一次函数与实际问题

合集下载

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有()A.1个B.2个C.3个D.4个四、分类讨论思想4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?一、两个一次函数图象结合的问题5.A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5 km?二、分段函数问题6.暑假期间,小刚一家乘车去离家380 km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5 h后离目的地有多远?一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎪⎨⎪⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎪⎨⎪⎧m =2,n =3.5. 答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤14),3.5x -21(x >14). (3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎪⎨⎪⎧8x (0≤x ≤20),6.4x +32(x >20). (2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元).3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400,解得⎩⎪⎨⎪⎧m =0.7,n =600,所以y 乙=⎩⎪⎨⎪⎧x (0<x <2000),0.7x +600(x ≥2000). (2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20. (2)设甲出发x h 两人恰好相距5 km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3 h 或1.5 h 两人恰好相距5 km.6.解:(1)从小刚家到该景区乘车一共用了4 h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎪⎨⎪⎧k +b =80,3k +b =320,解得⎩⎪⎨⎪⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km.7.①②④8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.。

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。

一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。

当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。

例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。

2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。

当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。

例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。

3. 存款利率:一次函数可以用来描述存款利率的变化情况。

当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。

例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。

4. 股票价格:一次函数可以用来描述股票价格的变化情况。

当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。

例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。

5. 植物生长:一次函数可以用来描述植物的生长情况。

当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。

例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。

一次函数的应用

一次函数的应用

一次函数的应用
一次函数可以应用于很多实际问题中,以下是一些常见的
应用示例:
1. 经济学:一次函数可以用来表示成本、收入、利润等经
济指标与产量或销量之间的关系。

特别是在线性需求模型中,一次函数可以用来表示价格和数量之间的关系。

2. 工程学:一次函数可以用来表示物理量之间的线性关系,比如运动的速度和时间的关系、电阻和电流之间的关系等。

在工程设计和控制中,一次函数可以用来建立系统输入和
输出之间的关系。

3. 计划和预测:一次函数可以用来预测未来的趋势或变化。

通过拟合历史数据,可以使用一次函数来预测未来的趋势,并进行计划和决策。

4. 统计分析:一次函数可以用来描述两个变量之间的关系,并进行回归分析。

通过最小二乘法可以得到一次函数的最
佳拟合线,从而可以用来解释和预测变量之间的关系。

5. 材料科学:一次函数可以用来描述材料的线性弹性特性。

材料的应力和应变之间的关系可以通过一次函数来表示,
并用来研究材料的应力-应变性能。

总之,一次函数在很多领域中都有着广泛的应用。

通过建
立变量之间的线性关系,可以帮助我们分析和理解问题,
并进行预测和决策。

一次函数实际问题

一次函数实际问题

一次函数实际问题一次函数,也叫做线性函数,是数学中最简单的函数之一。

它的一般形式为Y = aX + b,其中a和b是常数,X和Y分别表示自变量和因变量。

一次函数在实际问题中的应用非常广泛,下面我将为你列举几种常见的实际问题,并给出参考内容。

1.汽车租赁问题:假设一辆汽车的租金为每天100元,另外还需要支付一定的保证金。

我们可以用一次函数来表示汽车租赁费用与租用天数之间的关系。

设X表示租用天数,Y表示总费用(包括租金和保证金)。

则一次函数可以表示为Y = 100X + b。

其中,b表示保证金。

通常情况下,保证金是定值,不随租用天数的增加而变化。

2.收入问题:假设某公司的月薪为3,000元,每个月还有一定的奖金作为额外收入。

我们可以用一次函数来表示每个月的收入与奖金的关系。

设X表示奖金数额,Y表示总收入。

则一次函数可以表示为Y = 3000 + aX。

其中,3000为基本薪水,a为奖金的倍数。

3.物体运动问题:假设一个物体在相同的力作用下以恒定的速度匀速运动。

我们可以用一次函数来表示物体在不同时间点的位置。

设X表示时间,Y表示距离。

则一次函数可以表示为Y = aX + b。

其中,a为速度,b为起始位置。

4.销售问题:假设某商品的售价为每个100元,销量与售价存在一定的线性关系。

我们可以用一次函数来表示销售额与售价之间的关系。

设X表示售价,Y表示销售额。

则一次函数可以表示为Y = aX。

其中,a表示每个商品的销量。

5.水果购买问题:假设某水果店卖橙子的价格为每斤5元,我们可以用一次函数来表示购买橙子的费用与购买重量之间的关系。

设X表示购买重量(单位:斤),Y表示总费用。

则一次函数可以表示为Y = 5X。

以上只是一些常见的实际问题,一次函数还可以应用于更多领域,如金融、生产等等。

在实际问题中,我们可以通过确定函数的参数来解决具体的计算和分析问题。

一次函数的简洁性和直观性,使它成为了数学中最基础、最常用的函数之一。

利用一次函数解决实际问题精选

利用一次函数解决实际问题精选

1.(2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为k m.答案:0.3考点FH:一次函数的应用.分析根据题意和函数图象可以求得小明从图书馆回家的速度以及对应的时间,从而可以求得他离家50分钟时离家的距离或者根据题意求出相应的函数解析式,求出当x=50时,对应的y的值即可解答本题.解答解:方法一:由题意可得,小明从图书馆回家用的时间是:55﹣(10+30)=15分钟,则小明回家的速度为:0.9÷15=0.06km/min,故他离家50分钟时离家的距离为:0.9﹣0.06×[50﹣(10+30)]=0.3km,故答案为:0.3;方法二:设小明从图书馆回家对应的函数解析式为y=kx+b,则该函数过点(40,0.9),(55,0),,解得,,即小明从图书馆回家对应的函数解析式为y=﹣0.06x+3.3,当x=50时,y=﹣0.06×50+3.3=0.3,故答案为:0.3.2.4利用一次函数解决实际问题填空题基础知识2017-10-122.(2017浙江省绍兴市)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?答案:答案(1)解:观察折线图可得当横坐标为18时的点的纵坐标为45,即应交水费为45元.(2)解:设当x>18时,y关于x的函数表达式为y=kx+b,将(18,45)和(28,75)代入可得?解得,则当x>18时,y关于x的函数表达式为y=3x-9,当y=81时,3x-9=81,解得x=30.答:这个月用水量为30立方米.考点一次函数的应用解析分析(1)从图中即可得到横坐标为18时的点的纵坐标;(2)运用待定系数法,设y=kx+b,代入两个点的坐标求出k和b,并将y=81时代入求出x的值即可.2.4利用一次函数解决实际问题应用题基础知识2017-10-123.(2017青海省西宁市)】.(10分)(2017?西宁,27,10分)首条贯通丝绸之路经济带的高铁线﹣﹣宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,根据图象进行一下探究:信息读取(1)西宁到西安两地相距1000 千米,两车出发后 3 小时相遇;(2)普通列车到达终点共需12 小时,普通列车的速度是千米/小时.答案:】.考点FH:一次函数的应用.分析(1)由x=0时y=1000及x=3时y=0的实际意义可得答案;(2)根据x=12时的实际意义可得,由速度=可得答案;(3)设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列出3小时行驶的路程=1000”列方程求解可得;(4)先求出t小时普通列车行驶的路程,继而可得答案.解答解:(1)由x=0时,y=1000知,西宁到西安两地相距1000千米,由x=3时,y=0知,两车出发后3小时相遇,故答案为:1000,3;(2)由图象知x=t时,动车到达西宁,∴x=12时,普通列车到达西安,即普通列车到达终点共需12小时,普通列车的速度是=千米/小时,故答案为:12,;(3)设动车的速度为x千米/小时,根据题意,得:3x+3×=1000,解得:x=250,答:动车的速度为250千米/小时;(4)∵t==4(小时), ∴4×=(千米), ∴1000﹣=(千米), ∴此时普通列车还需行驶千米到达西安. 点评本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.2.4利用一次函数解决实际问题应用题基础知识2017-10-124.(2017河北省)如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.答案:答案(1)C(-13,0),E(-5,-3),255y x =+;(2)32;(3)见解析. 解析(2)∵CD=8,DE=DB=3,OA=OD=5,∴183122CDES=⨯⨯=V,()1355202ABDOS=⨯+⨯=四边形,即S=32.(3)当x=-13时,255y x=+=-0.2≠0.∴点C不在直线AB上,即A,B,C三点不共线.∴他的想法错在将△CDB与四边形ABDO拼接后看成了△AOC.考点:待定系数法,多边形的面积,一次函数的性质.2.4利用一次函数解决实际问题复合题基础知识2017-10-115.(2017新疆建设兵团)10分)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD 表示y与x之间的函数关系.(1)活动中心与小宇家相距千米,小宇在活动中心活动时间为小时,他从活动中心返家时,步行用了小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.答案:考点FH:一次函数的应用.分析(1)根据点A、B坐标结合时间=路程÷速度,即可得出结论;(2)根据离家距离=22﹣速度×时间,即可得出y与x之间的函数关系式;(3)由小宇步行的时间等于爸爸开车接到小宇的时间结合往返时间相同,即可求出小宇从活动中心返家所用时间,将其与1比较后即可得出结论.解答解:(1)∵点A 的坐标为(1,22),点B 的坐标为(3,22),∴活动中心与小宇家相距22千米,小宇在活动中心活动时间为3﹣1=2小时.(22﹣20)÷5=0.4(小时).故答案为:22;2;0.4.(2)根据题意得:y=22﹣5(x ﹣3)=﹣5x+37.(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),∵0.8<1,∴所用小宇12:00前能到家.2.4利用一次函数解决实际问题应用题基础知识2017-9-196.(2017天津市)用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式;(3)当70 x 时,顾客在哪家复印店复印花费少?请说明理由.答案:答案(1)1,3,1.2,3.3.(2)1y =0.1x (x ≥0);当0≤x ≤20时,2y =0.12x ,当x>20时,2y =0.12×20+0.09(x-20),即2y =0.09x+0.6.(3)当x>70时,顾客在乙复印店复印花费少,理由见解析. 解析试题分析:(1)根据在甲复印店不管一次复印多少页,每页收费0.1元和在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元计算填空即可;(2)根据在甲复印店不管一次复印多少页,每页收费0.1元和在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元,直接写出函数关系式即可;(3)当x>70时,有1y =0.1x ,2y =0.09x+0.6,计算出1y -2y 的结果,利用一次函数的性质解决即可.(3)顾客在乙复印店复印花费少.当x>70时,有1y =0.1x ,2y =0.09x+0.6∴1y -2y ==0.1x-(0.09x+0.6)=0.01x-0.6记y==0.01x-0.6由0.01>0,y 随x 的增大而增大,又x=70时,有y=0.1.∴x>70时,有y>0.1,即y>0∴1y >2y∴当x>70时,顾客在乙复印店复印花费少.2.4利用一次函数解决实际问题应用题基础知识2017-9-197.(2017四川省达州市)甲、乙两动点分别从线段AB 的两端点同时出发,甲从点A 出发,向终点B 运动,乙从点B 出发,向终点A 运动.已知线段AB 长为90cm ,甲的速度为2.5cm/s .设运动时间为x (s ),甲、乙两点之间的距离为y (cm ),y 与x 的函数图象如图所示,则图中线段DE 所表示的函数关系式为 y=4.5x ﹣90(20≤x ≤36) .(并写出自变量取值范围)答案:y=4.5x ﹣90(20≤x ≤36) .分析图中线段DE 所表示的函数关系式,实际上表示甲乙两人相遇后的路程之和与时间的关系.解答解:观察图象可知,乙的速度==2cm/s ,相遇时间==20, ∴图中线段DE 所表示的函数关系式:y=(2.5+2)(x ﹣20)=4.5x ﹣90(20≤x ≤36).故答案为y=4.5x ﹣90(20≤x ≤36).点评本题考查一次函数的应用、路程、速度、时间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题.2.4利用一次函数解决实际问题填空题基础知识2017-9-198.(2017上海市)】.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.答案:】.分析(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;解答解:(1)设y=kx+b ,则有, 解得, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元, ∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.点评本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.2.4利用一次函数解决实际问题应用题基础知识2017-9-199.(2017山东省烟台市)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度C 020-时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到C 04-时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至C 020-时,制冷再次停止,……,按照以上方式循环进行. 同学们记录了44min 内15个时间点冷柜中的温度)(0C y 随时间(min)x 的变化情况,制成下表:(1)通过分析发现,冷柜中的温度y 是时间x 的函数. ①当204<≤x 时,写出一个符合表中数据的函数解析式;②当2420<≤x 时,写出一个符合表中数据的函数解析式;(2)a 的值为;(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余对应的点,并画出444≤≤x 时温度y 随时间x 变化的函数图象.答案:答案(1)①y=﹣80x.②y=﹣4x+76.(2)-12;(3)作图见解析.(3)描点、连线,画出函数图象即可.试题解析:(1)①∵4×(﹣20)=﹣80,8×(﹣10)=﹣80,10×(﹣8)=﹣80,16×(﹣5)=﹣80,20×(﹣4)=﹣80,∴当4≤x <20时,y=﹣80x .(2)观察表格,可知该冷柜的工作周期为20分钟,∴当x=42时,与x=22时,y 值相同,∴a=﹣12.(3)描点、连线,画出函数图象,如图所示.考点:一次函数的应用.2.4利用一次函数解决实际问题应用题基础知识2017-9-1910.(2017山东省德州市)公式KP L L +=0表示当重力为P 时的物体作用在弹簧上时弹簧的长度.0L 表示弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示。

一次函数实际问题

一次函数实际问题

一次函数实际问题
一次函数是数学领域的一个重要概念,其广泛应用于实际问题中。

在本篇文章中,我们将探讨一次函数在现实中的应用。

最外层的太阳需要穿越我们的大气层才能够直接照射到地球上。

然而,大气层会对太阳的光线进行散射和吸收。

因此,虽然太阳的温度非常高,但它在地球表面上的亮度实际上会因为这些散射和吸收而下降。

这就是我们所说的“日光强度”。

日光强度可以用一个一次函数来表示。

具体来说,可以使用以下公式:
I = kt + b
其中,I代表日光强度,k代表日光强度每小时的衰减率,t代表时间,b代表当天初日光强度。

这个公式的意义相当简单。

我们考虑整天的时间,从早晨第一道阳光落到地面开始到日落结束,日光强度会一直下降。

每小时下降的速度由k决定。

b则是当天早晨的日光强度,即t=0时的值。

利用这个公式可以帮助我们预测日光强度,从而更好地安排各种户外活动。

为了更好地了解该公式的应用,我们可以考虑一些具体的例子。

例如,如果我们想预测一个小时后日光强度的变化情况,我们可以将t 设为1,然后根据公式计算I。

此外,这个公式还可以帮助我们解决一些实际问题。

例如,在农业生产中,可以利用日光强度的变化来调整作物的生长时间。

当然,只是基于日光强度是远远不够的,还需要考虑水分、气温、土壤肥力等多个因素。

总之,在现实生活中,日光强度的一次函数广泛应用于各种领域。

例如,天文学、地理学、气象学、农业等。

通过这个公式,我们可以更好地了解太阳辐射的规律,从而更好地掌握环境变化的趋势,做好相应的准备。

实际问题与一次函数

实际问题与一次函数

y O x (千克)5 10 10 20 30 40506015 20(元)(25题图)实际问题与一次函数类型一:分段函数例1(2008年遵义市)小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收入70元.已知在降价前销售收入y (元)与销售重量x (千克)之间成正比例关系.请你根据以上信息解答下列问题: (1)求降价前销售收入y (元)与售出草莓重量x (千克)之间的函数关系式;并画出其函数图象;(2)小强共批发购进多少千克草莓?小强决定将这次卖草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款为多少元?例2(2008襄樊市)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元收费,超过10吨的部分,按每吨b 元(b a >)收费.设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图13所示. (1)求a 的值;某户居民上月用水8吨,应收水费多少元? (2)求b 的值,并写出当10x >时,y 与x 之间的函数关系式; (3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?练习1(2008年南京市)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义;ABCDOy /km90012 x /h4图象理解(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?2.(2008年泰州市)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(6分)(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.(4分)3.(2008年桂林市)2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S(千米)与行进时间t(小时)的函数大致图像,你认为正确的是()类型二:方案设计例1.(2008年宁波市)如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜12元 C .若通讯费用为60元,则B 方案比A 方案的通话时间多 D .若两种方案通讯费用相差10元,则通话时间是145分或185分例2.(2008年龙岩市)(13分)汶川地震发生后,全国人民抗震救灾,众志成城. 某地政府急灾民之所需,立即组织12辆汽车,将A 、B 、C 三种救灾物资共82吨一次性运往灾区,假设甲、乙、丙三种车型分别运载A 、B 、C 三种物资. 根据下表提供的信息解答下列问题:车 型 甲 乙 丙 汽车运载量(吨/辆)5810(1)设装运A 、B 品种物资的车辆数分别为x 、y ,试用含x 的代数式表示y ; (2)据(1)中的表达式,试求A 、B 、C 三种物资各几吨.练习(2007重庆)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐 橙 品 种 A B C 每辆汽车运载量(吨)654每吨脐橙获得(百元) 12 16 10(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式; (2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案; (3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.例3光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区. 两地区与该农机租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金 每台乙型收割机的租金A 地区 1800元 1600元B 地区1600元1200元(1)设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y 与x 间的函数关系式,并写出x 的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说 明有多少种分派方案,并将各种方案设计出来;7050 30120 170 200 250x (分)y (元)A 方案B 方案(第12题)(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提供一种最佳方案练习.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A 市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,•求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?例4(2007哈尔滨)青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价 进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算得出答案)练习(2007湖南怀化)2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造卉和2950盆乙种花卉搭配A B型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?例5.甲、乙两同学开展“投球进筐”比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;②若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③计分规则如下:a. 得分为正数或0;b. 若8次都未投进,该局得分为0;c. 投球次数越多,得分越低;d. 6局比赛的总得分高者获胜.(1)设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;(2)若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):第一局第二局第三局第四局第五局第六局甲 5 × 4 8 1 3乙8 2 4 2 6 ×根据上述表格内容和你设计的方案,判断这场比赛谁赢。

一次函数解决实际问题

一次函数解决实际问题

一次函数解决实际问题我们知道,在一般情况下,一次函数y=k+b(k、b为实数,且k≠0)的自变量取值范围是全体实数,函数在平面直角坐标系中的图像是一条直线.但是,在实际问题中,自变量的取值常常受到一定的限制,导致函数的图像发生变化,由直线变为其它图形.一、图像变成射线例1甲、乙两地相距20千米,汽车从甲地出发到乙地去,到达乙地后继续以每小时60千米的速度向前行驶,求汽车行驶t小时后与甲地距离S(千米)之间的函数关系式,并画出函数的图像.解由题意得,S=60t+20,其中t≥0.当t=0时,S=20;当t=1时,S=80.以A(0,20)为端点,作射线AB,使它经过点B(1,80)(如图1),则射线AB为所求函数的图像.【评注】当自变量≥a(或≤a,a为实数)时,函数y=k+b的图像是一条射线.特别地,当自变量>a(或<a)时,函数y=k+b的图像不包括射线的端点,此时,射线的端点画成空心圆圈.二、图像变成线段例2柴油机开始工作时,油箱中有油60升,工作时每小时耗油5升,求油箱的余油量Q(升)与工作时间t(时)之间的函数关系式,并画出该函数的图像.解由题意得,Q=-5t+60,其中0≤t≤12.当t=0时,Q=60;当t=12时,Q=0.以点A(0,60)、B(12,0)为端点作线段AB(如图2),则线段AB为所求函数的图像.【评注】当自变量取值满足1≤≤2(1<2)时,函数y=k+b的图像是一条线段.特别地,当1<<2时,函数y=k+b的图像不包括线段的端点,此时,线段的端点画成空心圆圈.三、图像变成离散的点例3小敏带3元钱去文具店买圆珠笔,已知每支圆珠笔的售价为0。

25元,试写出所剩钱数y(元)与购买的圆珠笔的支数(支)之间的函数关系式,并作出函数图像.解由题意得,y=3-0。

25,其中0≤t≤12,且为整数.显然,y与之间的对应关系可用下表表示:在平面直角坐标系中,描出表中各组对应值所对应的点(如图3),则这些离散的点组成的图形就是所求作的函数图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与实际问题(调运方案)
一、诊断导学
1、(1)已知①y=2x+2,②y=-2x+1函数图像分布在哪个象限?y随x 的变化而怎样变化?
(2)已知点A(x, y),B(x,y)在y=2x+2上,当x> x时,y y; 11222211已知点A(x, y),B(x,y)在y=-2x+1上,当x> x时,y y;
222211112、根据图像你能说出当x取何值时?函数取最大值或最小值吗?
y
y
5
4
2
1
x
x
13
1 6
二、学习目标:2 1.会用一次函数知识解决实际问题;
2.能从不同的角度思考问题,设计解决问题的方案;.养成反思的习惯,及时总结解决问题的思路方法. 3 学习的重点和难点:会用一次函数的知识解决实际问题三、探究两、D城有肥料吨,B300吨,现要把这些肥料全部运往C城有肥料A200城25元和元;从BDA 乡、从城往C、两乡运肥料的费用分别是每吨20240现C乡需要肥料元,元和两乡运肥料的费用分别是每吨、往CD1524 吨,怎样调运总运费最少?260乡需要肥料D吨,
D两乡调用?、B两城的肥料是否够C、思考:(1)A D乡调多少吨肥料?x吨肥料,那么A城向(2)如果设A城向C乡调的要求?两乡再调多少吨肥料才能满足C、D3()B城需要向C、D那么它和各个运输量与运费之间有什么关系?你y(4)如果设总运费为能建立一次函数的关系吗?)根据以上问题你能完成以下表格吗?(5
x之间的函数关系为y由总运费与各运输量的关系可知,反映与)
60+x(+24)x﹣240(+15)x﹣200(y=20x+25.
如何求自变量的取值范围≤x200)化简得y=4x+10040(0≤1.x≥0
2.200-x≥0
3.240-x≥0
4.60+x≥0
由解析式可以看出:当x=0时,y的最小值10040.即从A城运往C 乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
四、合作探究
,则由总运费与yxD乡调吨如表所示,设总运费为方案二:如果A城向之间的函数关系为y与x各运输量的关系可知,反映如何求自变量的取值范围 260-x)40+x()+24(y=20(200-x)+25x+15 )≤
200xy=-4x+10840化简得(0≤1.x≥0
2.200-x≥0
3.260-x≥0
≥4.40+x
由解析式可看出:当x=200时,y的最小值10040.从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.
方案三:(2)设总运费为y元,B城运往C乡的肥料量为x吨.
x之间的函数关系为反映y与由总运费与各运输量的关系可知,)y=20(240-x)+25(x-40)+15x+24(300-x0 ≥1.x)(40≤x≤240化简得y=-4x+110000 ≥2.240-x如何求自变量的取值范围0 ≥
3.300-x
≥4.X-40
吨,乡0A城运往C 当x=240时,y的最小值10040.从由解析式可看出:此时总运吨,60 乡240吨,运往D乡城运往吨;运往D乡200 从BC 10040元.费最少,总运费最小值是吨,由总运费乡的肥料量为Dx元,(方案三:3)设总运费为yB城运往 x与之间的函数关系为y 与各运输量的关系可知,反映x)+24x
﹣x)+15(300﹣y=20(x-60)+25(260.
化简得y=4x+9800(60≤x≤260) 1.x-60≥0
2.260-x≥0
如何求自变量的取值范围 3.300-x≥0
4. x≥0
吨,0城运往C乡的最小值10040.从A时,由解析式可看出:当x=60y此时总运 60吨,乡240吨,运往D乡200运往D乡吨;从B 城运往C 10040元.费最少,总运费最小值是四、小结:谈谈本节课你的收获五、作业:市A台,现销售给12台和6某公司在甲市和乙市分别有库存的某种机器元400B市的运费分别是台,8 已知从甲市调动一台到A市、台,10B市元和500元。

300A和800元,从乙市调一台到市、B市的运费分别是的函数解析式及自变量x台,求总运费xy关于市)设从甲市调往(1A 的取值范围;
)求出总运费最低的调运方案及最低的运费。

2(.
学习一次函数,意味着由常量数学的学习进入变量数学的学习,学生的思维方式要随之而变,这是对学生思维能力的考验,也是其数学认识的一次重要飞跃。

学生在学习一次函数的过程中,对简单问题(如简单地应用待定系数法求一次函数、直接应用图象特征判别问题特征等)往往能根据课堂所学的概念知识,加上参阅书本知识,画出相应的函数图象解决,看不出学生对一次函数的理解程度。

但随着时间的推移,随着问题情境复杂化,他们就会表现出对一次函数知识理解深度不够,停留在感性认识多些,理性认识少些,对一次函数解析式的直接应用多些,对解析式与图象问题的内在联系运用薄弱些,需要多练、多探、多问、总结经验。

学生在学习中遇到的困难主要表现在以下三个方面:
(1)将复杂问题情境转化为一次函数图象;
(2)结合题意理解一次函数所表达的信息;
(3)结合题意把图象信息转化为数量关系。

相关文档
最新文档