小明的步行时间t 的函数关系式为:s =kt +b ,则⎩⎪⎨⎪⎧25k +b =1000,b =250,解得,⎩⎪⎨⎪⎧k =30,b =250,则小明的爸爸所走的路程与小明的步行时间的关系式为:s =30t +250,当50t -500=30t +250,即t =37.5 min 时,小明与爸爸第三次相遇(3)30t +250=2500,解得t =75,则小明的爸爸到达公园需要75 min ,∵小明到达公园需要的时间是60 min ,∴小明希望比爸爸早20 min 到达公园,则小明在步行过程中停留的时间需减少5 min13. 解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180.解得k =90,b =-90.所以y B 关于x 的函数解析式为y B =90x-90(1≤x≤6)(2)设y A 关于x 的解析式为y A =k 1x.根据题意得3k 1=180.解得k 1=60.所以y A =60x.当x =5时,y A =60×5=300(千克);x =6时,y B =90×6-90=450(千克).450-300=150(千克).答:如果A ,B 两种机器人各连续搬运5小时,B 种机器人比A 种机器人多搬运了150千克14. (1) 28(13-x) 250(13-x)(2) 解:设租车的总费用为W 元,则有:W =400x +250(13-x)=150x +3250.由已知得:45x+28(13-x)≥500,解得:x≥8.∵在W=150x+3250中150>0,∴当x=8时,W取最小值,最小值为4450元.故租A型车8辆,B型车5辆时,总的租车费用最低,最低为4450元15. 解:(1)当0≤x≤30时,y=3×0.4x=1.2x;当x>30时,y=3×0.9×(x -30)+3×0.4×30=2.7x-45(2)由题意知:该3口之家人均住房面积为:120÷3=40>30,在y=2.7x-45中,令x=40,则y=2.7×40-45=63.∴应缴纳的房款为63万元16. 解:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80-x)吨,从乙仓库运往A港口的有(100-x)吨,运往B港口的有50-(80-x)=(x-30)吨,所以y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80(2)由(1)得y=-8x+2560,y随x的增大而减少,所以当x=80时总运费最小,当x=80时,y=-8×80+2560=1920,此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运20吨往A港口,乙仓库余下的物资全部运往B港口。

2022-2023学年苏科版八年级数学上册《6-4用一次函数解决问题》解答题专题提升训练(附答案)

2022-2023学年苏科版八年级数学上册《6-4用一次函数解决问题》解答题专题提升训练(附答案)

2022-2023学年苏科版八年级数学上册《6.4用一次函数解决问题》解答题专题提升训练(附答案)1.小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米,小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米),y2(米)与小明出发的时间x(分)的函数关系如图所示.(1)图中a=,b=;(2)小明上山的速度米/分;小明下山的速度米/分;爸爸上山的速度米/分.(3)小明的爸爸下山所用的时间.2.小李、小王两人从学校出发去图书馆,小李步行一段时间后,小王骑电动车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与小李出发时间t(分)之间的函数关系如图所示.(1)请直接写出小李、小王两人的前行速度;(2)请直接写出小李、小王两人前行的路程y1(米),y2(米)与小李出发时间t(分)之间的函数关系式;(3)求小王出发多长时间,两人的路程差为240米.3.小刚家、学校、图书馆依次在一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中,小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图所示.(1)求小刚从图书馆返回家的过程中,y与x之间的关系式;(2)小刚出发35分钟时,他离家有多远?4.如图,甲、乙两人分别从同一公路上的A、B两地同时出发骑车前往c地,两人行驶的路程y(km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A、B两地相距km,乙骑车的速度是km/h;(2)求甲在0≤x≤6的时间段内的函数关系式;(3)在0≤x≤6的时间段内,当x(h)为何值时甲、乙两人相距5千米.5.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)货车的速度是km/h;轿车提速后的速度是km/h;(2)轿车到达乙地后,货车距乙地千米;(3)线段CD对应的函数解析式为;(4)货车从甲地出发后小时与轿车相遇.6.某移动通讯公司开设了两类通讯业务,A类收费标准为不管通话时间多长,使用者都应缴50元月租费,然后每通话1分钟,付0.4元;B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式的费用分别为y A和y B元.(1)分别写出y A,y B与x之间的函数关系式;(2)某人估计一个月内通话时间为300分钟,应选哪种移动通讯方式合算些?请书写计算过程;(3)李师傅用的是A卡,他计算了一下,若是用B卡,他本月的话费将会比现在多100元,请算一下本月李师傅实际的话费是多少元?7.已知A、B两地相距120km,甲、乙两人沿同一条道路从A地到B地.l1、l2分别表示甲、乙两人离开A地的距离S(km)与时间t(h)之间的关系.请根据图象填空:(1)大约在甲出发h后,两人相遇,这时他们离B地km;(2)甲的速度是km/h;乙的速度是km/h;(3)l1对应的表达式为:,l2对应的表达式为:.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.(1)甲车出发小时后,乙车才出发;(2)甲车的速度为km/h,乙车的速度为km/h;(3)甲、乙两车经过小时后第一次相遇;(4)当t为何值时,甲、乙两车相距20千米.(直接写出t的值)9.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,其中,甲为按照次数收费,乙为收取办卡费用以后每次打折收费.设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下列问题.(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)求出入园多少次时,两者花费一样?费用是多少?(3)洋洋爸准备了240元,请问选择哪种划算?10.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?11.某商品共200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨的平均售价及成本如下表:销售方式批发零售储藏后销售售价/(元/吨)300045005500成本/(元/吨)200030003500若经过一段时间,商品按计划全部售出获得的总利润为y(元),其中零售x(吨),且零售量是批发量的一半.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的商品数量最多为80吨,求该生产基地按计划全部售完商品获得的最大利润.12.为了传承中华优秀传统文化,增强文化自信,某中学举办了以“争做时代先锋少年”为主题的演讲比赛,并为获奖的同学颁发奖品.张老师去商店购买甲、乙两种笔记本作为奖品,已知该商店甲种笔记本的单价为5元/个,乙种笔记本的单价为3元/个,张老师准备购买甲、乙两种笔记本共100个.因张老师购买的数量多,实际付款时按原价的九折付款.设张老师购买x个甲种笔记本,购买这两种笔记本所需费用为y元.(1)求y与x之间的关系式;(2)若本次购买甲种笔记本的数量不少于乙种笔记本数量的3倍,为了使所花费用最低,应如何购买?最低费用是多少元?13.“中国海带之乡”霞浦县今年又迎来一个丰收年.某海带养殖专业村为保障养殖户收益,联系了村海带加工厂,收购养殖户每天收割的鲜海带.该加工厂主要以加工干海带和盐渍海带两种方式处理每天收购的30吨鲜海带,工厂现有12名工人,每位工人在同一天中只能选择一种加工方式.若生产干海带,每人每天可加工2吨鲜海带,每吨可获利250元;若加工盐渍海带,每人每天可加工0.6吨鲜海带,每吨可获利600元;每天加工不完的鲜海带直接续给鲍鱼养殖场作饲料.若安排所有的工人都加工干海带,则加工厂当天可获利6300元.(1)求加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利多少元;(2)根据市场销售情况,该加工厂决定生产干海带的人数不超过盐渍海带人数的2倍.问加工厂如何安排工人,可使每天生产的利润最大?最大利润是多少元?14.学校计划组织七年级学生到“万州三峡移民纪念馆”参加“追寻先辈足迹,传承三峡精神”的活动.在此活动中,若每位老师带队14名学生,则还有10名学生没有老师带队;若每位老师带队15名学生,就有一位老师少带6名学生.(1)参加此次活动的老师和学生各多少名?(2)现计划租用两种客车共8辆,一辆甲型客车可以载35人,租金400元,一辆乙型客车可以载30人,租金320元.计划此次活动的租金总费用不超过3000元,学校共有哪几种租车方案?最少租车费用是多少?15.一条笔直的公路上依次有A、B、C三地,甲车从A地驶往C地,乙车从A地驶往B地,两车同时出发并以各自的速度匀速行驶.乙车中途因汽车故障停下来修理,修好后立即以原速的两倍继续前进到达B地;如图是甲、乙两车与A地的距离y(千米)与出发时间x(小时)之间的大致图象.(1)求B、C两地之间的距离;(2)什么时候乙追上甲;(3)当两车相距40千米时,甲车行驶了多长时间.16.复课第一天,马小虎同学从家出发,骑车匀速前往学校上学,出发几分钟后,爸爸发现马小虎的健康卡落在家里,于是骑车沿相同的路线匀速去追马小虎.爸爸刚出发2分钟,马小虎也发现自己健康卡落在家里,立刻原路原速骑车返回,2分钟后马小虎遇到爸爸,爸爸把健康表给马小虎后立即原路原速返家中,马小虎继续原路原速赶往学校.马小虎与爸爸相距的路程y(米)与马小虎出发的时间x(分)之间的关系如图所示(爸爸给马小虎健康卡的时间忽略不计).(1)马小虎出发分钟后,爸爸追上他.(2)求马小虎骑车的速度.(3)若爸爸到家4分钟后,马小虎才到学校,求马小虎家到学校的路程.17.如图,直线与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是3时,求点P的坐标;(3)当点P在线段AB上且△BOP的面积为3时,在x轴上是否存在点Q,使得△OPQ 是以OP为腰的等腰三角形,若存在,请直接写出Q点的坐标,若不存在,请说明理由.18.如图1,在平面直角坐标系中,一次函数y=3x+6分别与x轴和y轴交于点C和点B,已知A(6,0),(1)写出点B,点C的坐标和△ABC的面积;(2)直线l经过A、B两点,求直线AB的解析式;(3)点D是在直线AB上的动点,是否存在动点D,使得?若存在,求出点D的坐标;若不存在,请说明理由;(4)如图2,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变,请求出它的坐标;如果变化,请说明理由.19.如图所示,在平面直角坐标系中,直线y=x+1与y=﹣x+3分别交x轴于点B和点C,点D是直线y=﹣x+3与y轴的交点.(1)求点B、C、D的坐标;(2)设M(x,y)是直线y=x+1上一点,当△BCM的面积为10时,求点M的坐标;(3)线段CD上是否存在点P,使△CBP为等腰三角形,如果存在,直接写出P点的坐标;如果不存在,请说明理由.20.问题提出:如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD ⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数y=x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图3,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.参考答案1.解:(1)由图象可以得到,a=8,b=280,故答案为:8,280;(2)由图象可以得出爸爸上山的速度是:280÷8=35(米/分),小明上山的速度为:400÷8=50(米/分),小明下山的速度是:400÷(24﹣8)=25(米/分),故答案为:50,25,35;(3)∵小明从下山到与爸爸相遇用的时间是:(400﹣280)÷(35+25)=2分,∵小明与爸爸相遇后,和爸爸一起以原下山速度返回出发地,∴小明的爸爸下山所用的时间:24﹣8﹣2=14(分).故答案为:14.2.解:(1)由图象得出小李步行720米,需要9分钟,所以小李的运动速度为:720÷9=80(米/分),当第15分钟时,小王运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴小王的运动速度为:1200÷6=200(米/分);(2)根据题意得y1=80t,y2=200(t﹣9)=200t﹣1800;(3)当相遇前两人的路程差为240米时,得y1﹣y2=240,即80t﹣(200t﹣1800)=240,解得t=13,当相遇前两人的路程差为240米时,得y2﹣y1=240,即(200t﹣1800)﹣80t=240,解得t=17,∴小王出发13分钟或17分钟时,两人的路程差为240米.3.解:(1)由题意得,小刚家与学校的距离为3000m,小刚骑自行车的速度为:(5000﹣3000)÷10=200(m/min),小刚从图书馆返回家的时间:5000÷200=25(min),总时间:25+20=45(min),设小刚从图书馆返回家的过程中,y与x的函数表达式为y=kx+b,把(20,5000),(45,0)代入得:,解得,∴y=﹣200x+9000(20≤x≤45);(2)小刚出发35分钟时,即当x=35时,y=﹣200×35+9000=2000.答:他离家2000m.4.解:(1)由图象可得,A、B两地相距20km,乙骑车的速度是(30﹣20)÷2=10÷2=5(km/h),故答案为:20,5;(2)设甲在0≤x≤6时,y与x之间的函数关系式是y=kx,∵点(6,60)在该函数图象上,∴6k=60,解得k=10,即甲在0≤x≤6时,y与x之间的函数关系式是y=10x;(3)设乙在0≤x≤6时,y与x之间的函数关系式是y=ax+b,∵点(2,30),(6,50)在函数图象上,∴,解得,即乙在0≤x≤6时,y与x之间的函数关系式是y=5x+20;相遇之前两人相距5km,则(5x+20)﹣10x=5,解得x=3;相遇之后且甲到达C地之前相距5km,则10x﹣(5x+20)=5,解得x=5;答:当乙行驶3小时或5小时时甲、乙两人相距5千米.5.解:(1)货车的速度为300÷5=60(km/h);轿车提速后的速度为=110(km/h).故答案为:60,110;(2)从图象上看轿车比货车早0.5h到达乙地,∴轿车到达乙地后,货车距乙地有0.5×60=30(千米),故答案为:30;(3)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5),故答案为:y=110x﹣195;(4)设OA段函数解析式为y=mx,代入A(50,300),得5m=300,解得m=60,∴OA段函数解析式为y=60x;联立方程组,得,解得,故货车从甲地出发后3.9小时与轿车相遇.故答案为:3.9.6.解:(1)由题意可得,y A=0.4x+50,y B=0.6x;(2)当x=300时,y A=0.4×300+50=170,y B=0.6×300=180,∵170<180,∴某人估计一个月内通话时间为300分钟,应选A种移动通讯方式合算些;(3)设本月李师傅实际的话费是a元,,解得a=350,答:本月李师傅实际的话费是350元.7.解:(1)由图象可知,大约在甲出发3﹣2=1(h)后,两人相遇,这时他们离B地120﹣30=90(km);故答案为:1,90;(2)甲的速度是30÷(3﹣2)=30(km/h),乙的速度是30÷3=10(km/h),故答案为:30,10;(3)设l1对应的表达式为s=kt+b,将(3,30),(6,120)代入得:,解得,∴l1对应的表达式为:s=30t﹣60,设l2对应的表达式为s=k't,将(3,30)代入得:30=3k',解得k'=10,∴l2对应的表达式为s=10t,故答案为:s=30t﹣60,s=10t.8.解:(1)由图象可直接得出:甲车出发1小时后,乙车才出发;故答案为:1;(2)由图象可知,甲车的速度为240÷5=48(km/h),乙车的速度为240÷(4﹣1)=80(km/h);故答案为:48;80;(3)甲所在的直线为y=48x,乙所在的直线为:y=80x﹣80,令48x=80x﹣80,解得x=2.5,故答案为:2.5;(4)当乙车开始行驶前,令48x=20,解得x=,符合题意,当甲、乙两车相遇前,48x﹣(80x﹣80)=20,解得x=,符合题意,当甲、乙两车相遇后,80x﹣80﹣48x=20,解得x=,符合题意,当乙到达目的地后,48x+20=240,解得x=,符合题意.∴当t的值为或或或,甲、乙两车相距20千米.9.解:(1)设y甲=k1x,根据题意得4k1=80,解得k1=20,∴y甲=20x;设y乙=k2x+80,根据题意得:12k2+80=200,解得k2=10,∴y乙=10x+80;(2)解方程组解得:,∴出入园8次时,两者花费一样,费用是160元;(3)当y=240时,y甲=20x=240,∴x=12;当y=240时,y乙=10x+80=240,解得x=16;∵12<16,∴选择乙种更合算.10.解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),∴甲车的速度==60(千米/小时);故答案为:4.5;60;(2)设乙开始的速度为v千米/小时,则4v+(7﹣4.5)(v﹣50)=460,解得v=90(千米/小时),∴4v=360,∴D(4,360),E(4.5,360),设直线EF的解析式为y=kx+b,把E(4.5,360),F(7,460)代入得:,解得,∴线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)∵60×=40,∴C(0,40),设线段CF的解析式为y=kx+40,根据题意得:7k+40=460,解得k=60,∴线段CF的解析式为y=60x+40,∵甲乙两车距离不超过10km时,车载通话机可以进行通话,由,解得1≤x≤,由,解得≤x≤7,∴两车在行驶过程中可以通话的总时长为:(﹣1)+(7﹣)=(小时).11.解:(1)设零售x吨,则批发2x吨,储藏后销售(200﹣x﹣2x)吨,根据题意得:y=2x(3000﹣2000)+x(4500﹣3000)+(200﹣3x)(5500﹣3500)=﹣2500x+400000;即y=﹣2500x+400000;(2)∵冷库储藏售出的商品数量最多为80吨,∴200﹣3x≤80,∴x≥40,,∵y=﹣2500x+400000中,﹣2500<0,∴y的值随x的值增大而减小,∴当x=40时,y最大值=﹣2500×40+400000=300000(元);答:该生产基地按计划全部售完商品获得的最大利润为300000元.12.解:(1)设张老师购买x个甲种笔记本,则购买(100﹣x)个乙种笔记本,由题意可得:y=5×0.9x+3×0.9(100﹣x)=1.8x+270.即y与x之间的关系式为y=1.8x+270;(2)由(1)知:y=1.8x+270,∴y随x的增大而增大,∵甲种笔记本的数量不少于乙种笔记本数量的3倍,∴x≥3(100﹣x),解得x≥75.∴当x=75时,y取得最小值,此时y=405,100﹣x=25,答:购买75个甲种笔记本、25个乙种笔记本,所花费用最低,最低费用是405元.13.解:(1)设加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利x元,根据题意得:12×2×250+(30﹣12×2)x=6300,解得x=50,答:加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利50元;(2)设生产盐渍海带的m人,每天生产的利润是w元,则生产干海带的(12﹣m)人,∵生产干海带的人数不超过盐渍海带人数的2倍,∴12﹣m≤2m,解得m≥4,根据题意得:w=0.6m×600+2(12﹣m)×250+50[30﹣0.6m﹣2(12﹣m)]=﹣70m+6300,∵﹣70<0,∴当m=4时,w取最大值,最大值为﹣70×4+6300=6020(元),此时12﹣m=8,答:生产盐渍海带的4人,生产干海带的8人,可使每天生产的利润最大,最大利润是6020元.14.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得.答:参加活动的老师有16人,学生有234人;(2)设租甲种车型n辆,依题意得,解这个不等式组得:2≤n≤5.5,∵n为正整数,∴n=2,3,4,5,即学校共有一下四种租车方案:方案①:2辆甲车,6辆乙车;方案②:3辆甲车,5辆乙车;方案③:4辆甲车,5辆乙车;方案④:5辆甲车,3辆乙车;设租车费用为W元,则W=400n+320(8﹣n)=80n+2560,∵80>0,∴W随n的增大而增大,∴当n=2时费用最低,最少费用为W=160+2560=2720(元).答:学校共有四种租车方案,最少费用为2720元.15.解:(1)乙前面的速度为:100÷2=50(千米/小时),乙后来的速度为:50×2=100(千米/小时),BC=360﹣100﹣100×(4.8﹣2.8)=60(千米),答:B、C两地之间的距离为60千米;(2)甲的速度为:360÷6=60(千米/小时),设乙t小时追上甲,根据题意得60t=100+100(t﹣2.8),解得t=4.5,答:出发后4.5小时乙追上甲;(3)当0<x≤2时,两车距离小于40,①当2<x≤2.8时,设甲距离A地的距离y(千米)与出发时间x(小时)之间的关系式为y=k1x,代入(6,360)可得k1=60,∴y=60x,60x﹣100=40,解得x=;②当2.8<x≤4.8时,由(1)可得,A、B两地之间的距离为:360﹣60=300(km),设乙与A地距离与出发时间x之间的函数关系式为y=k2x+b,代入(2.8,100)和(4.8,300),得,解得,∴y=100x﹣180,解方程100x﹣180﹣60x=40得x=5.2(不合题意,舍去),解方程60x﹣(100x﹣180)=40得x=3.5;③当x>4.8时,解方程60x=360﹣20得x=.答:当两车相距40千米时,甲车行驶了小时或3.5小时或小时.16.解:(1)由题意可知,当y=0时,x=10,所以马小虎出发10分钟后,爸爸追上他.故答案为:10;(2)由题意得,2400÷6=400(米/分钟),即马小虎骑车的速度为400米/分钟;(3)∵由题意可知,相遇4分钟后,爸爸到家,∴相遇后马小虎又骑行了8分钟才到学校,2400+2×400﹣2×400+8×400=5600(米),答:马小虎家到学校的路程为5600米.17.解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,则﹣x+3=0,解得:x=4,∴点A、B的坐标分别是(4,0),(0,3),∴OA=4,OB=3,∴AB===5,∵S△OAB=AB•OM,∴OM=;(2)过P作PC⊥y轴于C,如图1,∴S△BOP=OB•PC=3,∴PC=2,∴点P的横坐标为2或﹣2,∴P(2,)或(﹣2,);(3)存在,理由如下:∵P点在线段AB上,∴P(2,),设Q(x,0),∴OP=,OQ=|x|,PQ=,当OP=OQ时,|x|=,解得x=或x=﹣,∴Q(,0)或(﹣,0);当OP=PQ时,=,解得x=0(舍)或x=4,∴Q(4,0);综上所述:Q点坐标为(,0)或(﹣,0)或(4,0).18.解:(1)对于y=3x+6,令x=0,则y=6,故点B(0,6),令y=3x+6=0,解得:x=﹣2,故点C(﹣2,0);则△ABC的面积=×AC×OB=×(6+2)×6=24;(2)设直线AB的表达式为y=kx+b(k≠0),则,解得:,故直线AB的表达式为y=x+6;(3)存在,理由:∵,∴|y D|=|y B|=3,即|x+6|=3,解得:x=3或9,故点D的坐标为(3,3)或(9,﹣3);(4)K点的位置不发生变化,理由:设点P的坐标为(t,0),过点Q作QH⊥x轴于点H,∵∠BPO+∠QPH=90°,∠PBO+∠BPO=90°,∴∠QPH=∠PBO,在Rt△BOP和Rt△PHQ中,,∴△BOP≌△PHQ(AAS),∴PH=BO=6,QH=OP=t,则点Q的坐标为(t+6,t),设直线AQ的表达式为y=mx+n,则,解得,故点K的坐标为(0,﹣6).19.解:(1)y=x+1中当y=0时,x=﹣1,∴B(﹣1,0),y=﹣x+3中y=0时,则x=4,x=0时,则y=3,∴C(4,0),D(0,3);(2)∵B(﹣1,0),C(4,0),∴BC=5,∵M(x,y),∴S△BCM=×5×|x+1|,∵△BCM的面积为10,∴×5×|x+1|=10,解得x=3或x=﹣5,∴M(3,4)或(﹣5,﹣4);(3)线段CD上存在点P,使△CBP为等腰三角形,理由如下:设P(t,﹣t+3)(0≤t≤4),∴BP=,CP=,当BC=BP时,=5,解得t=4(舍)或t=﹣(舍),∴此时不存在P点满足题意;当BC=CP时,=5,解得t=0或t=8(舍),∴P(0,3);当BP=CP时,=,解得t=,∴P(,);综上所述:P点坐标为(0,3)或(,).20.问题提出:证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥ED,BE⊥ED,∴∠BEC=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△BEC≌CDA(SAS);问题探究:解:过C点作CD⊥x轴交于点D,∵∠BAC=90°,CD⊥x轴,BO⊥x轴,AC=AB,由问题提出可得△CAD≌△ABO(SAS),∴CD=OA,AD=BO,∵y=x+1与x轴交于点A(﹣4,0),与y轴交于点B(0,1),∴AO=4,OB=1,∴C(﹣5,4);问题解决:解:设线段AB绕点A顺时针旋转后的线段为AC,绕A点逆时针旋转后的线段为AD,过点C作CN⊥x轴交于点N,过D点作DM⊥x轴交于点M,∵∠CAB=∠DAB=45°,∴∠CAD=90°,由问题提出可得△ACN≌△DAM(SAS),设C点坐标为(m,n),∴DM=AN,CN=AM,∵OA=1,∴A(﹣1,0),∴D(﹣n﹣1,m+1),∵射线AB与直线y=﹣2x平行,∴直线AB的解析式为y=﹣2x﹣2,连接CD交AB于点E,∵△ACD是等腰直角三角形,∴∠ADC=45°,∵∠BAD=45°,∴∠AED=90°,∴E是CD的中点,∴E(,),∴E点在直线AB上,∴=﹣2•﹣2,整理得n=3m+3,∴直线AC的解析式为y=3x+3,设y=m+1,x=﹣n﹣1,∴﹣x﹣1=3(y﹣1)+3,整理得y=﹣x﹣,∴直线AD的解析式为y=﹣x﹣.。

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)

中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?2.一辆快车从甲地出发驶向乙地,在到达乙地后,立即按原路原速返回到甲地,快车出发一段时间后一辆慢车从甲地驶向乙地,中途因故停车1h后,继续按原速驶向乙地,两车距甲地4的路程kmy与慢车行驶时间()h x之间的函数图象如图所示,请结合图象解答下列问题:(1)甲乙两地相距______km,快车行驶的速度是______ km/h,图中括号内的数值是______ ;(2)求快车从乙地返回甲地的过程中,y与x的函数解析式;(3)慢车出发多长时间,两车相距120km3.甲、乙两地之间是一条直路,王明跑步从甲地往乙地,陈星骑自行车从乙地往甲地,两人同时出发,陈星先到达目的地,设两人的在行进过程中保持匀速,两人之间的距离()km y 与运动时间()h x 的函数关系大致如图所示,请你根据图形进行探究:(1)王明和陈星的速度分别是多少?(2)请写出线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围. 4.某次无人机展演活动中,Ⅰ号无人机从海拔10m 处出发,以12m/min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以()m/min a 的速度匀速上升,经过5min 两架无人机位于同一海拔高度()m b .无人机海拔高度()m y 与时间()min x 的关系如图.两架无人机都上升了15min .(1)求b 的值及Ⅱ号无人机海拔高度()m y 与时间()min x 的关系式; (2)问无人机上升了多少时间,两无人机高度相差32m .5.现有A 、B 两种品牌的共享电动车,收费y (元)与骑行时间(min)x 之间的函数关系如图所示,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y .(1)直接写出A 品牌收费方式对应的函数关系式为 .(2)如果小致每天早上需要骑共享电动车去上班,已知两种品牌共享电动车的平均行驶速度均为30km /h ,小致家到学校的距离为6km ,那么小致选择 (填“A 品牌”或“B 品牌”)的共享电动车更省钱.(3)求出两种收费相差0.5元时x 的值.6.如图,小李和小赵相约去农庄游玩.小李从甲小区骑电动车出发,同时小赵从乙小区开车出发,途中去超市购物,购物后仍按原速继续驶向农庄,甲乙小区、超市和农庄之间的路程如图①所示,图②中线段OD 、BC 分别表示小李、小赵行驶中离甲小区的路程()km s 与出发时间t (分)之间的函数图象(或部分图象).根据图象回答问题:(1)分别求出线段OD 、BC 的函数表达式;(2)请补全小赵离甲小区的路程为()km s 与出发时间t (分)的函数图象,并写出小赵在超市购物,用时______分钟.7.甲、乙两人同时开车从A 地出发,沿同一条道路去B 地,途中都以两种不同的速度1V 与212()V V V >行驶.甲前一半路程以速度1V 匀速行驶,后一半路程以速度2V 匀速行驶;乙前一半时间以速度匀速2V 行驶,后一半时间用以速度1V 匀速行驶.(1)设甲乙两人从A 地到B 地的平均速度分别为V 甲和V 乙,则V =甲___________;___________(V =乙用含1V 、2V 的式子表示).2(1)当04t<≤时,求2v关于t的函数关系式;(2)求图中a的值;(3)小明每次踢球都能使球的速度瞬间增加6m/s,球运动方向不变,当小明带球跑完200m,写出小明踢球次数共有____次,并简要说明理由.10.已知甲、乙、丙三地依次在同一直线上,乙地离甲地260km,丙地离乙地160km.一艘游轮从甲地出发,途经乙地前往丙地.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20km/h,离开甲地的时间记为t(单位:h),两艘轮船离甲地的距离y(单位:km)关于t的图象如图所示(游轮在停靠前后的行驶速度不变).货轮比游轮早2.6h到达丙地.根据相关信息,解答下列问题:(1)填表:游轮离开甲地的时间/h 6 13 16 22 24游轮离甲地的距离/km120 260(2)填空:①游轮在乙地停靠的时长为_______h;②货轮从甲地到丙地所用的时长为_______h,行驶的速度为_______km/h;③游轮从乙地出发时,两艘轮船的距离为_______km.13.我国已取得脱贫攻坚的全面胜利,国家已进入乡村振兴实施阶段,现代物流的高速发展,为乡村振兴的实施提供了良好条件.某物流公司的汽车在市区行驶20km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地,汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,回答下列问题:(1)汽车在乡村道路上行驶的平均速度是______ km/h;(2)求汽车在高速路上行驶的路程y与行驶的时间x之间的函数关系式,并写出自变量x的取值范围;(3)当该物流车行驶到距离出发地120km时,请问该车再过1.5小时能不动达目的地,如果能,写出计算过程;如果不能,直接写出1.5小时后该车离目的地还有多远?14.甲、乙两车分别从相距15km的大连北站和大连广播电视中心同时匀速相向而行.甲车出发10min后,由于交通管制,停止了2min,再出发时速度比原来减少15km/h,并安全到达终点.甲、乙两车距大连北站的路程y(单位:km)与两车行驶时间x(单位:h)的图象如图所示.(1)填空: a______;(2)求乙车距大连北站的路程y与两车行驶时间x的函数解析式,并直接写出自变量x的取值范围;(3)求甲、乙两车相遇时,乙车距大连北站的路程.15.随着疫情的消失,三年的管控使人们的消费和旅游在2023年的“五一”假期得以全面释放.小明和小军分别骑车和驾车从本村出发,沿同一条公路去东门外生态公园游玩.小明骑一段时间后,小军驾车出发,结果半路遭遇堵车,当小明迫上小军后,小军坐小明的自行车一起去生态公园(小军泊车时间忽略不计),如图是小明、小军两人在去生态公园过程中经过的路程()my与小明出发时间()s x之间的函数图像.请结合图像回答:(1)村与公园的距离为______ ,小明骑车速度是______ m/s.(2)小军在离开村多少公里处遭遇堵车?从小军遇到堵车到追上小明用了多长时间?(3)直接写出两人何时相距520m?16.甲、乙两地相距320km,A,B两辆货车同时分别从甲、乙两地相向而行,货车A先出发,一个小时后,货车B也出发,若它们都保持匀速行驶,货车A、货车B距乙地的距离()y km与时x h之间的关系如图所示.间()(1)求货车B距乙地的距离y与时间x的关系式;(2)求货车B到甲地后,货车A还需多长时间到达乙地.参考答案:1.(1)工厂离目的地的路程为880千米 (2)s 关于t 的函数表达式:()80880011s t t =-+≤≤ (3)t 的取值范围是254t ≤≤1522.(1)400,100,7(2)快车从乙地返回甲地的过程中,y 与x 的函数解析式为100400y x =-+ (3)慢车出发1小时或103小时或143小时,两车相距120km3.(1)王明跑步的速度为8km/h ,陈星的速度为16km/h . (2)()24241 1.5y x x =-≤≤ 4.(1)70 830y x =+(2)无人机上升了13min ,两无人机高度相差32m . 5.(1)10.2y x =(2)小明选择A 品牌的共享电动车更省钱 (3)两种收费相差0.5元时,x 的值为15或25;6.(1)线段OD 的函数表达式为()0.5020y x x =≤≤;线段BC 函数表达式为()81218y x x =-≤≤; (2)小赵在超市购物,用时10min . 7.(1)12121222VV V V V V ++,(2)乙(3)①1210050300V V S ===,,,②3.5小时 8.(1)20a = 140b =; (2)2020y x =+甲1550y x =+乙;(3)飞行1分钟或者11分钟时,两架航模飞行高度相差25米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数专项训练专训1.一次函数的两种常见应用名师点金:一次函数的两种常见应用主要体现在解决实际问题和几何问题.能够从函数图象中得到需要的信息,并求出函数解析式从而解决实际问题和几何问题,是一次函数应用价值的体现,这种题型常与一些热点问题结合,考查学生综合分析问题、解决问题的能力.利用函数图象解决实际问题题型1行程问题(第1题)1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论①A,B两城相距300 km;②乙车比甲车晚出发1 h,却早到1 h;③乙车出发后2.5 h追上甲车;④当甲、乙两车相距50 km时,t=54或154.其中正确的结论有( )A.1个B.2个C.3个D.4个2.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.(第2题)题型2工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数解析式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(第3题)题型3实际问题中的分段函数4.某种铂金饰品在甲、乙两个商店销售.甲店标价为477元/g,按标价出售,不优惠;乙店标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商店购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数解析式;(2)李阿姨要买一条质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商店购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数解析式.(第5题)利用一次函数解几何问题题型4利用图象解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?(第6题)题型5利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD 的面积为y.(当点P与点A或D重合时,y=0)(1)写出y与x之间的函数解析式;(2)画出此函数的图象.(第7题)专训2.二元一次方程(组)与一次函数的四种常见应用名师点金:二元一次方程(组)与一次函数的关系很好地体现了“数”与“形”的结合,其常见应用有:利用两条直线的交点坐标确定方程组的解;利用方程(组)的解求两直线的交点坐标;方程组的解与两个一次函数图象位置的关系;利用二元一次方程组求一次函数的解析式.利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2如图所示,则方程组⎩⎪⎨⎪⎧y =-x +4,y =x +2 的解为( )(第1题)A .⎩⎪⎨⎪⎧x =3y =1 B .⎩⎪⎨⎪⎧x =1y =3 C .⎩⎪⎨⎪⎧x =0y =4 D .⎩⎪⎨⎪⎧x =4y =0 2.已知直线y =2x 与y =-x +b 的交点坐标为(1,a),试确定方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图象如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图象;(2)用作图象的方法解方程组⎩⎪⎨⎪⎧x +y =4,2x -y =5; (3)求一次函数y =-x +4与y =2x -5的图象与x 轴所围成的三角形的面积.(第3题)利用方程(组)的解求两直线的交点坐标4.已知方程组⎩⎪⎨⎪⎧-mx +y =n ,ex +y =f 的解为⎩⎪⎨⎪⎧x =4,y =6,则直线y =mx +n 与y =-ex +f 的交点坐标为( )A .(4,6)B .(-4,6)C .(4,-6)D .(-4,-6)5.已知⎩⎪⎨⎪⎧x =3,y =-2和⎩⎪⎨⎪⎧x =2,y =1是二元一次方程ax +by =-3的两个解,则一次函数y =ax +b 的图象与y 轴的交点坐标是( )A .(0,-7)B .(0,4)C .⎝ ⎛⎭⎪⎫0,-37D .⎝ ⎛⎭⎪⎫-37,0 方程组的解与两个一次函数图象位置的关系6.若方程组⎩⎪⎨⎪⎧x +y =2,2x +2y =3没有解,则一次函数y =2-x 与y =32-x 的图象必定( )A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 2有唯一交点,则二元一次方程组⎩⎪⎨⎪⎧a 1x +y =b 1,a 2x -y =-b 2的解的情况是( ) A .无解 B .有唯一解C .有两个解D .有无数解利用二元一次方程组求一次函数的解析式8.已知一次函数y =kx +b 的图象经过点A(1,-1)和B(-1,3),求这个一次函数的解析式.9.已知一次函数y =kx +b 的图象经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数解析式;(2)求直线AB 与坐标轴所围成的三角形BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.答案专训11.B2.解:(1)0.5(2)设线段DE对应的函数解析式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b可得,80=2.5k +b,300=4.5k+b.解得k=110,b=-195.所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数解析式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得,300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数解析式为y=kx,因为当x=6时,y=360,所以k=60.即甲组加工零件的数量y与时间x之间的函数解析式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h时共加工零件100+60×2.8=268(件),所以装满第1箱的时刻在2.8 h 后.设经过x 1 h 装满第1箱.则60x 1+100÷2×2(x 1-2.8)+100=300,解得x 1=3.从x =3到x =4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件),所以x>4.8时,才能装满第2箱,此时只有甲组继续加工. 设装满第1箱后再经过x 2 h 装满第2箱.则60x 2+(4.8-3)×100=300,解得x 2=2.故经过3 h 恰好装满第1箱,再经过2 h 恰好装满第2箱.4.解:(1)y 甲=477x ,y 乙=⎩⎪⎨⎪⎧530x (0≤x ≤3),424x +318(x >3). (2)当477x =424x +318时,解得x =6.即当x =6时,到甲、乙两个商店购买所需费用相同; 当477x<424x +318时,解得x<6,又x ≥4,于是,当4≤x <6时,到甲商店购买合算; 当477x>424x +318时,解得x>6,又x ≤10,于是,当6<x ≤10时,到乙商店购买合算.5.解:(1)当x ≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x ≤10时,y =1.5x.当x =8时,y =1.5×8=12. 故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数解析式为y =2x -5.点拨:本题解题的关键是从图象中找出有用的信息,用待定系数法求出解析式,再解决问题.6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD=12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数解析式为S =90-6t(12≤t ≤15).(3)当0≤t ≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t ≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,三角形APD 的面积为10 cm 2. 7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数解析式不相同,故应分段求出相应的函数解析式.①当点P 在边AB 上运动,即0≤x <3时,y =12×4x =2x ; ②当点P 在边BC 上运动,即3≤x <7时,y =12×4×3=6; ③当点P 在边CD 上运动,即7≤x ≤10时,y =12×4(10-x)=-2x +20. 所以y 与x 之间的函数解析式为y =⎩⎪⎨⎪⎧2x (0≤x <3),6 (3≤x <7),-2x +20 (7≤x ≤10).(2)函数图象如图所示.(第7题)点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数解析式不相同,分段求出相应的函数解析式,再画出相应的函数图象.专训21.B2.解:将(1,a)代入y =2x ,得a =2.所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解是⎩⎪⎨⎪⎧x =1,y =2. 将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3.3.解:(1)画函数y =2x -5的图象如图所示.(2)由图象看出两直线的交点坐标为(3,1),所以方程组的解为⎩⎪⎨⎪⎧x =3,y =1.(第3题)(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 轴的交点坐标为⎝ ⎛⎭⎪⎫52,0,又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×⎪⎪⎪⎪⎪⎪4-52×1=34. 4.A 5.C 6.B 7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =-1,-k +b =3,解得k =-2,b =1, 所以这个一次函数的解析式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图象与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以B ⎝ ⎛⎭⎪⎫34,0,把A(3,-3),B ⎝ ⎛⎭⎪⎫34,0的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧3k +b =-3,34k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =1.则直线AB 对应的函数解析式为y =-43x +1.(2)由(1)知直线AB 对应的函数解析式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1),所以OC =1,又B ⎝ ⎛⎭⎪⎫34,0,所以OB =34.所以S 三角形BOC =12OB·OC=12×34×1=38.即直线AB 与坐标轴所围成的三角形BOC 的面积为38.。

相关文档
最新文档