克劳斯硫磺回收主要设备及操作条件
克劳斯法(硫回收)

克劳斯法- 正文将硫化氢转变为硫磺的工业方法,由英国人C.F.克劳斯于1883年发明。
此法广泛用于煤、石油、天然气的加工过程(如合成氨原料气生产、炼厂气加工等),在脱硫产生的含硫化氢气体中回收硫,并可解决炼厂废气对大气的污染问题。
克劳斯法回收硫的纯度可达到99.8%,可作为生产硫酸的一种硫资源,也可作其他部门的化工原料。
克劳斯法的主要化学反应为:自脱硫装置来的酸性气全部进入燃烧炉(见图),其中的硫化氢有三分之一可氧化成二氧化硫,并与未氧化的硫化氢一起进入转化器,进行催化转化。
为完成部分燃烧反应,通入燃烧炉的空气需严格控制,这是克劳斯法的操作关键。
燃烧炉的温度约为1200℃,燃烧产物中除二氧化硫、水和氮外,还有少量由硫化氢直接分解而生成的元素硫。
为回收热量,燃烧产物在进入转化器之前先经废热锅炉发生蒸汽。
转化器为一固定床反应器,内装有氧化铝催化剂(见金属氧化物催化剂),入口温度控制在220~240℃。
由于过程为放热反应,出口温度为270~300℃。
自转化器出来的反应产物进入冷凝冷却器,液态硫磺流至硫磺罐。
为达到较高的硫回收率,工业装置一般还设有二级、三级甚至四级转化器。
在转化器中能否达到较高的转化率,关键是要控制H2S/SO2的摩尔比,使之保持为2,同时要使用性能较好的氧化铝催化剂。
采用两级转化时,硫的回收率可达93%~95%,三级转化时可达94%~96%,四级转化时可达95%~97%。
从克劳斯装置排出的尾气中还含有一定数量的二氧化硫(8000~18000ppm)。
按环保要求,还需将尾气进行处理,使最终排入大气的尾气中含二氧化硫量在300ppm左右,使硫的总回收率达99.8%左右。
克劳斯脱硫工艺

前言在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’H2S + 3/2 O2 = S02 + H2O (1)2H2S + S02 = 3/X Sx +2H2O (2)其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应:CS2 + H2O = COS + H2S (3)COS + H20 = H2S + C02 (4)本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述.1、工艺的发展历程1.1原始的克劳斯工艺1883年英国化学家C,F•C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。
原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。
关于后者的反应过程列于下式:2NaCl + H2S04 = Na2SO4 + 2HCl (5)Na2SO4 + 2C = Na2S + 2CO2 (6)Na2S + CaCO3 = Na2CO3 + CaS (7)为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8)反应式(9)进行反应。
反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。
据报导,H2S + 1/2 O2 = 1/X Sx + H2O (9)如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气体。
硫磺回收系统的操作要求和工艺指标

一、制硫工艺原理硫磺回收系统的操作要求和工艺指标Claus制硫总的反应可以表示为:2H2S+02/X S x+2H20在反应炉内,上述反应是部分燃烧法的主要反应,反应比率随炉温变化而变化,炉温越高平衡转化率越高;除上述反应外,还进行以下主反应:2H2S+3O2=2SO2+2H2O在转化器中发生以下主反应:2H2S+SO23/XS x+2H2O由于复杂的酸性气组成,反应炉内可能发生以下副反应:2S+2CO2COS+CO+SO22CO2+3S=2COS+SO2CO+S=COS在转化器中,在300摄氏度以上还发生CS2和COS的水解反应:COS+H2O=H2S+CO2二、流程描述来自上游的酸性气进入制硫燃烧炉的火嘴;根据制硫反应需氧量,通过比值调节严格控制进炉空气量,经燃烧,在制硫燃烧炉内约65%(v)的H2S进行高温克劳斯反应转化为硫,余下的H2S中有1/3转化为SO2燃烧时所需空气由制硫炉鼓风机供给。
制硫燃烧炉的配风量是关键,并根据分析数据调节供风管道上的调节阀,使过程气中的H2S/SO2比率始终趋近2:1,从而获得最高的Claus转化率。
自制硫炉排出的高温过程气,小部分通过高温掺合阀调节一、二级转化器的入口温度,其余部分进入一级冷凝冷却器冷至160℃,在一级冷凝冷却器管程出口,冷凝下来的液体硫磺与过程气分离,自底部流出进入硫封罐。
一级冷凝冷却器管程出口160℃的过程气,通过高温掺合阀与高温过程气混合后,温度达到261℃进入一级转化器,在催化剂的作用下,过程气中的H2S和SO2转化为元素硫。
反应后的气体温度为323℃,进入二级冷凝冷却器;过程气冷却至160℃,二级冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐。
分离后的过程气通过高温掺合阀与高温过程气混合后温度达到225℃进入二级转化器。
在催化剂作用下,过程气中剩余的H2S和SO2进一步转化为元素硫。
反应后的过程气进入三级冷凝冷却器,温度从246℃被冷却至1.60~C。
克劳斯硫回收操作规程

克劳斯硫回收操作规程(一)硫回收工段工艺流程叙述来自上游甲醇洗工段的酸性气温度为37.2℃,压力为0.22MPaG,经进料管分离罐(V1301)分出挟带液后,按一定比例分成两股,其中一股去H S 燃烧炉(F1301)。
该流股经过控制阀后压力降为0.06 2MPaG 进入H S 燃烧炉(F1301),在H S 燃烧炉(F1301)中,酸性2 2气和一定比例的反应空气发生燃烧反应,反应生成SO的和燃烧反应2剩余的H S 进一步发生部份克劳斯反应,反应后的酸性气体温度可达2800℃以上。
高温酸性气随后进入H S 余热回收器(E1301)回收器2废热并副产蒸汽,同时将反应生成的单质硫部份冷凝。
H S 余热回收2器(E1301)一共有四程换热管(PASS1~4)回收本工序工艺气的废热,高温酸性气废热的回收是通过其中的第一、二换热管(PASS1、PASS2)进行的。
高温酸性气全部通过PASS1 后温度降为600℃,然后分成两股,其中一股流经PASS2 温度进一步降至185℃,然后和未经过PASS2 的流股混和。
通过调整两个流股的比例可使混合后的温度控制在约300℃。
混合后的酸性气流股和进料器分离罐(V1301)后未进入H S 燃烧炉(F1301)的旁路酸性气体混合后温度降至230℃、2压力0.04MPaG 进入克劳斯反应器(R1301)一段。
在该段床层酸性气中的H S 和SO 在催化剂LS-971 和LS-300 的作用下发生克劳斯2 2反应生成单质硫,H S 的转化率为80%~85%。
流出反应器的酸性气2体温度约为340℃,经过H S 余热回收器PASS3 回收器废热后,温度2降为175℃,同时绝大部份的单质硫被冷凝下来。
位达到克劳斯反应器二段所需的温度,流程中设置了第一再加热器 (E1302),酸性气进入该加热器预热到约238℃后进入克劳斯反应器二段继续进行克劳斯反应以回收剩余的硫。
在二段反应床中,H S 的转化率约为75%,反2应后的酸性气温度约为255℃。
克劳斯法硫磺回收方法

克劳斯法硫回收一、工艺设计三高无烟煤:元素分析含硫3.3%造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。
本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。
同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。
二、工艺方法1、常用硫回收工艺(1) 液相直接氧化工艺有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。
液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。
(2) 固定床催化氧化工艺硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。
Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。
Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。
2. 克劳斯硫回收工艺特点常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。
其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。
但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。
一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。
克劳斯法硫回收工艺培训课件

7、液硫储槽 包括盘管和容器两部分 。 四、影响操作的因素 1、原料气中H2S含量 原料气中H2S含量高可增加硫回收率和降 低装置投资。
上游脱硫装置有效降低酸气中CO2,对改 善克劳斯装置原料气质量非常有利。
2、原料气和过程气中杂质组分含量
1)CO2
原料气中一般含有CO2,它不仅起稀释作 用,也会和H2S在炉内反应生成COS、CS2, 这两种作用都将导致硫回收率降低。当原 料气中CO2 从3.6%上升至43.5%,随尾气排 放的硫量将增加52.2%。
4、一二段换热器、一二三段冷凝器
换热器冷凝器的作用是把转化器生成的元 素硫冷凝成液体,同时回收热量。
5、一二三段液硫捕集器
立式包括容器、盘管、丝网、波纹管,功 能是从冷凝器出口尽可能回收液硫和硫雾 沫,捕集效果好坏对硫产量影响至关重要。
6、液硫封
立式 包括夹套、容器两部分,通过建立液 硫液位,利用液硫压力封住系统中工艺气 体,防止串出系统,造成危害。
2、废热锅炉
从反应器出口气流中回收热量并发生 蒸汽,同时使过程气温度降至下游设备所 要求的温度并冷凝回收硫。
3、一二三段转化器
转化器的功能是使过程气中的H2S和 SO2在床层上继续克劳斯反应生成元素硫, 同时使过程气中COS、CS2等有机硫化物在 催化剂床层上水解为H2S和CO2,主要反应 在一级反应器中进行,一级反应器实际空 速远远大于二、三级,考虑有机物水解要 求,一级转化器出口应控制在310~340℃, 由于各级冷凝分离了大量产物硫,也不存 在有机物水解问题,二、三级转化器在较 低温度下操作,可获得较高转化率。
二、原材料及产品主要技术规格:
1、 原材料技术规格
克劳斯催化剂主要成分为氧化钛,此 催化剂不需要还原,升温后即可使用。型 号为LYTS-01TiO2 LYTS-811,是白色氧化 铝催化剂,堆密度~0.7g/cm3,一次装填量 30m3。物理性质:外形尺寸直径4~6mm,比 表面≥300m2/g,孔容≥0.40ml/g,堆密度 ≥0.65kg/l,抗压碎强度>140N/粒,磨耗率 <0.3%,催化剂寿命在3年左右。
克劳斯硫回收操作规

克劳斯硫回收操作规程1. 岗位任务及意义我厂所采用的原料煤硫含量较高, 如果不加以回收,就会污染空气。
本岗位接受低温甲醇洗岗位送来的硫化氢尾气, 通过克劳斯回收装置回收,并制成固体硫磺。
本装置H2S的总转化率90-95 %; COS不发生克劳斯反应,通过尾气烟囱直接放空。
年产硫磺1 万吨,回收硫磺不仅经济效益可观还可以消除污染。
2. 工艺原理及流程叙述2.1工艺原理克劳斯法回收硫的基本反应如下:H2S+ 1/2Q—S+ H2O (1)H2S+ 3/ 2Q2—SQ+ H2Q (2)2H2S + SQ—3S+ 2H2Q (3)反应(1)(2)在燃烧室中进行,在温度1150C— 1300C,压力0.06MPa 和严格控制气量的条件下,将硫化氢燃烧成二氧化硫,为催化反应提供(H2S+ CS)/SQ为2/1的混合气体。
此气体通过ALQ基触媒,按反应(3)生成单质硫。
2.2流程叙述来自上游甲醇洗工序的酸性气温度为37.2 C,压力为0.22MPaG经进料管分离罐(V1301)分出挟带液后,按一定比例分成两股,其中一股去HtS 燃烧炉(F1301)。
该流股经过控制阀后压力降为0.06 MPaG 进入HS燃烧炉(F1301),在H2S燃烧炉(F1301 )中,酸性气和一定比例的反应空气发生燃烧反应,反应生成SO2 的和燃烧反应剩余的H2S进一步发生部分克劳斯反应,反应后的酸性气体温度可达800C以上。
高温酸性气随后进入H2S余热回收器(E1301)回收器废热并副产蒸汽,同时将反应生成的单质硫部分冷凝。
HS余热回收器(E1301)—共有四程换热管(PASS什4)回收本工序工艺气的废热,高温酸性气废热的回收是通过其中的第一、二换热管(PASS、PASS2进行的。
高温酸性气全部通过PASS1后温度降为600C,然后分成两股,其中一股流经PASS2温度进一步降至185C,然后和未经过PASS2勺流股混和。
通过调整两个流股的比例可使混合后的温度控制在约300 C o混合后的酸性气流股和进料器分离罐(V1301 )后未进入H2S燃烧炉(F1301)的旁路酸性气体混合后温度降至230C、压力0.04MPaG进入克劳斯反应器(R1301)—段。
硫磺回收装置工艺操作规程

3万吨/年硫磺回收装置工艺操作规程1.岗位任务本岗位负责处理炼油厂干气、液化气脱硫装置和酸性水汽提装置产生含高浓度硫化氢的酸性气,酸性气经克劳斯工段回收大部分硫,尾气经焚烧炉完全燃烧,使装置既回收了资源又保护了环境,达到了化害为利的目的。
2.岗位管辖范围本岗位管辖范围为:酸性气预处理、克劳斯制硫、尾气焚烧、液硫脱气和输送、以及公用工程系统的所有工艺设备和仪表的操作和维护工作。
3. 工艺操作指标3.1克劳斯工段1、脱硫酸性气入装置压力:30~50KPa,酸性气脱液罐D-8101液位30-80%,脱硫酸性气流量160~1823Kg/h,空气/脱硫酸性气重量比例:1.45-1.85,污水汽提酸性气流量50~334Kg/h,空气/污水酸性气重量比例:1.85~2.05。
2、反应炉F-8101微调空气流量:350-850Kg/h,主空气流量:505~2862 Kg/h。
反映炉前空气压力:不大于0.035MPa。
3、反应炉F-8101燃料气流量16~48 Kg/h,燃料气压力:0.27~0.33MPa,空气/燃料气重量配比:12.0~14.0,燃料气脱液罐D-8102液位30~80%。
4、反应炉F-8101炉膛温度:1100~1250℃。
5、反应炉废热锅炉ER-8101液位:40~70%。
6、第一级克劳斯反应器R-8101入口温度:225~250℃,床层温度:不大于350℃。
7、硫磺冷凝器E-8101/8102/8103 液位:40~70%。
8、第二级克劳斯反应器R-8102入口温度205~220℃,床层温度:不大于350℃。
9、克劳斯尾气浓度:H2S-2S02:-1~1%(V)。
10、液硫池T-8101空气流量75~160Kg/h,废气总流量105~200Kg/h。
液硫温度130~155℃,气相温度:不大于170℃。
11、低压蒸汽压力:0.33~0.42MPa,低压蒸汽温度:152-165℃。
12、焚烧炉F-8102第一空气流量:284~2026Kg/h,瓦斯压力:0.25~0.33MPa,空气/瓦斯重量比例15~25,瓦斯流量:14.0~140Kg/h,炉膛温度675~725℃,烟道气氧含量:1%~5%(v)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:SM-ZD-41016克劳斯硫磺回收主要设备及操作条件Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives编制:____________________审核:____________________时间:____________________本文档下载后可任意修改克劳斯硫磺回收主要设备及操作条件简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
现以直流法为例,这类硫磺回收装置的主要设备有反应炉、余热锅炉、转化器、硫冷凝器和再热器等,其作用和特点如下。
1. 反应炉反应炉又称燃烧炉,是克劳斯装置中最重要的设备。
反应炉的主要作用是:①使原料气中1/3体积的H₂S氧化为SO₂;②使原料气中烃类、硫醇氧化为CO₂等惰性组分。
燃烧在还原状态下进行,压力为20~100kPa,其值主要取决于催化转化器级数和是否在下游需要尾气处理装置。
反应炉既可是外置式(与余热锅炉分开设置),也可是内置式(与余热锅炉组合为一体)。
在正常炉温(980~1370℃)时,外置式需用耐火材料衬里来保护金属表面,而内置式则因钢质火管外围有低温介质不需耐火材料。
对于规模超过30t/d硫磺回收装置,外置式反应炉更为经济。
无论从热力学和动力学角度来讲,较高的温度有利于提高转化率,但受反应炉内耐火材料的限制。
当原料气组成一定及确定了合适的风气比后,炉膛温度应是一个定值,并无多少调节余地。
反应炉内温度和原料气中H₂S含量密切有关,当H₂S含量小于30%时就需采用分流法、硫循环法和直接氧化法等才能保持火焰稳定。
但是,由于这些方法的酸气有部分或全部烃类不经燃烧而直接进入一级转化器,将导致重烃裂解生成炭沉积物,使催化剂失活和堵塞设备。
因此,在保持燃烧稳定的同时,可以采用预热酸气和空气的方法来避免。
蒸汽、热油、热气加热的换热器以及直接燃烧加热器等预热方式均可使用。
酸气和空气通常加热到230~260℃。
其他提高火焰稳定性的方法包括使用高强度燃烧器,在酸气中掺入燃料气或使用氧气、富氧空气等。
燃烧时将有大量副反应发生,从而导致H₂、CO、COS 和CS₂等产物的生成。
由于燃烧产物中的H₂含量大致与原料气中的H₂S含量成一定比例,故H₂很可能是H₂S裂解生成的。
CO、COS和CS₂等的生成量则与原料气中CO₂和烃类含量有关。
反应物流在炉内的停留时间(从进口流到出口所需时间)是决定反应炉体积的重要设计参数,一般至少为0.5s。
高H ₂S含量的原料气通常所需停留时间少于低H₂S含量的原料气。
耐火材料的选择和设计十分重要。
因为如果金属表面过热(超过343℃),导致与H₂S直接反应;如果冷却至S0₂、S0₃露点以下,又将导致硫酸冷凝,加速腐蚀。
为保护人身安全,经常安装外置式绝热层和覆盖层,以使金属表面温度高于硫酸露点204℃之上。
2. 余热锅炉余热锅炉旧称废热锅炉,其作用是从反应炉出口的高温气流中回收热量以产生高压蒸汽,并使过程气的温度降至下游设备所要求的温度。
对于大多数内置式反应炉而言,原料气燃烧器置于前段体积较大的单程火管(辐射段)中,过程气随后进入一级或多级管程管束(对流段)中。
前段火管因有外部介质冷却,不需耐火材料保护,但其后的导气板和其他未经冷却、暴露于温度高于343℃过程气中的金属表面则需耐火材料保护。
余热锅炉又有釜式和自然循环式之分,二者都是卧式设备,以保证所有管予都浸入水中。
余热锅炉产生的蒸汽压力通常是1.0~3.5MPa,故余热锅炉出口温度一般高于过程气中硫的露点温度。
然而,仍会有一部分硫蒸气冷凝下来,特别是在负荷不足的情况下,应采取措施将这些液硫从过程气中排出。
,当不能提供高质量锅炉给水或不需要产生蒸汽的地方,可使用乙二醇与水的混合溶液、胺溶液、循环冷却水(不能沸腾)和油浴作冷却液。
3. 转化器(反应器)转化器的作用是使过程气中的H₂S与SO₂在其催化剂床层上继续反应生成元素硫,同时也使过程气中的COS和CS₂等有机化合物水解为H2S与CO₂。
目前,硫磺产量低于1OOt/d的克劳斯装置系将所有催化剂床层用隔板分开并安装在一个卧式转化器中,而大型克劳斯法装置的转化器通常是单独设置的。
规模大于800t/d 的装置也有采用立式的。
由于催化反应段反应放出的热量有限,故通常均使用绝热式转化器,内部无冷却水管。
由于转化器内的反应是放热反应,低温有利于平衡转化率,但COS和CS₂只有在较高温度下才能水解完全。
因此,一级转化器温度较高,以使COS、CS₂充分水解;二级、三级转化器温度只需高到可蒸得满意的反应速度并避免硫蒸气冷凝即可。
通常,一级转化器入口温度为232~249℃;二级转化器入口温度为199~221℃;三级转化器入口温度为188~210℃。
由于克劳斯法反应和COS、CS₂水解反应均系放热反应,故转化器催化剂床层会出现温升。
其中,一级转化器为44~100℃;二级转化器为14~33℃;三级转化器为3.8℃。
因为有热损失,三级转化器测出的温度经常显示出有一个很小的温降。
4. 硫冷凝器硫冷凝器的作用是将反应生成的硫蒸气冷凝为液硫而除去,同时回收过程气的热量。
硫冷凝器可以是单程或多程换热器,推荐采用卧式管壳式冷凝器。
安装时应放在系统最低处,且太多数有1%~2%的倾角坡向液硫出口处。
回收的热量用来发生低压蒸汽或预热锅炉给水。
硫蒸气在进入一级转化器前冷凝(分流法除外),然后在每级转化器后冷凝,从而提高转化率。
除最后一级转化器外,其他硫冷凝器的设计温度在166~182℃,因为在该温度范围内冷凝下来的液硫黏度很低,而且过程气一侧的金属壁温又高于亚硫酸和硫酸的露点。
最后一级硫冷凝器的出口温度可低至127℃,这主要取决于冷却介质。
但是,由于有可能生成硫雾,故硫冷凝器应有良好的捕雾设施,同时应尽量避免过程气与冷却介质之间温差太大,这对最后一级硫冷凝器尤为重要。
硫冷凝器后部设有气液分离段以将液硫从过程气中分离出来。
气液分离段可以与冷凝器组合为一体,也可以是一个单独容器。
5. 再热器再热器的作用是使进入转化器的过程气在反应时有较高的反应速度,并确保过程气的温度高于硫露点。
过程气进入转化器的温度可按下述要求确定:①比预计的出口硫露点高14~17℃;②尽可能低,以使H₂S转化率最高,但也应高到反应速度令人满意;③对一级转化器而言,还应高到足以使COS和CS₂充分水解生成H₂S和CO₂,即常用的再热方法有热气体旁通法(高温掺合法)、直接再热法(在线燃烧炉法)和间接再热法(过程气换热法)等,见图4-8所示。
热气体旁通法是从余热锅炉侧线引出一股热过程气,温度通常为480~650℃,然后将其与转化器上游的硫冷凝器出口过程气混合。
直接再热法是采用在线燃烧器燃烧燃料气或酸气,并将燃烧产物与硫冷凝器出口的过程气混合。
间接再热法则采用加热炉或换热器来加热硫冷凝器出口的过程气,热媒体通常是高压蒸汽、热油和热过程气,也可使用电加热器。
通常,热气体旁通法成本最低,易于控制,压降也小,但其总硫收率较低,尤其是处理量降低时更加显著。
一般可在前两级转化器采用热气体旁通法,第三级转化器采用间接再热法。
直接再热法的在线燃烧器通常使用一部分酸气,有时也使用燃料气。
这种方法可将过程气加热到任一需要的温度,压降也较小。
缺点是如果采用酸气燃烧,可能生成SO₂(硫酸盐化会使催化剂中毒);如果采用燃料气,可能生成烟炱,堵塞床层使催化剂失活。
间接再热法是在各级转化器之前设置一个换热器。
此法成本最高,而且压降最大。
此外,转化器进口温度还受热媒体温度的限制。
例如,采用254℃、4.14MPa的高压蒸汽作热源时,转化器的最高温度约为243℃。
这样,催化剂通常不能复活,而且COS和CS₂水解也较困难。
但是,间接再热法的总硫收率最高,而且催化剂因硫酸盐化和炭沉积失活的可能性也较小。
综上所述,采用不同的再热方法将会影响总硫收率。
各种再热方法按总硫收率依次递增的顺序为:热气体旁通法、在线燃烧炉法、气/气换热法、间接再热法。
热气体旁通法通常只适用于一级转化器,直接再热法适用于各级转化器,间接再热法一般不适用于一级转化器。
6. 焚烧炉(灼烧炉)由于H₂S毒性很大不允许排放,故克劳斯装置的尾气即使已经过处理也必须焚烧后将其中的H₂S等转化为SO₂再排放。
尾气焚烧有热焚烧和催化焚烧两类,目前以热焚烧应用较广泛。
热焚烧是在氧过量(通常为20%~100%)的条件下进行的焚烧温度达到480~815℃。
绝大多数焚烧炉是在负压下自然引风操作。
由于尾气中含有的可燃物,如H₂S、COS、CS₂、H₂和元素硫含量太低(一般总计不超过3%),故必须在高温下焚烧,以使硫和硫化物转化成SO₂。
焚烧尾气的大量热量可通过将蒸汽过热或产生0.35~3.1OMPa的饱和蒸汽等措施加以回收。
在回收余热时,应注意此时燃烧气出口温度较低,故必须充分考虑烟囱高度。
另外,回收余热的焚烧炉通常采用强制通风在正压下操作。
催化焚烧可以减少焚烧炉的燃料气用量,即先将尾气加热到316~427℃,然后与一定量的空气混合后进入催化剂床层。
催化焚烧采用强制通风,在正压下操作。
这里填写您的企业名字Name of an enterprise。