中考三角形专题测试题及答案
中考《三角形认识》复习练习题及答案

中考数学复习专题练习认识三角形一、选择题:1、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.54、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°5、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20° B.25° C.30° D.40°6、一个多边形少加了一个内角时,它的度数和是1310°,则这个内角的度数为()A.120° B.130° C.140° D.150°7、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°8、一个正多边形的每个内角都等于140°,那么它是正()边形A.正六边形 B.正七边形 C.正八边形 D.正九边形9、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米10、如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.1211、.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2是( )A.52° B.61° C.65° D.70°12、如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、a、b、c为三角形的三条边,则= .14、如图,△ABC的两条高线AD、BE交于点F,∠BAD=45°,∠C=60°,则∠BFD的度数为15、如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,a取值范围是.16、一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是 .17、已知△ABC 的三边长 a、b、c,化简│a+b-c│-│b-a-c│的结果是 .18、将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.19、如图,∠2+∠3+∠4=320°,则∠1= .20、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .21、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2= .22、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.23、如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N= _.24、如图,一个面积为50平方厘米正方形与另一个小正方形并排放在一下起,则△ABC面积是平方厘米.三、简答题:25、如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm两部分,求三角形各边的长.26、如图,AD为△ABC的中线,BE为△ABD的中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)作出△BED的BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?27、(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.28、如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB= 度;(2)如图2,若直角顶点C在∠O内部,求出∠ADO+∠OEB的度数;(3)如图3,如果直角顶点C在∠O外部,求出∠ADO+∠OEB的度数.29、如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为;(2)若∠A=α,则∠P1的度数为;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为(用n与α的代数式表示)30、阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:.他发现,连接AP,有,即.由AB=AC,可得.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵,∴.∵AB=AC,∴.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC 的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示位置,利用图4探究得出此时BD,PM,PN,PQ之间数量关系是:.31、已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M是线段BC的中点,连接DM、EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.参考答案1、A.2、C.3、A.4、A.5、D.6、B.7、C.8、D.9、B.10、B.11、B.12、B.13、答案为:2a.14、答案为:60° 15、答案为:a>5.16、答案为:2<a≤8,10≤a<18.17、答案为:2b-2c. 18、答案为:75°.19、答案为:40°.20、答案为:180°.21、答案为:60°.22、答案为:40°.23、答案为:360°或540°或720°.24、答案为25.25、解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴ =10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴ =8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.26、解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°。
2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷一、选择题(每小题3分,共36分)1.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°(第1题图)(第2题图)2.如图,平行线AB,CD 被直线EF 所截,过点B 作BG⊥EF 于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°3.如图,太阳光线与水平线成70°角,窗子高AB=2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC 的长度至少是()A.米B.2sin70°米C.米D. 2.2cos70°米(第3题图)(第5题图)4.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是()A.B.3C.D.5.如图,每个小方格的边长为1,A,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C 的个数为()A.1B.2C.3D.46.已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A.2B.3C.5D.137.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.(第7题图)(第8题图)8.如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条9.如图,在△ABC 外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC 与△DEF 是位似图形B.△ABC 与△DEF 是相似图形C.△ABC 与△DEF 的周长比为1∶2D.△ABC 与△DEF 的面积比为4∶1(第9题图)(第10题图)10.如图,在数轴上有A,B,C,D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D 两点表示的数分别为-5和6,且AC 的中点为E,BD 的中点为M,BC 之间距点B 的距离为BC 的点为N,则该数轴的原点为()A.点EB.点FC.点MD.点N 11.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为()(第11题图)(第12题图)12.如图,在△ABC 中,∠ABC=∠C,将△ABC 绕点B。
中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。
2023年中考专题第六章三角形(提升)测试卷(一)打印版含答案

2023年中考专题第六章三角形(提升)测试卷(一)打印版含答案时间:45分钟满分:80分一、选择题(每题4分,共32分)1.如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,连接AE,若AE=4,EC=2,则BC的长是()A.2 B.4 C.6 D.8(第1题)(第2题)(第3题)2.如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB的度数为() A.40°B.30°C.20°D.15°3.如图,用4个全等的直角三角形拼成正方形,若小正方形的面积与每个直角三角形的面积均为1,α为直角三角形中的一个锐角,则tan α=()A.2 B.32 C.12 D.554.题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=2,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整(第4题) (第5题)(第6题)5.如图,在△ABC中,将CA沿DE翻折,点A落在点F处,∠CEF,∠BDF,∠A三者之间的关系是()A.∠CEF=∠BDF+∠AB.∠CEF-3∠A=∠BDFC.∠CEF=2(∠BDF+∠A)D.∠CEF-∠BDF=2∠A6.如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是()A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC7.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是() A.BF=1 B.DC=3C.AE=5 D.AC=9(第7题)(第8题)8.如图,点D,E,F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为()A.6 B.8 C.10 D.12二、填空题(每题4分,共16分)9.一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是________.10.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E,F分别是AB,AC边的中点,若AB=8,AC=6,则△DEF的周长为________.(第10题)(第12题)11.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为________.12.如图,在△ABC中,∠ABC=45°,AB=22,AD=AE,∠DAE=90°,CE =5,则CD的长为________.三、解答题(共32分)13.(14分)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC 至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(第13题)(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).14.(18分)如图①,Rt△ABC中,∠BAC=90°,AD是中线,BE⊥AD,垂足为点E,点F在AD上,∠ACF=∠DBE.(1)求证:∠ABD=∠CFD;(2)探究线段AF,DE的数量关系,并证明你的结论;(3)如图②,延长BE交CF于点P,AB=15AF,求BEEP的值.(第14题)答案一、1.C 2.C 3.A 4.B 5.D 6.D7.A8.A点拨:如图,过点A作AM⊥BC于点M,交DE于点N.∵DE∥BC,∴AN⊥DE.设AN=a.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴DEBC=ANAM.∵BC=8,BC边上的高为6,∴DE8=a6,∴DE=43a,∴S△DEF =12×DE×MN=12×43a·(6-a)=-23a2+4a=-23(a-3)2+6,∴当a=3时,S有最大值,最大值为6.(第8题)二、9.410.1211.612.5点拨:在CD上取点F,使∠DEF=∠ADB.(第12题)∵AD=AE,∠DAE=90°,∴∠AED=∠ADE=45°,DE=2AD=2AE.∵∠ABC=45°,且∠ADC =∠ADE +∠EDC =∠ABC +∠BAD ,∴∠BAD =∠EDC .∵∠BDA =∠DEF ,∴△ADB ∽△DEF , ∴DF AB =DE AD =2,∠ABC =∠EFD .∵AB =22,∴DF =2AB =4.∵∠CDE +∠C =∠AED =45°,∠C +∠CEF =∠EFD =45°,∴∠CEF =∠CDE ,∴△CEF ∽△CDE ,∴CE CF =CD CE .又∵DF =4,CE =5,∴5CF =CF +45, ∴CF =1或CF =-5(舍去),∴CD =CF +4=5.三、13.(1)证明:过点M 作MQ ∥BC ,交AC 于点Q ,如图所示.(第13题)在等边三角形ABC 中,∠A =∠B =∠ACB =60°.∵MQ ∥BC ,∴∠AMQ =∠B =60°,∠AQM =∠ACB =60°,∠QMP =∠N , ∴△AMQ 是等边三角形,∴AM =QM .∵AM =CN ,∴QM =CN .在△QMP 和△CNP 中,⎩⎨⎧∠QPM =∠CPN ,∠QMP =∠N ,QM =CN ,∴△QMP ≌△CNP (AAS),∴MP =NP .(2)解:∵△AMQ 是等边三角形,且MH ⊥AC ,∴AH =HQ ,即HQ =12AQ .∵△QMP ≌△CNP ,∴QP =CP ,即QP =12CQ .∴PH =HQ +QP =12AQ +12CQ =12AC .∵AB=a,AB=AC,∴PH=1 2a.14.(1)证明:设∠DBE=∠ACF=α.∵BE⊥AD,∴∠BED=90°,∴∠ADB+α=90°.又∵∠BAC=90°,AD是中线,∴AD=BD=CD,∴∠BAD=∠ABD,∴∠ADB+2∠BAD=180°,∴2∠BAD=90°+α.∵∠CFD=∠DAC+∠ACF=∠DAC+α=90°-∠BAD+α=2∠BAD-∠BAD=∠BAD,即∠CFD=∠BAD.∵∠ABD=∠BAD,∴∠ABD=∠CFD.(2)解:AF=2DE.证明:过点C作CM⊥AD交AD的延长线于点M,如图①.∵AD是中线,∴BD=CD.∵∠CMD=∠BED=90°,∠CDM=∠BDE,∴△CDM≌△BDE(AAS),∴DM=DE,CM=BE.由(1)可知∠BAD=∠CFM.∵BE⊥AD,AM⊥AD,∴∠AEB=∠CMF,∴△CMF≌△BEA(AAS),∴AE=MF,∴AE-EF=MF-EF,即AF=EM.又∵DM=DE,即EM=2DE,∴AF=2DE.(3)解:过点C作CM⊥AD交AD的延长线于点M,如图②.由(1)(2)可知AD=CD,AF=2DE,设DE=DM=x,则AF=2x.∵AB=15AF,∴AB=215x.设EF=y,∴AE=EF+AF=y+2x,AD=CD=AF+EF+DE=y+3x.∵BE⊥AD,AM⊥AD,∴在Rt△ABE中,BE2=AB2-AE2,在Rt△CDM中,CM2=CD2-DM2.由(2)可知BE=CM,∴AB2-AE2=CD2-DM2,即(215x)2-(y+2x)2=(y+3x)2-x2,解得y=3x,y=-8x(舍去),∴AE=5x. ∵∠BAE=∠CFE,∠AEB=∠PEF,∴△BEA∽△PEF,∴BEPE=AEFE=5x3x=53.(第14题)。
2023年中考数学专题测试卷:三角形相关综合附答案解析

第1页共7页2023年中考数学专题测试卷:三角形相关综合
一、选择题
1.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=(
)A .85°B .60°C .50°D .35°
2.若等腰三角形的腰长为10,底边长为12,则底边上的高为()
A.6
B.7
C.8
D.9
3.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B ′,则BB ′()
A .小于1m
B .大于1m
C .等于1m
D .小于或等于1m
4.如图所示,线段AC 的垂直平分线交线段AB 于点D ,︒=∠50A ,则BDC ∠=()
A.︒50
B.︒100
C.︒120
D.︒
1305.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是()
A .BC=EC ,∠B=∠E
B .BC=E
C ,AC=DC
C .BC=DC ,∠A=∠
D D .∠B=∠
E ,∠A=∠
D。
中考数学专题训练:全等三角形(含答案)

中考数学专题训练:全等三角形一、选择题(本大题共10道小题)1. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE2. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D4. 如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A. 2对B. 3对C. 4对D. 5对5. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.56. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()9. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于() A.90°B.120 C.135°D.150°10. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题(本大题共10道小题)11. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.12. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)13. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).14. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.15. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.16. 如图,AC与BD相交于点O,且AB=CD,请添加一个条件:________,使得△ABO≌△CDO.17. △ABC的周长为8,面积为10,若其内部一点O到三边的距离相等,则点O 到AB的距离为________.18. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.19. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.20. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题(本大题共6道小题)21. 如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.22. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.23. 观察与类比(1)如图①,在△ABC中,∠ACB=90°.点D在△ABC外,连接AD,作DE⊥AB于点E,交BC于点F,AD=AB,AE=AC,连接AF.求证:DF=BC +CF;(2)如图②,AB=AD,AC=AE,∠ACB=∠AED=90°,延长BC交DE于点F,写出DF,BC,CF之间的数量关系,并证明你的结论.24. 如图所示,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA 上由点C向点A以a cm/s的速度运动,设运动的时间为t s(t>0).(1)求CP的长(用含t的式子表示);(2)若以C,P,Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求a的值.25. △ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,①求证:△BPE∽△CEQ;②当BP=2,CQ=9时,求BC的长.26. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD<60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2021中考数学一轮专题训练:全等三角形-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.2. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.3. 【答案】C4. 【答案】C【解析】由题意可知,△ABD≌△CBD,△MON≌△M′ON′,△DON ≌△BON′,△DOM≌△BOM′共4对.5. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.6. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.7. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.8. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.9. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题(本大题共10道小题)11. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.12. 【答案】答案不唯一,如AB=CD[解析] 由已知AB∥CD可以得到一对角相等,还有BD=DB,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.13. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.14. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.15. 【答案】∠B=∠D16. 【答案】∠A =∠C 或∠B =∠D 或AB ∥CD(答案不唯一)[解析] 由题意可知∠AOB =∠COD ,AB =CD.∵AB 是∠AOB 的对边,CD 是∠COD 的对边,∴只能添加角相等,故可添加∠A =∠C 或∠B =∠D 或AB ∥CD.17. 【答案】2.5 [解析] 设点O 到AB ,BC ,AC 的距离均为h ,∴S △ABC =12×8·h =10,解得h =2.5,即点O 到AB 的距离为2.5.18. 【答案】55° [解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎪⎨⎪⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL).∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.19. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°. 分两种情况:①当AP =BC =5时,在Rt △ABC 和Rt △QPA 中,⎩⎪⎨⎪⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL);②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎪⎨⎪⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.20. 【答案】32° [解析] ∵PD =PE =PF ,PD ⊥AB 交BA 的延长线于点D ,PE ⊥AC 于点E ,PF ⊥BC 交BC 的延长线于点F ,∴CP 平分∠ACF ,BP 平分∠ABC.∴∠PCF =12∠ACF ,∠PBF =12∠ABC.∴∠BPC =∠PCF -∠PBF =12(∠ACF -∠ABC)=12∠BAC =32°.三、解答题(本大题共6道小题)21. 【答案】证明:∵BF =EC ,∴BF +FC =FC +EC ,即BC =EF.∵∠A =∠D =90°,∴△ABC 和△DEF 都是直角三角形.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF , ∴Rt △ABC ≌Rt △DEF(HL).22. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD.∵AD=16,BC=10,∴AB=CD=(AD-BC )=3.23. 【答案】解:(1)证明:∵DE ⊥AB ,∠ACB =90°,∴∠AED =∠AEF =∠ACB =90°.在Rt △ACF 和Rt △AEF 中,⎩⎪⎨⎪⎧AC =AE ,AF =AF , ∴Rt △ACF ≌Rt △AEF(HL).∴CF =EF.在Rt △ADE 和Rt △ABC 中,⎩⎪⎨⎪⎧AD =AB ,AE =AC ,∴Rt △ADE ≌Rt △ABC(HL). ∴DE =BC.∵DF =DE +EF ,∴DF =BC +CF.(2)BC =CF +DF.证明:如图,连接AF.在Rt △ABC 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,AC =AE , ∴Rt △ABC ≌Rt △ADE(HL).∴BC =DE.∵∠ACB =90°,∴∠ACF =90°=∠AED.在Rt △ACF 和 Rt △AEF 中,⎩⎪⎨⎪⎧AC =AE ,AF =AF ,∴Rt △ACF ≌△AEF(HL).∴CF=EF.∵DE=EF+DF,∴BC=CF+DF.24. 【答案】解:(1)依题意得BP=3t cm,BC=8 cm,∴CP=(8-3t)cm.(2)∵∠B和∠C是对应角,∴分两种情况讨论:①若△BDP≌△CPQ,则BD=CP,BP=CQ.∵AB=10 cm,D为AB的中点,∴BD=5 cm.∴5=8-3t,解得t=1.∴CQ=BP=3 cm.∴a==3.②若△BDP≌△CQP,则BD=CQ,BP=CP.∵BP=3t cm,CP=(8-3t)cm,∴3t=8-3t,解得t=.∵BD=CQ,∴5=a,解得a=.综上所述,a的值为3或.25. 【答案】(1)证明:∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°,又∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=EC.∴在△BPE与△CQE中,∠∠BP CQ B C BE CE =⎧⎪=⎨⎪=⎩,∴△BPE ≌△CQE (SAS);(2)①证明:∵∠BEF =∠C +∠CQE ,∠BEF =∠BEP +∠DEF , ∠C =∠DEF =45°,∴∠CQE =∠BEP ,∵∠B =∠C ,∴△BPE ∽△CEQ ;②解:由①知△BPE ∽△CEQ , ∴BE BP CQ CE=, ∴BE ·CE =BP ·CQ ,又∵BE =EC ,∴BE 2=BP ·CQ ,∵BP =2,CQ =9,∴BE 2=2×9=18,∴BE =32,∴BC =2BE =6 2.26. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎪⎨⎪⎧∠BAE =∠CBD AB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎪⎨⎪⎧∠BAE =∠CBD AB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG , ∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK , ∴BP EK =GB GE ,∴BP =261315.。
《相似三角形》中考复习题专题及答案

相似三角形一。
选择题(1)△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ) A.DB AD =EC BF B.AC AB =FCEF C 。
DB AD =FC BF D 。
EC AE =BF AD (2)在△ABC 中,BC=5,CA=45,AB=46,另一个与它相似的三角形的最短边是15,则最长边是( ) A 。
138 B 。
346 C 。
135 D.不确定(3)在△ABC 中,AB=AC ,∠A=36°,∠ABC 的平分线交AC 于D ,则构成的三个三角形中,相似的是( ) A 。
△ABD ∽△BCD B.△ABC ∽△BDC C.△ABC ∽△ABD D 。
不存在(4)将三角形高分为四等分,过每个分点作底边的平行线,将三角形分四个部分,则四个部分面积之比是( )A.1∶3∶5∶7 B 。
1∶2∶3∶4 C 。
1∶2∶4∶5 D 。
1∶2∶3∶5(5)下列命题中,真命题是( )A.有一个角为30°的两个等腰三角形相似 B 。
邻边之比都等于2的两个平行四边形相似C.底角为40°的两个等腰梯形相似 D 。
有一个角为120°的两个等腰三角形相似(6)直角梯形ABCD 中,AD 为上底,∠D=Rt ∠,AC ⊥AB ,AD=4,BC=9,则AC 等于( )A.5 B 。
6 C 。
7 D 。
8(7)已知CD 为Rt △ABC 斜边上的中线,E 、F 分别是AC 、BC 中点,则CD 与EF 关系是( )A.EF >CD B 。
EF=CD C 。
EF <CD D 。
不能确定(8)下列命题①相似三角形一定不是全等三角形 ②相似三角形对应中线的比等于对应角平分线的比;③边数相同,对应角相等的两个多边形相似;④O 是△ABC 内任意一点.OA 、OB 、OC 的中点连成的三角形△A′B′C′∽△ABC.其中正确的个数是( )A 。
中考数学专题三角形综合测试题含答案

中考数学专题三角形综合测试题一、选择题(每小题3分,共30分)1.一直角三角形的两条直角边分别为3和4,下列说法中不正确的是 ( ) A.斜边长为5 B.三角形周长为12 C.第三边长为25 D.三角形面积为6 2.如图,AB ∥CD ,AE 交CD 于C ,∠A=34°,∠DEC=90°,则∠D 的度数为 ( )A.17°B.34°C.56°D.124°3.计算sin 245°+cos30°•tan60°,其结果是( ) A.2 B.1 C.25 D.45 4.如图,在Rt△ABC 中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A.sin A =B.1tan 2A =C.cos B =D.tan B =5.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC,ED⊥AB 于D .如果∠A=30°,AE=6cm ,那么CE 等于 ( ) A.cm B.2cm C.3cm D.8cm6.如图,点F 在正方形ABCD 内,满足∠AFB=90°,AF=6,BF=8,则图中阴影部分面积为 ( )A.48B.60C.76D.807.等腰三角形底边长为10cm ,周长为36cm ,那么它的底角的余弦是( ) A.135 B.1312 C.1310 D.125 8.如果一个三角形的一个内角是另一个内角的3倍,那么我们称这个三角形是“智慧三角形”,下列各组数据中,能作为一个智慧三角形三边长的是( ) A.1,2,3 B.1,1,2 C.1,2,3 D.1,1,39.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB=2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A.4kmB.(4﹣)kmC.2kmD.(2+)kmBCA10.小明去爬山,在山脚看山顶仰为30°,小明在坡比为5︰12的山坡上走1300米,此时小明看山顶的角度为60°,则山高为( ) A.(600﹣250) 米 B.(600﹣250)米 C.(350+350)米 D.500米二、填空题(每小题4分,共32分) 11.已知α为锐角,且23)10sin(=︒-α,则α=_______. 12.已知在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 中点,则CD=______.13.已知在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对的边分别为a ,b ,c ,其中22=a ,62=b ,小明得到下面4个结论:①24=c ;②33tan =A ;③1cos sin =+B A ;④∠B =30°,正确的结论是_______(填序号).14.如图,在Rt △ABC 中,∠B=90°,∠ACB=60°,斜边AC 的垂直平分线DE 分别交AB ,AC 于D ,E 两点,若BD=2,则AC 的长为______.15.如图,△ABC 中,∠A=30°,23tan =B ,AC=32,则AB 的长为______. 16.某厂家新开发的一种电动车如图,它的大灯A 射出的光线AB,AC 与地面MN 所夹的锐角分别为8︒和10︒,大灯A 离地面的距离为1m 则该车大灯照亮地面的宽度BC 是 米.(不考虑其他因素))(参考数据:sin 8°≈254,tan8°≈71,sin10°≈509tan10°≈285)第16题图17.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,∠B=90°,BC =6米,AC=12米. 当正方形DEFH 运动到什么位置,即当AE =______米时,有DC 2=A E 2+BC 2.18.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,20分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A ,B 两点间的距离为_______米.三、解答题(共58分)19.(10分)如图,在Rt△ABC 中,∠C=90°,AD 平分∠CAB,CD=3,BD=32,求AB 及∠B.20.(10分)如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=,AD=1.(1)求BC 的长;(2)求tan∠DAE 的值.21.(12分)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN =30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H .如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米? (2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这一排居DCBA民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米) (参考数据:3≈1.7)22.(12分)如图,已知斜坡AB 长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE 的坡角(即∠BEF)不大于45°,则平台DE 的长最多为_____米; (2)一座建筑物GH 距离坡角A 点27米远(即AG=27米),小明在D 点测得建筑物顶部H 的仰角(即∠HDM)为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG⊥CG,问建筑物GH 高为多少米?23.(14分)如图,我南海某海域A 处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60 º方向以每小时30海里的速度航行半小时到达C 处,同时捕鱼船低速航行到A 点的正北1.5海里D 处,渔政船航行到点C 处时测得点D 在南偏东53 º方向上.(1)求CD 两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E 处相会合,求∠ECD 的正弦值 (参考数据:5453sin ≈︒,5353cos ≈︒,3453tan ≈︒).第23题图三角形(二)综合测试题参考答案一、1.C 2.C 3.A 4.D 5.C 6.C 7.A 8.C 9.D 10.B9.解析:过点B 作BE ⊥AD 交AC 于点E ,则BE =AB =2,AE根据题意可知,∠CBD=67.5°,所以∠BCE=22.5°,所以CE=BE=2,,在Rt△ACD 中,sin∠CAD=22=AC CD ,所以CD =(2km.E第9题图 第10题图10.解析:如图,根据题意可得,BE=500米,AE=1200米,设EC=x 米,则DF=x 3, 所以CD=500+x 3,AC=1200+x ,在Rt△ACD 中,AC=3CD ,即1200+x=()x 35003+,解得3250600-=x .∴DF=x 3=7503600-, CD= DF+CF=2503600-,故应选B.二、11.70 12.5 13.①② 14.38 15.5 16.57 17.31418.2600 三、19.解:过D 点作DE⊥AB 于E 点,因为AD 平分∠CAB,所以DE=DC=3.在Rt△BED 中,sinB=21,∴∠B=30°,在Rt△ABC 中,23AB BC cosB ==,所以AB=6.第19题图20.解:(1)在△ABC 中,∵AD 是BC 边上的高, ∴∠ADB=∠ADC=90°.在△ADC 中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1. 在△ADB 中,∵∠ADB=90°,sinB=,AD=1,∴AB==3,∴BD==2,∴BC=BD+DC=2+1;(2)∵AE 是BC 边上的中线,∴CE=BC=+, ∴DE=CE ﹣CD=﹣,∴tan∠DAE==﹣.21.解:(1)如图,连接PA .由题意知,AP=39m .在直角△APH 中,PH=22221539-=-AH AP =36(米).(2)由题意知,隔音板的长度是PQ 的长度.在Rt△ADH 中,DH=31530tan =︒AH(米).在Rt△CDQ 中,DQ=7830sin =︒CQ(米). 则PQ=PH+HQ=PH+DQ-DH=36+78-153≈114-15×1.7=88.5≈89(米). 答:高架道路旁安装的隔音板至少需要89米.第21题图22.解:(1)11.0;(2)过点D 作DP⊥AC,垂足为P .在Rt△DPA 中,DP=AD=×30=15,PA=AD•cos30°=×30=15.在矩形DPGM 中,MG=DP=15,DM=PG=15+27,在Rt△DMH 中, HM=DM•tan30°=×(15+27)=15+9.GH=HM+MG=15+15+9≈45.6. 答:建筑物GH 高为45.6米.第22题图23.解:(1)如图,过点C 作CG ⊥AB 于点G ,DF ⊥CG 于点F . 则在R t△CBG 中,由题意知∠CBG =30°,∴CG=12BC=13015222⨯==7.5.∵∠DAG=90°,∴四边形ADFG是矩形.∴GF= AD=1.5 ,∴CF= CG-GF=7.5-1.5=6. 在R t△CDF中,∠CFD=90º,∵∠DCF=53°,∴cos∠DCF=CF CD,∴6103cos535CFCD===︒(海里).答:CD两点距离为10海里.(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,过点E作EH⊥CD于点H,则∠EHD=∠CHE=90º,∴sin∠EDH=EH ED,∴EH=ED sin53°=4123=55t t ⨯,∴在Rt△EHC中,sin∠ECD=12253025tEHCE t==.答:sin∠ECD=225.第23题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三角形)
(试卷满分 150 分,考试时间 120 分钟)
一、选择题(本题共10 小题,每小题4 分,满分40分)
每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1. 满足下列条件的三角形,按角分类有三个属于同一类,则另一个是( )。
A .∠A:∠B:∠C=1:2:3
B .∠A-∠B=∠
C C .∠A=∠C=40°
D .∠A=2∠B=2∠C
2. 已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )。
A .90° B.110° C.100° D.120°
3.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )。
A .14
B .15
C .16
D .17
4.锐角三角形的三个内角是∠A、∠B、∠C,如果B A ∠+∠=∠α,C B ∠+∠=∠β,
A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中( )。
A .没有锐角
B .有1个锐角
C .有2个锐角
D .有3个锐角 5.如图1,已知AB∥CD,则( )。
F
E
D C
B A
A .∠1=∠2+∠3
B .∠1=2∠2+∠3
C .∠1=2∠2-∠3
D .∠1=180º-∠2-∠3
6.如图2,将一张矩形纸片ABCD 如图所示折叠,使顶点C 落在C '点.已知2AB =,
30DEC '∠=,则折痕DE 的长为( )。
A .2
B .23
C .4
D . 1
7.如图3,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且S ABC =4cm 2,则阴影面积等于( )。
A .2cm 2 B .1cm 2 C .
12cm 2 D .1
4
cm 2
图1 图2 图3
8.有五根细木棒,长度分别为1cm ,3cm ,5cm ,7cm ,9cm ,现任取其中的三根木棒,组成一个三角形,问有几种可能( )。
A .1种
B .2种
C .3种
D .4种 9.能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )。
A .中线 B .高线 C .边的中垂线 D .角平分线 10.已知ΔABC 的三个内角∠A、∠B、∠C 满足关系式∠B+∠C=3∠A,则此三角形
中( )。
A .一定有一个内角为45︒
B .一定有一个内角为60︒
C .一定是直角三角形
D .一定是钝角三角形 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)
11.在直角三角形中,两锐角的平分线相交成钝角的度数是_________。
12.一个等腰三角形的底角为15°,腰长为4cm ,那么,该三角形的面积等于_________。
13.如图4,在△ABC 中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°, 则∠EDF =_________
度。
14.在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图4所示,地毯的长
度至少需要_________m 。
图4 图5
三、(本题共2小题,每小题8分,满分 16 分)
15.如图6,已知ΔABC 中,∠A=58°,分别求∠BOC 的度数。
(1)O 为外心,(2)O 为内心,(3)O 为垂心。
F
E
D
C
B A
13
5m
图6
16.如图7,已知:AC=DF,BC=EF,AD=BE ,你能判定BC∥EF 吗?说说你的理由。
图7
四、(本题共2小题,每小题8分,满分16分)
17.如图8,在ΔABC 中,AD 平分∠BAC,DE∥AC,EF⊥AD 交BC 延长线于F 。
求证:
∠FAC=∠B。
A
D
B
E
F
C
图8 18.如图9,一只蚂蚁沿长方体表面从顶点A爬到顶点B,已知4,2,1
===,则
a b c
它走过的路程最短为多少?
图9
五、(本题共2小题,每小题10分,满分20分)
19.如图10,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1), B(-4,
-3),C(-4,-1).
(1)作出△ABC关于原点O的中心对称图形;
(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A
1B
1
C
1
,画出△A
1
B
1
C
1
,并
写出点A
1
的坐标。
图10
20.如图11,△ABC、△DEC均为等边三角形,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM为等边三角形。
图11
六、(本题满分12 分)
21.如图12,大江的一侧有A 、B 两个工厂,它们有垂直于江边的小路,长度分别
为3千米和1千米,设两条小路相距4千米,现在要在江边建立一个抽水站,把水送到A 、B 两厂去,欲使供水管路最短,抽水站应建在哪里?
图12
七、(本题满分12分)
22.已知:如图13,△ABC 和△ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D
为AB 边上一点,
求证:(1)△ACE≌△BCD; (2)222DE AE AD =+。
A
C
D
图13
八、(本题满分14 分)
23.操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图14①、②、③是旋转三角板得到的图形中的3种情况,研究:
(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.
图14
中考数学总复习专题测试卷(八)参考答案
一、1、C 2、C 3、B 4、A 5、A 6、C 7、B 8、C
9、A 10、A
二、 11、135°; 12、4cm 2 ; 13、68°; 14、17。
三、15、(1)116°,119°,122°; 16、提示:证明△ABC≌△DEF。
四、17、先证EA=ED ,再证FA=FD 得∠FDA=∠FAD。
18、5)12(4)(2222=++=++c b a 。
五、19、(1)图略.(2)图略,1A 点坐标为(11)-,。
20、先证△ACD≌△BCE 得AD=BE ,∠DAC=∠EBC , 再证△ACM≌△BCN 得CM=CN ,并证 ∠MCN=60°。
六、21、距A3千米处。
七、22、(1) ∵ DCE ACB ∠=∠
∴ ACE ACD BCD ACD ∠+∠=∠+∠ 即 ACE BCD ∠=∠ ∵ EC DC AC BC ==,
∴ △BCD≌△ACE (2)∵ BC AC ACB =︒=∠,90,
∴ ︒=∠=∠45BAC B ∵ △BCD≌△ACE ∴ ︒=∠=∠45CAE B
∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE ∴ 222DE AE AD =+ 。
八、23.(1)由图①可猜想PD =PE ,再在图②中构造全等三角形来说明.即PD =PE .
理由如下:连接PC ,因为△ABC 是等腰直角三角形,P 是AB 的中点,所以CP =PB ,CP⊥AB,∠ACP=
1
2
∠ACB=45°.所以∠ACP=∠B=45°. 又因为∠DPC+∠CPE=∠BPE+∠CPE, 所以∠DPC=∠BPE.
所以△PCD≌△PBE.所以PD =PE .
(2)△PBE 是等腰三角形,可分为四种情况: ①当点C 与点E 重合时,即CE =0时,PE =PB ;
②当2CE =PB =BE ; ③当CE =1时,此时PE =BE ;
④当E 在CB 的延长线上,且2CE =+PB =BE .。