一次函数解决实际问题—销售问题教案(PDF版)

合集下载

运用一次函数解决实际问题教案

运用一次函数解决实际问题教案

一次函数是初中数学学习的一个主要内容,它在数学中是一个非常基础的知识点,但是在现实生活中却具有重要的应用价值。

一次函数的解法能够帮助我们解决许多实际问题,比如求解直线方程、计算速度、距离等。

如何将一次函数的知识点应用到实际问题中,是初中数学学习最为重要的一环,下面将介绍一些教学案例,帮助学生更好地理解和掌握一次函数的应用。

一、直线方程问题:在解决直线方程问题时,一次函数是非常有用的。

比如说,兔子在跑步时,经过起点时速度是20米每秒,然后随着时间推移速度逐渐增加,最后在10秒钟时超过终点,求兔子的速度公式。

首先我们可以使用速度等于距离除以时间的公式:v=d/t。

因为兔子是在一条直线上跑步,所以可以将问题转化为一个直线方程。

在这个例子中,兔子的起点坐标为(0,0),速度为20米每秒,所以直线方程为y=20x。

这个方程描述的是兔子的速度随着时间而变化的过程。

二、距离问题:距离问题也是一次函数非常有效的应用场景。

比如,一个人从起点出发,以10米每秒的速度向前行走,每40秒钟会有一个休息的时间,休息时不计算时间消耗,请计算出这个人在3分钟内行走的距离。

在这个例子中,我们可以将这个问题转化为一个一次函数的形式。

人的速度为10米每秒,因此他每走1秒的距离就是10米,一段时间内走的距离就是这段时间内的秒数*10米,如果这段时间中有多段时间休息,那么可以将这段时间分成多个小段,然后求各小段内的距离总和即可。

因此,这个问题转化成一次函数的形式为f(x)=10x-40*floor(x/40)。

三、速度问题:速度问题也是一次函数的应用场景之一。

比如,在一辆汽车行驶的过程中,它的速度随时间而变化,如果我们知道汽车在某一时刻的速度,可以计算出汽车行驶的距离、时间和最终速度。

在解决速度问题时,我们需要使用以下公式:v=dx/dt,其中v表示速度,d表示距离,t 表示时间。

因为速度是在一条直线上变化的,所以我们可以使用一次函数来描述速度-时间的关系,将速度公式转化为直线方程。

3.4实际问题与一元一次方程销售问题(教案)

3.4实际问题与一元一次方程销售问题(教案)
3.重点难点解析:在讲授过程中,我会特别强调建立方程模型和求解方程这两个重点。对于难点部分,如含有绝对值和百分比的问题,我会通过具体例题和逐步引导来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与销售问题相关的实际问题,如折扣、促销等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过计算实际商品的价格,来演示如何应用一元一次方程。
2.学会运用一元一次方程解决销售问题,提高解决实际问题的能力。
-利用一元一次方程解决售价、进价、利润等问题。
-举例:某商品进价60元,售价80元,问销售商每卖出一件商品能获得多少利润?
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提高数学应用意识。
-能够从销售问题中抽象出一元一次方程模型,理解数学与生活的紧密联系。
我也发现,在小组讨论环节,学生们能够相互启发,共同解决问题。他们通过合作,不仅加深了对一元一次方程的理解,还提高了团队协作能力。不过,我也观察到个别学生在讨论中不够积极,我需要在以后的课堂中更加关注这部分学生,鼓励他们大胆发表自己的观点。
在实践活动环节,学生对实验操作表现出很高的热情,但我也发现他们在计算过程中还存在一些细节上的错误。这提醒我,在今后的教学中,除了教授理论知识,还应加强对学生数学运算能力的培养,特别是对于百分比、小数点后的处理等基础运算。
1.理论介绍:首先,我们要了解一元一次方程在销售问题中的基本概念。一元一次方程是表示两个数量之间线性关系的数学表达式,它在解决销售问题中起着关键作用。它是我们分析销售情况、计算利润和定价的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设某商品原价为x元,打8折后的售价为0.8x元,我们将通过建立一元一次方程来求解折后价格。

《6.4 用一次函数解决问题(2)》教学设计-优秀教案

《6.4  用一次函数解决问题(2)》教学设计-优秀教案

6.4 用一次函数解决问题(2)教学设计教材:义务教育教科书·数学(八年级上册)一、选择更优惠的商品问题1甲、乙两家公司的月出租汽车收取的月租费分别是y1(元)和y2(元),它们都是用车里程x(千米)的函数,图象如图所示.发布任务卡一:1.活动内容:结合情境和图像,设计一个问题,并解答;2.活动要求:小组成员合作完成任务,并指定发言人展示活动成果;3.活动时间:3分钟.二、选择更便利的交通问题2某蔬菜基地要把一批新鲜蔬菜运往外地,有两种运输方式可供选择,主要参考数据如下:运输方式速度/(千米/时)途中综合费用/ (元/时)装卸费用/ 元汽车60 270 200火车100 240 410(1)请分别写出汽车、火车运输总费用y1(元)、y2(元)与运输路程x(千米)之间的函数表达式.(2)你认为用哪种运输方式好?发布任务卡二:1.活动内容:结合情境和表格中的数据,完成问题(1)和(2);2.活动要求:(1)独立完成问题(1)、(2);(2)小组讨论解决问题(2)的方法;(3)推荐小组发言人上台分享解题思路和方法;3.活动时间:8分钟。

归纳:独立思考:怎样从表格中提取信息?分别写出汽车、火车运输总费用y1(元)、y2(元)与运输路程x(千米)之间的函数表达式,y1=200+4.5x,y2=410+2.4x.根据函数表达式求出函数图像的交点坐标.讨论:(1)x为何值,y1=y2.(2)x为何值,y1>y2.(3)x为何值,y1<y2.通过完成任务卡二,合作讨论、分析探究、寻求结果,在教师指导下顺利完成活动.用表格提供信息是人们常用的方式.由表格中的数据知道,汽车运输的装卸费用低,但途中损耗、管理等综合费用高,运输速度慢,火车运输的装卸费用高,但途中损耗、管理等综合费用低,运输速度快.是否选择火车运输较好?如何决策?这是一个具有挑战性的问题.通过学生的交流活动,使学生明确解决问题的基本思路和方法,是分别计算两种运输方式所需要的费用,然后再对相同的运输里程比较费用的大小.三、选择更适合的情境看图、选故事、讲故事根据图中的函数图像,选择符合x、y变化过程的实际意义的选项.A.当x表示时间(分钟)、y表示路程(千米)时,小明以250米/分钟的速度匀速骑自行车8分钟到达某地;在该地休息了6分钟;然后以200米/分钟的速度匀速骑自行车10分钟返回出发地.B.当x表示时间(秒)、y表示所跑的路程(米)时,小明以2米/秒的速度匀速跑8分钟到达某地;在该地休息了6分钟;然后以2米/分钟的速度匀速跑10分钟返回出发地.C. 2017年、2018年市场鸡蛋的价格,2017年1-8月,每月平均上涨0.25元/千克;2017年9月-2018年2月保持不变;2018年3月-12月平均每月下降0.2元/千克.任务卡三:1.活动内容:看图,讲故事2.活动要求:(1)看图,从三个选项中找出符合图像x、y变化过程的实际意义的选项;(2)小组合作,寻找其他符合x、y的变化过程的实际意义;3.活动时间:6分钟.解:选A、C学生合作,根据图像说出x、y变化过程的另一种实际意义的故事.本题由前面问题中实际背景(函数图像)到函数表达式上升到了“函数图像”到“函数表达式”再到“实际背景”中,对于学生是个挑战,让学生充分讨论交流并表达.三、过关斩将练习:1、如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是()A.①② B.②③④C.②③ D.①②③学生充分思考,小组交流、讨论,教师适时指点.通过完成三个任务卡,学生已经会通过图像找到交点,进一步确定自变量的范围的方法.三道习题让学生充分思考,尝试解答,达到了复习巩固的目的.也进一步体会,解决此类问题,就是要将实际问题转化为已经研讨。

八年级数学下册《利用一次函数解决实际问题》教案、教学设计

八年级数学下册《利用一次函数解决实际问题》教案、教学设计
(2)运用任务驱动法,设计具有挑战性的任务,激发学生的探究欲望;
(3)采用启发式教学法,引导学生通过观察、分析、归纳,发现一次函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:以生活中的一次函数实例引入新课,让学生感受到数学与生活的紧密联系;
(2)探究:引导学生通过小组讨论、自主探究,从实际问题中抽象出一次函数关系;
3.探究性作业:鼓励学生自主探究一次函数的性质,发现规律,提高学生的探究能力和创新意识。
例题:研究一次函数y=kx+b(k、b为常数,且k≠0)的图像,探讨k、b的取值对图像的影响。
4.小组合作作业:安排一些需要团队合作完成的作业,培养学生的团队协作能力和沟通能力。
例题:小组合作设计一个一次函数应用实例,并撰写解题报告,分析解题过程。
3.一次函数在实际问题中的求解方法。
总之,在本节课的教学过程中,我将注重启发式教学、分层教学和师生互动,努力提高学生的学习兴趣和积极性,确保教学目标的实现。
五、作业布置
为了巩固本章节所学知识,检验学生对一次函数的理解和应用能力,我设计了以下几类作业:
1.基础知识巩固题:包括一次函数的定义、性质、图像等方面的练习,旨在帮助学生巩固一次函数的基本概念。
例题:已知一次函数y=2x+3,求该函数的斜率和截距。
2.实际问题应用题:设计一些与生活息息相关的问题,让学生运用一次函数知识解决,提高学生解决实际问题的能力。
例题:某商店进行打折促销活动,原价为100元的商品,每增加1元,折扣力度增加0.01。请列出商品价格与折扣力度之间的关系,并计算在哪个价格区间购买最划算。
(三)情感态度与价值观
1.增强数学在实际生活中的应用意识,认识到数学知识在解决实际问题中的重要性;

《一次函数》数学教案

《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。

2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。

3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。

二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。

2. 重点:一次函数的概念、图象和性质。

3. 难点:一次函数的应用。

三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。

2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。

3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。

4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。

四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。

2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。

3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。

五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。

2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。

六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。

4.4 一次函数的应用(3)教案(公开课)

4.4 一次函数的应用(3)教案(公开课)

一次函数的应用(3)教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用教学难点从函数图象中正确读取信息教学过程:1.如图,l 1反映了某公司产品的销售收入与销售量之间的关系,l 2反映了该公司产品的销售成本与销售量之间的关系,根据图意填空:(1)当销售量为2吨时,销售收入=元,销售成本=元;(2)当销售量为6吨时,销售收入=元,销售成本=元;(3)当销售量等于时,销售收入等于销售成本;(4)当销售量时,该公司赢利(收入大于成本);当销售量时,该公司亏损(收入小于成本);(5) l 1对应的函数表达式是,l 2对应的函数表达式是。

2.例我边防局接到情报,近海处有一可疑船只正向公海方向行驶.边防局迅速派出快艇追赶(如图),下图中,分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.A B 1l 2l s t根据图象回答下列问题:(1)哪条线表示到海岸的距离与时间之间的关系?(2),哪个速度快?(3)15 min 内能否追上?(4)如果一直追下去,那么能否追上?(5)当逃到离海岸海里的公海时,将无法对其进行检查.照此速度,能否在逃到公海前将其拦截?3. 如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?课时小结本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。

《一次函数》教案(共5则)

《一次函数》教案(共5则)

《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。

教学重点、难点重点:理解一次函数和正比例函数的概念。

难点:能根据所给的条件写出简单的一次函数表达式。

二。

教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。

2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。

5厘米。

(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。

(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。

问:观察上述关系式的特点,总结规律。

(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。

特别地,当b=0时,称y是x的正比例函数。

(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。

(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。

(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。

分析:本题较为简单,由学生完成。

例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。

一次函数的实际应用教案

一次函数的实际应用教案

一次函数的实际应用教案教学目标:通过学习一次函数的实际应用,使学生能够理解一次函数在实际问题中的应用,并能够解决相关问题。

教学重点:一次函数的实际应用和问题解决能力。

教学难点:运用一次函数解决实际问题。

教学准备:1. 手绘或打印一些一次函数实际应用的例子,如销售利润、车辆油耗等。

2. 准备黑板、彩色粉笔或白板、彩色笔。

教学过程:Step 1: 导入新知教师通过举例子的方式引入一次函数的概念和定义,并解释一次函数的含义和表达方式。

示例:假设小明去超市购买一些商品,每件商品的价格都是固定的10元,这个关系可以用一次函数来表示,即y = 10x,其中x表示购买的商品数量,y表示所需支付的金额。

Step 2: 手把手教学教师通过手把手的方式,以实际的应用场景为例,教授学生如何运用一次函数解决实际问题。

例子1:销售利润假设一个公司生产一种产品,成本固定为每件10元,该公司将每件产品卖给经销商12元,经销商再以15元的价格卖给消费者。

现在给定销售量x,要求学生计算该公司的销售利润。

解答步骤:1. 定义变量和函数:设定x为销售量,y为销售利润。

根据问题,成本为10元,售价为12元,则y = 2x。

2. 根据定义计算:当x=100时,y=2*100=200元,公司的销售利润为200元。

例子2:车辆油耗假设一辆汽车每行驶100公里需要消耗8升汽油,现在给定行驶距离x,要求学生计算所需汽油数量。

解答步骤:1. 定义变量和函数:设定x为行驶距离,y为消耗的汽油数量。

根据问题,每行驶100公里需要消耗8升汽油,即y = 8x/100。

2. 根据定义计算:当x=200公里时,y = 8*200/100 = 16升,所需汽油数量为16升。

Step 3: 实践演练教师提供更多的实际问题,让学生运用所学知识解决。

练习题1:某商场举办了一次性大甩卖,商品原价为100元/件,现在以折扣价80元/件出售,请计算购买x件商品时的总花费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.4一次函数解决实际问题(销售问题)
预习目标
1.能根据实际问题中变量之间的关系,确定一次函数的表达式.
2.能将简单的实际问题通过建立一次函数模型转化为数学问题,从而解决实际问题.
3.在解决实际问题的过程中,初步体会方程与函数的关系.
教材导读
阅读教材P155~P156内容,回答下列问题:
1.一次函数是刻画现实世界中物质之间关系的重要模型,其应用比比皆是.要将实际
问题转化为与一次函数有关的数学问题,首先要分清哪些是变量,哪些是常量,哪个是自变量,哪个是因变量;其次是建立_______和_______之间的关系,这与列方程一样,不同的是
建立一次函数关系时要关注_______的取值范围.
2.利用一次函数的知识解应用题的一般步骤:
(1)设定实际问题中的变量.(2)建立一次函数表达式.(3)确定自变量的取值范围,保证
函数具有实际意义.(4)解答一次函数问题,如最大(小)值.(5)写出答案.
例1小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况
进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?
例2一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简
称甲店、乙店)
销售,预计每箱水果的盈利情况如下表:
A种水果/箱B种水果/箱
甲店11元17元
乙店9元13元
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
例3小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:
服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方
案才能获得最大利润?
练习:
1.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品
牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒
的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.
(1)根据图象,求y与x之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货单价;
(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可
获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文
具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?
哪种方案能使获利最大?最大获利为多少元?
2.为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中
小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类补
贴措施如下表,其余费用由区财政部门补贴.
添置多媒体所需费用(万元)补贴百分比
不大于10万元部分80%
大于10万元不大于m万元部分50%
大于m万元部分20%
其中学校所在的区不同,m的取值也不相同,但市财政部门将m调控在20至40之间(20≤m≤40).试解决下列问题:
(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;
(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为
12≤y≤24,试求m的取值范围.。

相关文档
最新文档