《一元二次方程根与系数的关系》教案
九年级数学上册《一元二次方程的根与系数的关》教案、教学设计

根据学生的个体差异,布置不同难度的课后作业,使每个学生都能在原有基础上得到提高。同时,针对学生在课堂上的表现,进行有针对性的辅导,解决他们在学习过程中遇到的问题。
7.教学评价,持续改进
通过课堂提问、作业批改、测验等方式,了解学生的学习效果,对教学方法和策略进行调整,以提高教学质量。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一元二次方程的求解方法有初步的了解。在此基础上,他们对一元二次方程的根与系数之间的关系有一定的探究欲望,但可能对根的判别式和韦达定理的理解还不够深入。因此,在教学过程中,教师应充分调动学生的积极性,引导他们通过观察、思考、总结,逐步理解并掌握一元二次方程的根与系数之间的关系。
1.培养学生对待数学问题的认真态度,严谨治学,克服困难,勇于探索。
2.培养学生用数学的眼光观察世界,认识世界,增强学生的数学应用意识。
3.培养学生的创新精神,激发学生的学习兴趣,使学生在学习过程中体验成功,树立自信心。
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重培养学生的数学思维和解决问题的能力,为学生的终身发展奠定基础。
四、教学内容与过程
(一)导入新课
在课堂的开始,我将通过一个贴近学生生活的实际问题来导入新课:“同学们,假设我们班要举行一次篮球比赛,已知比赛场地上有两个篮筐,分别距离地面一定高度。现在我们需要计算出篮球从地面抛起,到达篮筐高度时的速度。这个问题可以通过一元二次方程来求解,那么如何找到这个方程的根呢?”这个问题既能够引起学生的兴趣,又能让学生感受到数学与生活的紧密联系。
此外,学生在解决实际问题时可能会遇到一定的困难,需要教师耐心指导,帮助学生建立数学模型,提高学生的数学应用能力。同时,学生的个体差异较大,教师应关注每个学生的学习进度,针对性地进行教学辅导,使他们在原有基础上得到提高。
一元二次方程的根与系数的关系-人教版九年级数学上册教案

一元二次方程的根与系数的关系——人教版九年级数学上册教案一、教学目标1.了解一元二次方程解的概念和性质,掌握求方程解的方法;2.学会熟练运用求根公式及应用一元二次方程解决实际问题;3.掌握一元二次方程根的数量及其相关系数的关系;4.培养分析、解决实际问题的能力和兴趣。
二、教学重点与难点1.教学重点:掌握一元二次方程根的数量及其相关系数的关系。
2.教学难点:能够运用一元二次方程解决实际问题。
三、教学过程1.复习回顾通过让学生进行口算或板书,回忆一元二次方程的定义和一些基本概念例如:二次项的系数、判别式等。
2.引入新知1.学生通过求解以下方程来感受一元二次方程根的划分:x2−2x+1=0,x2−2x+2=0,x2−2x+3=02.通过口算讨论发现,x2−2x+1=0这个方程有极特殊的一点,即方程的两根重合。
这便引出了一元二次方程解的概念和性质。
3.讨论不同的二次项系数对一元二次方程的根的影响。
4.讲解一元二次方程的解法,介绍求根公式并让学生观察、理解其含义。
3.例题讲解1.练习使用求根公式求解一元二次方程。
2.通过题目的加减乘除,让学生掌握如何将实际问题建立为一元二次方程,运用一元二次方程解决实际问题。
4.拓展练习通过配合精心设计的习题,引导学生总结一元二次方程根的数量和系数的关系。
5.归纳总结1.让学生回想本节课学过的知识点。
2.教师要求学生口头或书面介绍一元二次方程,比如:定义、图像、根的数量等方面的内容。
四、课后作业1.完成课本相关练习和拓展试题。
2.结合生活实际,自编3道一元二次方程及其解决实际问题的例题,写在作业本上。
五、教学反思在本节课的备课过程中,从实际出发,将一元二次方程的解和实际联系起来,让学生能够欣赏数学课程应用的实际面貌,从而激发学生的数学兴趣。
同时,在教学中也要注重实际情况的演示和练习,让学生能够充分接触到不同情境下使用一元二次方程等的运算过程,从而更加灵活地应用数学。
《一元二次方程根与系数的关系》教案

一元二次方程根与系数的关系教学目标:1、掌握一元二次方程根与系数的关系。
2、会利用定理求解一元二次方程两根之和与两根之积。
3、通过学生自己探索,发现根与系数关系,增强学生信心,激发学生对于数学的学习兴趣和探究欲望。
教学重点1、根与系数关系及运用 教学难点1、如何通过求根公式发现韦达定理。
2、如何运用韦达定理解决一些一元二次方程的求解问题。
过程一、复习提问(1)写出一元二次方程的一般式和求根公式。
ax 2+bx+c=0 (a ≠0) x= (b 2-4ac ≥0)(2)求一个一元二次方程,使它两根分别为①2和3;②-4和7;③3和-8;④-5和-2 二、新课讲解如果方程x 2+px+q=0有两个根是x 1,x 2 那么有x 1+ x 2=-p, x 1 •x 2=q猜想:2x 2-5x+3=0,这个方程的两根之和,两根之积是与各项系数之间有什么关系?问题2;对于一元二次方程的一般式是否也具备这个特征?设x 1 、x 2是一元二次方程ax 2+bx+c=0 (a ≠0)的两个根,则两根之和与两根之积与各项系数之间有什么样的关系? x 1+x 2= x 1·x 2=三、巩固练习a acb b 242-±-a b-ac口答下列方程的两根之和和与两根之积。
1)x 2-3x+1=0 2) x 2-2x=2 3) 2x 2-3x=0 4) 3x 2=1 判断对错,如果错了,说明理由。
1) 2x 2-11x+4=0两根之和11,两根之积4。
2) x 2+2=0两根之和0,两根之积2。
3) x 2+x+1=0两根之和-1,两根之积1。
四、能力提高例题1 已知方程x 2+kx+k+2=0的两个实数根是x 1,x 2且x 12+x 22=4求k 的值 解:(略)引申:(1、若ax 2+bx +c =0 (a ≠0 且 ∆≥0) (1)若两根互为相反数,则b =0; (2)若两根互为倒数,则a =c;(3)若一根为0,则c =0 ; (4)若一根为1,则a +b +c =0 ;(5)若一根为-1,则a -b +c =0; (6)若a 、c 异号,方程一定有两个实数根例题2 方程mx 2-2mx+m-1=0(m ≠0 ) 有一个正根,一个负根,求m 的取值范围。
人教版九年级数学上册21.2.4一元二次方程的根与系数的关系(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程的根与系数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.培养学生的数学建模素养,通过运用根与系数的关系解决实际问题,使学生能够建立数学模型,感受数学与现实生活的联系,提高数学应用意识。
三、教学难点与重点
1.教学重点
-核心知识:一元二次方程的根与系数的关系,特别是根的判别式Δ=b²-4ac的应用。
-重点内容:
-判别式Δ的物理意义及其与方程根的关系。
-根与系数的关系式x₁+x₂=-b/a和x₁x₂=c/a的推导和应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.能够运用根与系数的关系解决实际问题,如求解二次方程的根、判断根的符号等。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力,通过探索一元二次方程的根与系数的关系,使学生能够运用逻辑推理分析问题,从而提高解决问题的能力。
2.培养学生的数学抽象素养,让学生从具体的方程实例中抽象出根与系数之间的关系,培养学生对数学规律的抽象概括能力。
一元二次方程的根与系数的关系》教案

一元二次方程的根与系数的关系》教案一元二次方程的根与系数的关系知识与技能】掌握一元二次方程根与系数的关系,能够使用关系定理求已知一元二次方程的两根之和及两根之积,并解决一些简单的问题。
过程与方法】通过探究一元二次方程根与系数的关系,培养学生的观察思考、归纳概括能力和解决问题的能力,渗透整体的数学思想和求简思想。
情感态度】通过学生自主探究,发现根与系数的关系,增强研究的信心,培养科学探究精神。
教学重点】根与系数的关系及运用。
教学难点】定理的发现及运用。
一、情境导入,初步认识我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理,而我们的数学学科中更蕴藏着大量的规律。
那么一元二次方程中是否也存在什么规律呢?今天我们一起去探究,感受一次当科学家的滋味。
二、思考探究,获取新知解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1·x2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?教学说明】通过让学生计算一些特殊的一元二次方程的两根之和与两根之积,引导学生从中发现存在的一般规律,渗透特殊到一般的思考方法。
归纳总结】一般地,对于关于x的一元二次方程ax2+bx+c=0(a≠0),用求根公式求出它的两个根x1、x2,由一元二次方程ax2+bx+c=0的求根公式可知:x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a则有以下结果:x1+x2=-b/a,x1·x2=c/a教学说明】让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程。
三、运用新知,深化理解1.求下列方程的两根之和与两根之积。
1)x2-6x-15=0;2)5x-1=4x2;3)x2=4;4)2x2=3x。
2.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.1)求k的取值范围;2)若|x1+x2|=x1x2-1,求k的值。
九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计

1.通过引导学生在自主探究、合作交流的过程中发现一元二次方程的根与系数的关系,培养学生发现问题、分析问题和解决问题的能力。
2.利用具体的实例,让学生在实际操作中掌握一元二次方程的根与系数的关系,提高学生的实际操作能力和应用能力。
3.通过对一元二次方程根与系数关系的探究,培养学生数形结合的思想,让学生学会从多角度分析问题,形成严密的逻辑思维。
5.拓展延伸,提高思维:
-通过拓展延伸性问题的设置,引导学生运用一元二次方程根与系数关系解决更复杂的问题,提高学生的思维能力和创新能力。
6.总结反馈,反思提升:
-在课堂结束前,引导学生总结所学内容,进行自我反馈,发现不足,及时改进。
-教师对课堂教学进行反思,了解学生的学习情况,调整教学策略,提高教学质量。
-根据实际问题,列出一元二次方程,并运用根与系数关系求解。
3.拓展题:
-探究一元二次方程ax^2 + bx + c = 0(a≠0)的根与系数之间的关系,并给出证明。
-通过阅读教材或其他资料,了解一元二次方程根与系数关系在其他数学分支中的应用。
4.实践题:
-调查生活中的一元二次方程问题,例如:物品的定价与折扣、投资收益等,并运用所学知识解决实际问题。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对本节课所学的一元二次方程根与系数关系,讨论以下问题:
a.一元二次方程根与系数关系在实际问题中的应用;
b.如何运用根与系数关系解决具体问题;
c.根的判别式和韦达定理在解题过程中的作用。
2.教学方法:
-采用小组合作学习法,促进学生之间的交流与讨论。
四、教学内容与过程
(一)导入新课
《根与系数的关系》教案

《根与系数的关系》教案一、教学目标1. 让学生理解一元二次方程的根与系数之间的关系。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对一元二次方程的解法及应用的理解。
二、教学内容1. 一元二次方程的一般形式:ax^2 + bx + c = 0。
2. 根的判别式:Δ= b^2 4ac。
3. 根与系数的关系:(1) 若有两个实数根,则根的值为:x1 = (-b + √Δ) / (2a),x2 = (-b √Δ) / (2a)。
(2) 若有两个相等的实数根,则根的值为:x1 = x2 = -b / (2a)。
(3) 若没有实数根,则方程无实数解。
三、教学重点与难点1. 教学重点:根与系数之间的关系。
2. 教学难点:理解根的判别式Δ的意义及应用。
四、教学方法1. 采用问题驱动法,引导学生探究根与系数的关系。
2. 通过实例分析,让学生感受数学知识在实际问题中的应用。
3. 利用数形结合法,帮助学生直观地理解根与系数之间的关系。
五、教学准备1. 教学课件:展示一元二次方程的图像,直观地展示根与系数之间的关系。
2. 实例:准备一些实际问题,让学生运用根与系数的关系解决问题。
3. 练习题:设计一些有关根与系数关系的练习题,巩固所学知识。
六、教学过程1. 引入新课:通过复习一元二次方程的一般形式和根的判别式,引导学生思考根与系数之间的关系。
2. 讲解根与系数的关系:结合课件和实例,讲解一元二次方程的根与系数之间的关系。
3. 互动环节:学生分组讨论,尝试解决实例中的问题,教师巡回指导。
4. 练习环节:学生独立完成练习题,教师选取部分题目进行讲解和解析。
5. 总结与反思:学生分享学习心得,教师总结根与系数之间的关系及其应用。
七、教学拓展1. 探讨二元二次方程的根与系数之间的关系。
2. 研究多项式方程的根与系数之间的关系。
3. 引导学生思考根与系数关系在实际问题中的应用,如线性规划、优化问题等。
八、课后作业1. 复习根与系数的关系,巩固所学知识。
八年级数学下册《一元二次方程的根与系数的关系》教案、教学设计

(一)教学重难点
1.重点:一元二次方程的根与系数的关系,求根公式的推导与应用,以及在实际问题中的运用。
2.难点:
-理解判别式的概念及其在一元二次方程根的性质判断中的应用。
-对求根公式的记忆和熟练运用,尤其是公式中各个符号的含义和它们之间的关系。
-将实际问题抽象成一元二次方程模型,运用数学知识解决实际问题。
-借助几何图形或动画,形象地展示求根公式的推导过程。
-通过实际例题,指导学生如何运用求根公式解题。
(三)学生小组讨论
1.将学生分成若干小组,针对以下问题进行讨论:
-一元二次方程的根与系数之间存在哪些关系?
-如何利用判别式判断方程的根的情况?
-求根公式在解题过程中的作用是什么?
2.各小组汇报讨论成果,老师进行点评和补充。
4.教学策略与方法:
-采用差异化教学,针对不同学生的学习风格和能力水平,提供个性化的指导和帮助。
-利用信息技术,如数学软件、在线平台等,为学生提供丰富的学习资源和工具,提高学习效率。
-定期进行学习反馈,通过作业、小测验等形式,及时了解学生的学习情况,调整教学进度和方法。
5.情感态度与价值观的培养:
-在教学过程中,注重鼓励学生,增强他们的自信心,培养面对困难的勇气和解决问题的毅力。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了一元一次方程的解法及其应用,对于一元二次方程也有初步的认识。在此基础上,学生对于本章节《一元二次方程的根与系数的关系》的学习,既有知识储备上的优势,也存在一定难度。大部分学生能够理解根与系数的关系,但可能在运用求根公式解题时,对公式的记忆和运用上存在困难。此外,学生在解决实际问题时,可能难以将问题抽象成一元二次方程模型。因此,在教学过程中,教师应关注以下几点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元二次方程根与系数的关系》教案
教学目标:
1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合作交流的学习习惯。
2、探索、运用一元二次方程的根与系数关系,由一元二次方程的一个根求出另一个根及未知系数,提升学生的合作意识和团队精神。
3、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。
教学重点:
一元二次方程的根与系数的关系及简单应用。
教学难点:
一元二次方程的根与系数的关系的推导。
数学思考与问题解决:
通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“韦达定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程。
一、自学互研 探索发现(每小题10分,共30分)(自主完成,组长检查)
【师生活动】:
教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;评价、鼓励、调动学生参与的主动性和积极性。
学生独立完成导学案,观察、对比、发现问题,逐步由易到难,探索出一元二次方程的根与系数的关系;小组长检查小组成员完成情况;分小组汇报自学成果。
【设计意图】:
本环节为“一元二次方程的根与系数的关系”的发现过程,即感性认识过程。
通过几个具体的方程,经过观察、比较、分析、归纳,感性地得出一元二次方程的根与系数的关系的一般规律。
培养学生发现问题、探求规律的学习习惯和注重自主加合作的学习方式。
【学案内容】:
1、方程:X 2+3X –4=0
(1)二次项系数是_____ ,一次项系数是______ ,常数项是______。
(2)解得方程的根X 1=______ ,X 2=______ 。
(3)则X 1+X 2=_______, 方程中 ()二次项系数
一次项系数=- (4) X 1·X 2=_______, 方程中 ()二次项系数
常数项=
2、方程3 X 2+X-2=0
(1)二次项系数是_____,一次项系数是______ ,常数项是______。
(2)解得方程的根X 1=______ ,X 2=______ 。
(3)则X 1+X 2=_______, 方程中 ()二次项系数
一次项系数=- 比一比,你发现了什么呢:__________________________________
(4) X 1·X 2=_______, 方程中 ()二次项系数
常数项= 比一比,你发现了什么呢:__________________________________
3、方程X 2-2X=
(1)二次项系数是_____,一次项系数是______ ,常数项是______。
(2)解得方程的根X 1=______ ,X 2=______ 。
(3)由你发现的规律可知:
X 1+X 2=()(=-________)(________) X 1·X 2=()=)
(_________)(_________ 二、合作求证 生成新知(每小题10分,共20分)(合作完成,交换检查)
【师生活动】:
教师引导,巡视,随时发现问题、了解学生导学案完成情况并点
拨;鼓励学生参与合作学习,调动学生合作交流的主动性和积极性。
学生小组合作完成导学案,通过推导证明前面的结论;实现一元
二次方程的根与系数的关系感性认识到理性认识的转变;小组长检查小组成员完成情况后,两小组交换检查推导过程;分小组汇报合作学习成果。
【设计意图】:
本环节为“一元二次方程的根与系数的关系”的证明过程,即理性认识过程。
让学生自己发现问题、探求规律,两从理论角度加以验证,经历从特殊到一般的科学探索过程,培养学生科学、严谨的求学态度,团队精神和合作意识,促进学生的相互交流、学习。
【学案内容】:
(1)根据以上规律,若aX 2+bX+c=0 (a ≠0) 的两个根为X 1和X 2,则
X 1+X 2=_______, X 1·X 2=_______。
(2)这是不是一个普遍规律呢?在所有的一元二次方程中,是否成立呢?请用一元二次方程的一般形式证明:(b2-4a c≧0)
∵X1=
a ac
b b
2
4 2-
+
-
X2=
a ac
b b
2
4 2-
-
-
∴X1+X2=
∴X1·X2=
三、交流展示目标达成(每小题10分,共40分)(合作完成,分组展示)【师生活动】:
教师巡视,随时发现问题、了解学生导学案完成情况并适时点拨、强调;充分利用现有设施设备,为学生搭建电子白板、实物投影、黑板等不同的展示自我的平台;适时评价、鼓励学生能多种方法解决问题,促进发散思维的培养。
导学案【目标1】:学生先独立完成,组长检查,后组内交流,全班汇报、评价。
(学生利用一体机白板演示解题过程)
导学案【目标2】:小组合作完成,组长督促,全班汇报、评价。
(学生利用实物投影展示解题过程)
导学案【目标3】:小组合作完成,组长督促,全班汇报、评价。
(学生利用黑板展示解题过程)
【设计意图】:
本环节为“一元二次方程的根与系数的关系”的实践过程,即教学目标的达成、检测过程。
设计了三个不同难度且有梯度的“目标”,让学生由易到难、由浅入深,加深对一元二次方程的根与系数的关系的理解和应用,强调学生对科学的严谨性和书写的规范性,培养学生对所学知识的应用意识和应用能力,以及合作学习意识与数学语言的表述能力。
【学案内容】:
【目标1】不解方程,求下列方程的两根的和与两根的积各是多少?
(1)x 2-3x+1=0; (2)3x 2-2x=2;
【目标2】已知方程X 2-4X+M=0的一个根是-2,求方程的另一个根及M 的值。
【目标3】已知X 1 ,X 2 是方程2X 2-4X-1=0的两个实数根,求 的值。
四、查漏补缺 总结提高(共10分)(自主完成,集体分享)
【师生活动】:
教师鼓励学生谈所学所想所获,集体分享学习成果,归纳课堂所学知识点,解决学习中仍然存在的问题和困惑。
【设计意图】:
本环节为本节课的总结提高过程。
目的是帮助所有学生总结回顾、查漏补缺,形成知识体系,培养学生及时小结、善于归纳梳理的学习习惯,提高学生运用数学语言的能力和口头表达能力。
【学案内容】:
请你谈谈本节课的收获或存在的问题。
__________________ 22
1
2x x。