统计预测与决策期末案例

合集下载

《统计预测与决策》教案

《统计预测与决策》教案

一.
概念和特点:
1、概念:德尔菲法是根据有专门知识的人的直接经验,对研 究的问题进行判断、预测的一种方法,也叫专家调查法. 2、特点(P8):反馈性、匿名性、统计性 二. 预测步骤: 1、提出要求,明确目标,用书面通知被选定的有关专家; 2、专家提出自己的预测并说明依据和理由,作出书面答复; 3、主持单位对专家预测意见归纳整理,再寄还专家修改;
二.步骤(P5):
确定预测目的
搜索和审核资料
选择预测模型和方法
分析预测误差,改进预测模型
提出预测报告
回本章目录


预测就是根据过去和现在估计未来,预测未来.
1、统计预测方法是一种具有通用性的方法.实际资料、经济 理论和数学模型三者共同构成统计预测的三要素.
2、统计预测作用:其大小取决于预测的结果产生的效益的多 少.影响因素主要有:费用、方法、精度. 3、统计预测方法可分为定性预测和定量预测两类,也可按预 测时间长短、预测是否重复进行分类.选择预测方法应考虑: 合适性、费用、精确性. 4、统计预测的一般步骤:目的、资料、方法、误差、报告
4、专家接到通知,再次进行预测.如此反复,直到意见基本 一致.
三. 遵循的原则(P9):
1、问题集中,有针对性;2、避免诱导;3、避免组合事件.
四. 优缺点:
1、优点:1)省时省费用;2)可获得不同观点和意见;3) 适于长期预测和对新产品的预测.
2、缺点:1)分地区的顾客群或产品的预测可能不可靠;2 )责任较分散;3)专家的意见可能不完整或不切实际.
为所有变量收集历史 数据是此预测中最费 时的
多元线性回归 预测法
3
短、中期
因变量与两个或两个 以上自变量之间存在 线性关系

统计预测与决策 1

统计预测与决策 1

54页5.某公司选取了12位调查人员利用主主观概率法预测该公司华北地区2010年的产品需求量,调查汇总数据如表所示。

试对该公司2010年的需求量进行预测分析。

(1)综合考虑每个调查人员的预测,在每个累计概率上取平均值,得到在此累计概率下的预测需求量.由表可以得出该公司在华北地区2010年需求量预测最低可到1109.42,小于这个数值的可能性只有1%.(2)该公司在华北地区2010年需求量最高可到1624.67,大于这个数值的可能性只有1%.(3)可以用1367.17作为该公司在华北地区2010年需求量的预测值.这是最大值与最小值之间的中间值.其累积概率为50%,是需求量期望值的估计数.(4)取预测误差为200,则预测区间为(1367.17-200)~(1367.17+200),即商品销售额的预测值为1167.17~1567.17(5)当预测需求量为1167.17~1567.17,在第(2)列到第(9)列的范围之内,其发生概率相当于0.99-0.125=0.865.也就是说,需求量为1167.17~1567.17的可能性为86.5%6.已知某品牌产品在7个经济发达城市的销售及各城市人口情况,见下表。

经过对A城市消费者的抽样调查,预测今年A城市对该产品的人均需求为1.2件/人,假设今年这7个城市人口数及居民消费习惯基本保持不变,请运用对比类推预测法,根据A城市情况预测其他6个城市今年对该产品的需求量。

(1)计算人均数码产品需求人均数码产品需求=区域销售总量/区域人口数(2)以A区域为类基准,计算其他各区域的相对人均数某区域的相对人均数=该区域上年的人均数/A区域上年预测的人均数(3)计算各区域今年人均数的预测值某区域的今年人均数预测值=该区域相对人均数*A区域今年人均数的预测值(4)计算各区域今年数码产品的预测值某区域的今年数码产品的预测值=该区域今年人均数预测值*人口数类似计算其他区域今年数码产品的预测值,结果如下:69页1.已知B公司2000-2009年销售利润,见下表。

市场预测与决策案例分析(doc 7页)

市场预测与决策案例分析(doc 7页)

案例1 A市电力需求预测2004年,A市GDP为336.02亿元,与1997年相比平均年增长23.74%;全社会用电量为45.84亿千瓦小时,与1997年相比,年平均增长8.16%,与此同时,亿元GDP的电力消费量由1997年的0.3499亿千瓦小时下降到2004年的0.1364亿瓦小时。

电力消费的年增长大大低于GDP的增长,亿元GDP的生产消费量大大下降,一方面意味着电力消费的节约,另一方面意味着电力的供应严重滞后于国民经济的发展。

近几年,全市电力供求矛盾日益突出。

试根据所给出的数据,找出影响电力增长的原因,采用回归分析预测法进行A 市电力需求的中期预测,并撰写预测报告。

表1 GDP与用电消费总量数据表2 第一产业GDP与用电消费量数据表3 第二产业GDP与用电消费量数据表4 第三产业GDP与用电消费量数据表5 居民生活用电数据案例2 某市肉食品市场供求预测分析设某巾近8年猪肉、牛肉、羊肉的生产和居民人均年消费量等资料如下,要求分别预测未来5年内猪肉、牛肉、羊肉的市场供求情况,并编写预测分析报告。

注:城乡居民猪肉消费占社会消费总量的80%,生产量中出口占32%。

注:城乡居民牛肉消费占社会消费总量的70%,生产量中出口占30%。

注:城乡居民羊肉消费占社会消费总量的70%,生产量中出口占28%。

5.其他有关资料(1)本省生猪生产中,优质品率近几年维护在40%左右;生猪的产业化和集约化经营虽有发展,但步伐较慢;生猪产品的深加工、精加工比率较低。

(2)近几年牛、羊生产虽然较快发展,但市场供求缺口大,主要靠外省市输入牛羊肉解决供求缺口。

(3)随着城乡居民收入水平的提高,居民对猪、牛、羊肉的消费需求不断增长,特别是对牛肉、羊肉的需求将增长更快。

(4)据市场调查,瘦肉型猪肉、不含生长激素的猪肉制品、黄牛肉、黑山羊肉的需求不断扩大。

(5)据城乡居民生活收支抽样调查资料分析,城乡居民食品消费结构中,主食消费比重下降,猪、牛、羊肉等副食品消费比重上升。

统计学在决策分析中的实践案例

统计学在决策分析中的实践案例

统计学在决策分析中的实践案例随着社会的发展和竞争的加剧,决策分析在各个领域中的重要性日益凸显。

而统计学作为一种重要的决策工具,在决策分析中也起着关键的作用。

本文通过介绍几个实践案例,来探讨统计学在决策分析中的应用。

案例一:市场营销决策在市场营销中,决策者需要根据市场的需求和竞争情况来进行产品定位和市场推广。

统计学通过市场调研和数据分析,为决策者提供了有力的决策支持。

以某企业的市场推广决策为例,该企业计划推出一款新产品。

为了了解市场的需求,他们进行了一次市场调研,并采集了大量的数据。

通过对这些数据进行统计分析,他们发现目标客户群体更倾向于价格相对较低的产品。

基于这个发现,他们决定以价格优势为主要推广点,制定相应的市场推广策略。

通过引入统计学的分析手段,该企业最终在市场中获得了成功。

案例二:风险管理决策在金融行业中,风险管理是一个重要的问题。

通过统计学的方法,可以对市场风险进行预测和控制。

某投资公司在进行投资决策时,需要考虑不同投资组合的风险和收益。

通过对历史数据进行回归分析和风险评估,他们可以得到不同投资组合的预期风险和收益。

通过权衡各个投资组合的风险和收益,他们可以最大程度地提高投资回报,同时降低投资风险。

案例三:质量管理决策在生产制造领域中,质量管理是确保产品质量的关键环节。

统计学可以帮助企业进行质量控制,提高产品的质量。

某汽车制造公司在生产过程中,发现某批次产品出现了较高的不合格率。

为了解决这个问题,他们通过统计学的方法进行了质量分析。

通过对生产数据进行抽样和假设检验,他们发现问题出现在某个工段的生产过程中。

通过对该工段进行优化和改进,最终将产品的质量问题解决,提高了整体产品的质量水平。

总结统计学作为决策分析的工具之一,在实践中发挥着重要的作用。

通过统计学的方法,可以对市场需求进行分析,帮助企业制定市场推广策略;可以对风险进行预测和控制,帮助金融机构做出更明智的投资决策;可以对质量问题进行分析,帮助企业提高产品质量。

可用统计预测与决策论文

可用统计预测与决策论文

统计预测与决策课程论文题目:组合预测模型在全国能源消耗总量中的应用学生姓名:学号:院系:专业:指导教师:二O一二年十二月十四日统计预测与决策期末论文组合预测模型在全国能源消耗总量中的应用【概要】:能源是国民经济、社会发展的基础和战略资源 能源问题已经成为经济社会可持续发展的主要问题。

本文以我国1978-2008年的全国能源消耗总量数据为基础,建立了ARIMA预测模型、三次多项式预测模型、灰色预测法和基于这几种模型的组合模型,并进行了精度比较,最后选择最优的组合预测模型对2009-2011年的全国能源消耗总量进行预测。

关键词:单位根 ARMA模型 能源消费组合模型三次多项式灰色预测法1 引言:能源是国民经济发展和人民生活水平提高的重要物质基础,能源短缺曾经长期制约我国经济的发展。

近几年由于能源工业的发展,短缺局面虽然得到了缓解,但从长远来看能源供需形势仍然非常严峻,因此做好未来能源消费预测分析,为能源规划及政策的制定提供科学的依据,对于保持我国社会经济健康、持续、稳定发展具有重要的理论与现实意义。

本文利用《中国统计年鉴》得到31期全国能源消耗总量y的时间序列如下表一所示:2 预测方法介绍2.1 ARIMA模型的基本原理将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。

这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。

现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。

ARIMA模型全称为差分自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。

其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d 为时间序列成为平稳时所做的差分次数。

统计决策与预测实验报告

统计决策与预测实验报告

湘南学院实验报告课程名称:统计预测和决策专业班级:经济统计学一班姓名:吴丽媛学号: 201414430148 指导教师:谷玉实验日期: 2017.3.28实验一:多元统计分析一、实验目的及要求客观事物的变化往往受多种因素的影响,此时就要用到多元回归分析,借以说明多种因素之间的关系,利用EXCEL软件进行多元回归分析,建立函数模型。

二、实验设备2007版EXCEL软件三、实验内容分析喜欢某种牌号牙膏的居民百分比与该地区居民的人均年收入和教育指数的关系四、实验步骤(包含数据及详细过程)1.加载数据分析第一步:打开2007excel,点击左上角的按钮,如图所示。

第二步:点击右下角的,如图所示。

第三步:点击左侧的加载项,如图所示。

第四步:点击最下面的“转到”,如图所示,然后选中“分析数据库”,点击“确定”。

2.输入数据,如下图3.数据分析第一步:点击excel2007中工具栏的“数据”,然后点击“数据分析”,弹出数据分析的对话框,如图所示。

第二步:选中“回归”,点击确定,弹出对话框,如图所示。

第三步:“Y值输入区域”为$B$2:$B$11,“X值输入区域”$C$2:$D$11,选择“置信度”为95%,“新工作表组”,“残差”和“标准残差”。

如图所示,点击确定。

五、实验结果与解释结果如图所示。

实验结果解释:由如上图的输出结果可知,第一部分为汇总统计,MultipleR 指复相关系数,RSquare 指判定系数,Adjusted 指调整的判定系数,标准误差指估计的标准误,观测值指样本容量;第二部分为方差分析,df 指自由度,SS 指平方和,MS 指均方,F 指 F 统计量, significance of F 指p 值;第三部分包括:Intercept 指截距,Coefficient 指系数, tstat 指t 统计量。

由2R =0.6682,可知此回归模型只能解释喜欢该品牌牙膏的百分比变差的66.82%, 该模型的方程为:218118.20168.44492.13x x y ++=∧.。

统计预测与决策 习题答案

统计预测与决策 习题答案

统计预测与决策习题答案统计预测与决策习题答案统计预测与决策是统计学中的一个重要领域,它涉及了数据分析、模型建立和决策制定等多个方面。

在实际应用中,统计预测与决策能够帮助我们预测未来的趋势、评估风险和制定合理的决策方案。

下面是一些与统计预测与决策相关的习题及其答案,希望能够帮助读者更好地理解这一领域的知识。

1. 问题:某公司过去5年的销售额数据如下,请使用简单移动平均法预测下一年的销售额。

年份:2015 2016 2017 2018 2019销售额:100 120 130 140 150答案:简单移动平均法是一种常用的时间序列预测方法,它通过计算一定时间段内的观测值的平均数来进行预测。

在这个问题中,我们可以选择过去几年的销售额作为观测值,然后计算它们的平均数。

计算过程如下:(100 + 120 + 130 + 140 + 150) / 5 = 128因此,根据简单移动平均法,下一年的销售额预测值为128。

2. 问题:某电商平台的用户在一个月内的购买金额数据如下,请使用指数平滑法预测下一个月的购买金额。

月份:1 2 3 4 5 6 7购买金额:100 110 120 115 130 140 145答案:指数平滑法是一种常用的时间序列预测方法,它通过对观测值进行加权平均来进行预测。

在这个问题中,我们可以选择过去几个月的购买金额作为观测值,然后根据指数平滑法进行预测。

计算过程如下:首先,选择一个平滑系数α,一般取值在0到1之间。

假设α为0.3。

第一个预测值为第一个观测值,即100。

第二个预测值为上一个预测值与第二个观测值的加权平均,即:预测值2 = α * 观测值2 + (1 - α) * 预测值1预测值2 = 0.3 * 110 + 0.7 * 100 = 103依此类推,可以得到以下结果:预测值3 = 0.3 * 120 + 0.7 * 103 = 107.9预测值4 = 0.3 * 115 + 0.7 * 107.9 = 108.73预测值5 = 0.3 * 130 + 0.7 * 108.73 = 113.121预测值6 = 0.3 * 140 + 0.7 * 113.121 = 116.1847预测值7 = 0.3 * 145 + 0.7 * 116.1847 = 118.74929因此,根据指数平滑法,下一个月的购买金额预测值为118.74929。

利用统计图表进行分析与决策

利用统计图表进行分析与决策

(1)分别求出甲、乙两名学生5次测验的平均分.
(2)如果你是他们的辅导老师,你应选派哪一名学生参加
这次数学竞赛,请结合你所学的统计知识说明理由.

95
90
85
80
¼×
75
Ò
70
65
60
Ò» ÔÂ
¶þ ÔÂ
Èý ÔÂ
ËÄ ÔÂ
Îå ÔÂ
5. 利用图(1)、图(2)提供的信息,回答下列问题
2001、2002年总支出图
1. 一家酒店所有人员的月收入情况如下:(单位:元)
职 位 经理 领班 领位员 厨师 厨师助理 服务员 洗碗工
人数 1
2
2
2
3
收入 4000 1200 800 1500 800 (元)
8
2
700
500
(5)请根据统计表提供的信息,谈谈自己的感想(不超过 50字)
2.下面是某厂甲、乙两台机床加工某种零件 的频数分布表
1. 一家酒店所有人员的月收入情况如下:(单位:元)
职 位 经理 领班 领位员 厨师 厨师助理 服务员 洗碗工
人数 1
2
2
2
3
8
2
收入 4000 1200 800 1500 800 (元)
700
500
(1)该酒店所有人员的平均收入是多少? (1000元)
(2)该酒店所有人员收入的中位数是多少?(750元) (3)该酒店所有人员收入的众数是多少? (700元) (4)该酒店在其招聘广告中称该酒店员工的平均月收入是 1000元,可是一新员工工作了一段时间后, 发现他所获得的 报酬与他原本期望的数字相差甚远,问问周围的同事也没有 几个达1000元的,你认为招聘广告说的是事实吗?令人迷惑的 原因又是什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末案例要求
以中国股市为背景(主要是上海证券交易所和深圳证券交易所中的企业),选择某一特定企业,以此企业股价为研究对象,选择时间序列模型中和回归模型分别对其股价进行建模预测。

要求:
(1)建立时间序列模型需对研究对象建立如下模型
1.画出所选数据的图形。

2.建立时间序列分解模型,并给出计算表
3.根据选择数据的图形和差分结果选择适当的曲线进行趋势外推。

4.给出一次移动平均预测表(n值自己确定)。

5.给出一次指数平滑法计算表(a值任意取3个,并计算这三个a值条件下的均方差)
6.建立线性二次移动平均预测模型,并给出计算表。

7.建立线性二次指数平滑模型(包括布朗单一参数线性指数平滑模型和霍尔特双参数
线性指数平滑模型),并给出计算表。

8.建立二次曲线指数平滑预测模型,并给出计算表。

9.建立温特线性与季节指数平滑预测模型,并给出计算表
10.对每种模型,计算其标准误差。

(2)建立回归模型时需要做到以下要求
1.建立回归模型(根据数据图形特征,建立相应的多元线性回归模型或非线性回归模
型)
2.要求对模型中的自变量进行说明,为什么要选择这个影响因素作为自变量,有哪些
学者用这个影响因素作为回归模型的自变量。

3.求出回归模型中的系数
4.对回归模型进行拟合优度检验,包括(标准误差、决定系数,相关系数,模型的F
值,回归系数的t检验和D-W值检验)
(3)将以上所有的模型作为单项预测模型建立线性组合模型和最优线性组合模型。

论文以WORD文档格式打印,最后一节课上交。

相关文档
最新文档