中考专题三角形(学生)
专题17 等腰(等边)三角形问题(学生版)

备考2024中考二轮数学《高频考点冲刺》(全国通用)专题17 等腰(等边)三角形问题考点扫描☆聚焦中考等腰(等边)三角形问题近几年各地中考主要以填空题或选择题考查,也有解答题出现,难度系数小,较简单,属于低档题;考查的知识点主要有:等腰三角形的性质与判定、等边三角形的性质与判定、线段的垂直平分线的性质;考查热点主要有:等腰三角形性质与判定、等边三角形性质与判定、线段垂直平分线的性质.考点剖析☆典型例题(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是()A.70°B.45°C.35°D.50°2020•青海)已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x ﹣4|=2的解,则△ABC的形状为三角形.2023•益阳)如图,AB∥CD,直线MN与AB,CD分别交于点E,F,CD上有一点G且GE =GF,∠1=122°,求∠2的度数.例4(2023•绵阳)如图,在等边△ABC中,BD是AC边上的中线,延长BC至点E,使CE=CD,若DE=,则AB=()A.B.6C.8D.例5(2021•宁夏)如图,在▱ABCD中,AD=4,对角线BD=8,分别以点A、B为圆心,以大于AB 的长为半径画弧,两弧相交于点E和点F,作直线EF,交对角线BD于点G,连接GA,GA恰好垂直于边AD,则GA的长是()A.2B.3C.4D.5考点过关☆专项突破类型一等腰三角形的性质与判定1.(2023•南京)若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.202.(2023•眉山)如图,△ABC中,AB=AC,∠A=40°,则∠ACD的度数为()A.70°B.100°C.110°D.140°3.(2023•内蒙古)如图,直线a∥b,直线l与直线a,b分别相交于点A,B,点C在直线b上,且CA=CB.若∠1=32°,则∠2的度数为()A.32°B.58°C.74°D.75°4.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2++|c﹣3|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形5.(2022•宁波)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.46.(2023•重庆)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.7.(2023•西宁)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADB的度数是.8.(2023•山西)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.9.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.10.(2023•烟台)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.类型二等边三角形的性质与判定1.(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC 的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°2.(2022•绵阳)下列关于等边三角形的描述不正确的是()A.是轴对称图形B.对称轴的交点是其重心C.是中心对称图形D.绕重心顺时针旋转120°能与自身重合3.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°4.(2023•滨州)已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°5.(2019•铜仁市)如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A.B.C.D.6.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB 与△BOC的面积之和为()A.B.C.D.7.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.8.(2023•雅安)如图,四边形ABCD中,AB=AD,BC=DC,∠C=60°,AE∥CD交BC于点E,BC=8,AE=6,则AB的长为.9.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.10.(2023•武汉)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF 相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是.类型三线段垂直平分线的性质1.(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=10°,则∠C的度数是.4.(2021•淮安)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.2B.4C.6D.85.(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.186.(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC 的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4B.3C.2D.17.(2021•河北)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.78.(2021•长沙)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.。
专题 相似三角形中的对角互补模型(学生版)

专题09相似三角形中的基本模型-对角互补模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。
本专题就对角互补模型进行梳理及对应试题分析,方便掌握。
模型1.对角互补模型(相似模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。
该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形相似.【常见模型及结论】(1)对角互补相似1条件:如图,在Rt△ABC中,∠C=∠EOF=90°,点O是AB的中点,辅助线:过点O作OD⊥AC D,过点O作OH⊥BC,垂足为H,结论:①△ODE∼△OHF;②OE BCOF AC=(思路提示:OE OD BH BCOF OH OH AC===).(2)对角互补相似2条件:如图,已知∠AOB =∠DCE =90°,∠BOC =α.辅助线:作法1:如图1,过点C 作CF ⊥OA ,垂足为F ,过点C 作CG ⊥OB ,垂足为G ;结论:①△ECG ∼△DCF ;②CE =CD·tan α.(思路提示:CE CG CD CF =,CF =OG ,在Rt △COG 中,CG tan OGα=)辅助线:作法2:如图2,过点C 作CF ⊥OC ,交OB 于F ;结论:①△CFE ∼△COD ;②CE =CD·tan α.(思路提示:CE CF tan CD CO α==,在Rt △OCF 中,CF tan OC α=)(3)对角互补相似3条件:已知如图,四边形ABCD 中,∠B+∠D=180°辅助线:过点D 作DE ⊥BA ,垂足为E ,过点D 作DF ⊥BC ,垂足为F ;结论:①△DAE ∼△DCF ;②ABCD 四点共圆。
例1.(2022·黑龙江·鸡西九年级期末)如图,在Rt ABC 中,90ABC ∠=︒,6AB =,8BC =,在Rt MPN △中,90MPN ∠=︒,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP 的长为()A .4B .6C .245D .256例3.(2022·江西·吉水县九年级期末)【问题情境】如图①,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC边交于P、Q两点.【问题探究】(1)在旋转过程中,①如图2,当AD=BD时,线段DP、DQ的数量关系是()A、DP<DQB、DP=DQC、DP>DQD、无法确定②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由.③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为(直接写出结论,不必证明)。
中考数学专题复习 专题20 相似三角形问题(学生版)

中考专题20 相似三角形问题一、比例1.成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d),那么,这四条线段叫做成比例线段,简称比例线段。
如果作为比例内项的是两条相同的线段,即cbb a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。
2.黄金分割:用一点P 将一条线段AB 分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。
这种分割称为黄金分割,分割点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
4.两条直线被一组平行线所截,所得的对应线段成比例。
5.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
二、相似、相似三角形及其基本的理论1. 相似:相同形状的图形叫相似图形。
相似图形强调图形形状相同,与它们的位置、大小无关。
2.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似多边形对应边的比叫做相似比。
3.三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)两个三角形相似的判定定理判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
专题 相似三角形半角模型(学生版)

专题06相似三角形中的半角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。
本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型(相似模型)【常见模型及结论】1)半角模型(正方形中的半角相似模型)条件:已知,如图,在正方形ABCD 中,∠EAF 的两边分别交BC 、CD 边于M 、N 两点,且∠EAF =45°结论:如图1,△AMN ∽△AFE 且AF AE EF AM AN MN===.(思路提示:∠ANM=∠AEF ,∠AMN=∠AFE );图1图2结论:如图2,△MAN ∽△MDA ,△NAM ∽△NBA ;结论:如图3,连接AC ,则△AMB ∽△AFC ,△AND ∽△AEC .且AF AC AM AB==;图3图4结论:如图4,△BME ∽△AMN ∽△DFN.2)半角模型(特殊三角形中的半角相似模型)(1)含45°半角模型图1图2条件:如图1,已知∠BAC =90°,45ABC ACB DAE ∠=∠=∠=︒;结论:①△ABE ∽△DAE ∽△DCA ;②AB AD CD BE AE AC==;③AB AC BE CD ⋅=⋅(2AB BE CD =⋅)(2)含60°半角模型条件:如图1,已知∠BAC =120°,60ADE DAE ∠=∠=︒;结论:①△ABD ∽△CAE ∽△CBA ;②AD CE AC BD AE AB==;③AD AE BD CE ⋅=⋅(2DE BD CE =⋅)AC例4.(2023·广东·九年级专题练习)如图,段CD上一点,且1CE=,AB=AE例7.(2023·广东佛山·九年级校考阶段练习)EF与AC交于点G.AC课后专项训练1.(2022春·浙江绍兴·九年级校考阶段练习)如图,在正方形ABCD 中,点E 、F 分别在边BC ,DC 上,AE 、AF分别交BD 于点M 、N ,连接CN 、EN ,且CN =EN .下列结论:①AN =EN ,AN ⊥EN ;②BE+DF=EF ;③∠DFE =2∠AMN ;④22222EF BM DN =+;⑤图中有4对相似三角形.其中正确结论个数是()A .5B .4C .3D .22.如图,在矩形纸片ABCD 中,点E 、F 分别在矩形的边AB 、AD 上,将矩形纸片沿CE 、CF 折叠,点B 落在H 处,点D 落在G 处,点C 、H 、G 恰好在同一直线上,若AB =6,AD =4,BE =2,则DF 的长是()A .2B .74C .322D .33.如图,等腰直角三角形,90ABC BAC ∠=︒,D 、E 是BC 上的两点,且BD CE =,过D 、E 分别作DM AB ⊥、EN AC ⊥,垂足分别为M 、N ,DM 、EN 交于点F ,连接AD 、AE .以下四个结论:①四边形AMFN 是正方形;②ABE ACD △≌△;③222CE BD DE +=;④当45DAE ∠=︒时,2AD DE CD =⋅.其中正确的结论有()A .1个B .2个C .3个D .4个分别是正方形的两个外角的平分线,点A.1个B.2个5.(2022·河南安阳·统考一模)如图,在RtADC△绕点A顺时针旋转90︒后,得到△③AE ADBE CD=;④点C转至点B经过的弧长为A.1个B.2个6.(2023·山东·统考一模)如图,在同一平面内,将两个全等的等腰直角三角形顶点,∠BAC=∠AGF=90°,它们的斜边长为别为D、E(点D不与点B重合,点E不与点的三角形;(2)m•n=2;(3)BD2+CE2=DE分别在边A.222+=B.BN DM MN9.如图,已知△PMN是等边三角形,∠APB=120︒.求证:AM·PB=PN·AP10.已知:如图边长为2的正方形ABCD中,∠MAN的两边分别交BC、CD边于M、N两点,且∠MAN=45°①求证:MN=BM+DN;②若AM、AN交对角线BD于E、F两点.设BF=y,DE=x,求y与x的函数关系式.12.(2023江苏九年级期末)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.分别是14.(2022秋·广东广州·九年级广州市第三中学校考期中)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)若点G在边CB的延长线上,且BG=DF,(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:222EF ME NF=+;(3)将正方形改为长与宽不相等的矩形(如图③),∠EAF=∠CEF=45°,BE=4,DF=1,请你直接写出△CEF的面积.。
专题 相似三角形手拉手模型(学生版)

专题03相似三角形中的重要模型-手拉手模型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。
手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。
而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。
手拉手相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等;④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。
模型1.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。
1)手拉手相似模型(任意三角形)条件:如图,∠BAC=∠DAE=α,AD AE k AB AC ==;结论:△ADE ∽△ABC ,△ABD ∽△ACE ;EC k BD=.2)手拉手相似模型(直角三角形)条件:如图,90AOB COD ∠=∠=︒,OC OD k OA OB==(即△COD ∽△AOB );结论:△AOC ∽△BOD ;BD k AC =,AC ⊥BD ,12ABCD S AB CD =⨯.3)手拉手相似模型(等边三角形与等腰直角三角形)条件:M 为等边三角形ABC 和DEF 的中点;结论:△BME ∽△CMF ;BE CF 条件:△ABC 和ADE 是等腰直角三角形;结论:△ABD ∽△ACE.例1.(2022·山西长治·九年级期末)问题情境:如图1,在△ABC 中,AB =6,AC =5,点D ,E 分别在边AB ,AC 上,且∥DE BC .数学思考:(1)在图1中,BD CE 的值为;(2)图1中△ABC 保持不动,将△ADE 绕点A 按逆时针方向旋转到图2的位置,其它条件不变,连接BD ,CE ,则(1)中的结论是否仍然成立?并说明理由;(3)拓展探究:在图2中,延长BD ,分别交AC ,CE 于点F ,P ,连接AP ,得到图3,探究∠APE 与∠ABC 之间有何数量关系,并说明理由;(4)若将△ADE 绕点A 按逆时针方向旋转到图4的位置,连接BD ,CE ,延长BD 交CE 的延长线于点P ,BP 交AC 于点F ,则(3)中的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠APE 与∠ABC 之间的数量关系.例2.(2022·山东济南·八年级期末)某校数学活动小组探究了如下数学问题:(1)问题发现:如图1,ABC 中,90BAC ∠=︒,AB AC =.点P 是底边BC 上一点,连接AP ,以AP 为腰作等腰Rt APQ △,且90PAQ ∠=︒,连接CQ 、则BP 和CQ 的数量关系是______;(2)变式探究:如图2,ABC 中,90BAC ∠=︒,AB AC =.点P 是腰AB 上一点,连接CP ,以CP 为底边作等腰Rt CPQ △,连接AQ ,判断BP 和AQ 的数量关系,并说明理由;(3)问题解决:如图3,在正方形ABCD 中,点P 是边BC 上一点,以DP 为边作正方形DPEF ,点Q 是正方形DPEF两条对角线的交点,连接CQ .若正方形DPEF ,CQ =ABCD 的边长.例3.(2022·河南信阳·九年级期末)如图1,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D,E分别为AC,BC的中点.△CDE绕点C顺时针旋转,设旋转角为α(0°≤α≤360°),记直线AD与直线BE的交点为点P.(1)如图1,当α=0°时,AD与BE的数量关系为______,AD与BE的位置关系为______;(2)当0°<α≤360°时,上述结论是否成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)△CDE绕点C顺时针旋转一周,请直接写出运动过程中P点运动轨迹的长度和P点到直线BC距离的最大值.例4.(2022·江苏·无锡市天一实验学校一模)如图,在等边ABC 边长为6,O 是中心;在Rt ADE △中,90ADE ∠=︒,60DAE ∠=︒,2AD =.将ADE 绕点A 按顺时针方向旋转一周.(1)当AD 、AE 分别在AC 、AB 边上,连结OD 、OE ,求ODE 的面积;(2)设DE 所在直线与ABC 的边AB 或AC 交于点F ,当O 、D 、E 三点在一条直线上,求AF 的长;(3)连结CE ,取CE 中点M ,连结DM ,DM 的取值范围为_________.例5.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,△ABC 和△ADE 都是等边三角形,连接BD ,CE .求证:BD =CE .(2)【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出BD CE的值.(3)【拓展提升】如图3,△ABC 和△ADE 都是直角三角形,∠ABC =∠ADE =90°,且AB BC =AD DE =34.连接BD ,CE .①求BD CE的值;②延长CE 交BD 于点F ,交AB 于点G .求sin ∠BFC 的值.例6.(2023·四川·成都九年级期中)如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=9,GH=,求BC的长.课后专项训练1、如图,AB=3,AC=2,BC=4,AE=3,AD=4.5,DE=6,∠BAD=20°,则∠CAE的度数为()A.10°B.20°C.40°D.无法确定2、如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB=4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56AE,其中正确的是()A.①②B.③④C.②③D.②③④,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE3、如图,△ABC中,∠C=90°,∠B=30°,AC绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.B.C.D.4、已知正方形DEFG 的顶点F 在正方形ABCD 的一边AD 的延长线上,连结AG ,CE 交于点H ,若3AB =,2DE =,则CH 的长为________.5.(2022·浙江国·九年级课时练习)观察猜想(1)如图1,在等边ABC 中,点M 是边BC 上任意一点(不含端点B 、C ),连接AM ,以AM 为边作等边AMN ,连接CN ,则ABC ∠与ACN ∠的数量关系是______.(2)类比探究:如图2,在等边ABC 中,点M 是BC 延长线上任意一点(不含端点C ),(1)中其它条件不变,(1)中结论还成立吗?请说明理由.(3)拓展延伸:如图3,在等腰ABC 中,BA BC =,点M 是边BC 上任意一点(不含端点B 、C ),连接AM ,以AM 为边作等腰AMN ,使顶角AMN ABC ∠=∠.连按CN .试探究ABC ∠与ACN ∠的数量关系,并说明理由.6.(2022湖北·九年级专题练习)如图,ABC为等边三角形,D为AC边上一点,连接BD,M为BD的中点,连接AM.(1)如图1,若AB=,∠ABD=45°,求AMD的面积;(2)如图2,过点M作MN AM⊥与AC交于点E,与BC的延长线交于点N,求证:AD=CN;(3)如图3,在(2)的条件下,将ABM沿AM翻折得'AB M,连接B'N,当B'N取得最小值时,直接写出BN DE MN-的值.7.(2023·广西·九年级课时练习)某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边ABC 中,点P 是边BC 上任意一点,连接AP ,以AP 为边作等边APQ ,连接CQ ,BP 与CQ 的数量关系是________;(2)变式探究:如图2,在等腰ABC 中,AB BC =,点P 是边BC 上任意一点,以AP 为腰作等腰APQ ,使AP PQ =,APQ ABC ∠=∠,连接CQ ,判断ABC ∠和ACQ ∠的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC 中,点P 是边BC 上一点,以AP 为边作正方形APEF ,Q 是正方形APEF的中心,连接CQ .若正方形APEF 的边长为5,2CQ =,求正方形ADBC 的边长.8.(2022·河南开封·九年级期末)某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在等腰△ABC 中,其中AB AC =,如图1,进行了如下操作:第一步,以点A 为圆心,任意长为半径画弧,分别交BA 的延长线和AC 于点E ,F ,如图2;第二步,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点D ,作射线AD ;第三步,以D 为圆心,DA 的长为半径画弧,交射线AE 于点G ;(1)填空;写出∠CAD 与∠GAD 的大小关系为___;(2)①请判断AD 与BC 的位置关系,并说明理由.②当6,2AB AC BC ===时,连接DG ,请直接写出AD AG =___;(3)如图3,根据以上条件,点P 为AB 的中点,点M 为射线AD 上的一个动点,连接PM ,PC ,当CPM B ∠=∠时,求AM 的长.9.(2022·山东济南·一模)在Rt ABC 中与Rt DCE 中,90,30ACB DCE BAC DEC ∠=∠=︒∠∠=∠=︒,AC DC =Rt DCE 绕点C 顺时针旋转,连接,BD AE ,点,F G 分别是,BD AE 的中点,连接,CF CG .(1)观察猜想:如图1,当点D 与点A 重合时,CF 与CG 的数量关系是__________,位置关系是__________;(2)类比探究:当点D 与点A 不重合时,(1)中的结论是否成立?如果成立,请仅就图2的情形给出证明;如果不成立,请说明理由.(3)问题解决在Rt DCE 旋转过程中,请直接写出CFG △的面积的最大值与最小值.10.(2022•莱芜区一模)在△ACB中,∠ACB=120°,AC=BC,点P在AB边上,AP=AB,将线段AP绕点P顺时针旋转至PD,记旋转角为a,连接BD,以BD为底边,在线段BD的上方找一点E,使∠BED=120°,ED =EB,连接AD、CE.(1)如图1,当旋转角a=180°时,请直接写出线段CE与线段AD的数量关系;(2)当0<a<180°时,①如图2,(1)中线段CE与线段AD的数量关系是否还成立?并说明理由.②如图3,当点A、D、E三点共线时,连接CD,判断四边形CDBE的形状,并说明理由.11.(2022·江苏·九年级课时练习)观察猜想(1)如图1,在等边ABC 中,点M 是边BC 上任意一点(不含端点B 、C ),连接AM ,以AM 为边作等边AMN ,连接CN ,则ABC ∠与ACN ∠的数量关系是______.(2)类比探究:如图2,在等边ABC 中,点M 是BC 延长线上任意一点(不含端点C ),(1)中其它条件不变,(1)中结论还成立吗?请说明理由.(3)拓展延伸:如图3,在等腰ABC 中,BA BC =,点M 是边BC 上任意一点(不含端点B 、C ),连接AM ,以AM 为边作等腰AMN ,使顶角AMN ABC ∠=∠.连按CN .试探究ABC ∠与ACN ∠的数量关系,并说明理由.12、如图1,在Rt ABC 中,90C ∠=︒,30A ∠=︒,1BC =,点D ,E 分别为AC ,BC 的中点.CDE △绕点C 顺时针旋转,设旋转角为α(0360α︒≤≤︒,记直线AD 与直线BE 的交点为点P .(1)如图1,当0α=︒时,AD 与BE 的数量关系为_________,AD 与BE 的位置关系为_______;(2)当0360α<≤︒︒时,上述结论是否成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)CDE △绕点C 顺时针旋转一周,请直接写出运动过程中P 点运动轨迹的长度和P 点到直线BC 距离的最大值.13、尝试:如图①,ABC 中,将ABC 绕点A 按逆时针方向旋转一定角度得到AB C '',点B 、C 的对应点分别为B ′、C ',连接BB '、CC ',直接写出图中的一对相似三角形_______;拓展:如图②,在ABC 中,90C ∠=︒,AC BC =,将ABC 绕点A 按逆时针方向旋转一定角度得到AB C '',点B 、C 的对应点分别为B ′、C ',连接BB '、CC ',若8BB '=,求CC '的长;应用:如图③,在Rt ABC △中,90ACB ∠=︒,2AB =,30ABC ∠=︒,将ABC 绕点A 按逆时针方向旋转一周,在旋转过程中,当点B 的对应点B ′恰好落在Rt ABC △的边所在的直线上时,直接写出此时点C 的运动路径长.14、问题背景:如图(1),已知A ABC DE ∽△△,求证:ABD ACE ∽;尝试应用:如图(2),在ABC 和ADE 中,90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=,AC 与DE 相交于点F .点D 在BC 边上,AD BD=DF CF 的值;拓展创新:如图(3),D 是ABC 内一点,30BAD CBD ︒∠=∠=,90BDC ︒∠=,4AB =,AC =AD 的长.15、如图,四边形ABCD 和四边形AEFG 都是正方形,C ,F ,G 三点在一直线上,连接AF 并延长交边CD 于点M .(1)求证:△MFC ∽△MCA ;(2)求证△ACF ∽△ABE ;(3)若DM=1,CM=2,求正方形AEFG 的边长.16.(2022•南山区校级一模)(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD 上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=10,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).17、某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边ABC 中,点P 是边BC 上任意一点,连接AP ,以AP 为边作等边APQ ,连接CQ ,BP 与CQ 的数量关系是________;(2)变式探究:如图2,在等腰ABC 中,AB BC =,点P 是边BC 上任意一点,以AP 为腰作等腰APQ ,使AP PQ =,APQ ABC ∠=∠,连接CQ ,判断ABC ∠和ACQ ∠的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC 中,点P 是边BC 上一点,以AP 为边作正方形APEF ,Q 是正方形APEF的中心,连接CQ .若正方形APEF 的边长为5,2CQ =,求正方形ADBC 的边长.。
中考一轮复习 数学专题16 相似三角形(学生版)

专题16 相似三角形一、单选题1.(2022·甘肃兰州)已知ABC DEF∽△△,12ABDE=,若2BC=,则EF=()A.4B.6C.8D.162.(2022·广西梧州)如图,以点O为位似中心,作四边形ABCD的位似图形''''A B C D﹐已知'1 3OAOA,若四边形ABCD的面积是2,则四边形''''A B C D的面积是()A.4B.6C.16D.183.(2022·浙江丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段3AB=,则线段BC的长是()A.23B.1C.32D.24.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A',B'.若6AB=,则A B''的长为()A.8B.9C.10D.155.(2020·河北)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR6.(2020·甘肃金昌)生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感,若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(2020·广西贵港)如图,在ABC 中,点D 在AB 边上,若3BC =,2BD =,且BCD A ∠=∠,则线段AD 的长为( )A .2B .52C .3D .928.(2020·湖南永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A .913B .25C .35D .639.(2020·四川成都)如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,5AB =,6BC =,4EF =,则DE 的长为( )A .2B .3C .4D .10310.(2020·重庆)如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A B .2 C .4 D .11.(2020·重庆)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA △OD =1△2,则△ABC 与△DEF 的面积比为( )A .1△2B .1△3C .1△4D .1△512.(2020·浙江嘉兴)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(﹣43,﹣1)C .(﹣1,﹣43)D .(﹣2,﹣1)13.(2020·贵州遵义)如图,△ABO 的顶点A 在函数y =kx(x >0)的图象上,△ABO =90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为( )A .9B .12C .15D .1814.(2021·辽宁沈阳)如图,ABC 与111A B C △位似,位似中心是点O ,若1:1:2OA OA ,则ABC 与111A B C △的周长比是( )A .1:2B .1:3C .1:4D .15.(2021·四川巴中)如图,AB C 中,点D 、E 分别在AB 、AC 上,且12AD AE DBEC,下列结论正确的是( )A .DE :BC =1:2B .ADE 与ABC 的面积比为1:3 C .ADE 与ABC 的周长比为1:2D .DE //BC16.(2021·湖南湘西)如图,在ECD ∆中,90C ∠=︒,AB EC ⊥于点B , 1.2AB =, 1.6EB =,12.4BC =,则CD 的长是( )A .14B .12.4C .10.5D .9.317.(2021·山东济宁)如图,已知ABC .(1)以点A 为圆心,以适当长为半径画弧,交AC 于点M ,交AB 于点N .(2)分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在BAC ∠的内部相交于点P .(3)作射线AP 交BC 于点D . (4)分别以A ,D 为圆心,以大于12AD 的长为半径画弧,两弧相交于G ,H 两点. (5)作直线GH ,交AC ,AB 分别于点E ,F . 依据以上作图,若2AF =,3CE =,32BD =,则CD 的长是( )A .510B .1C .94D .418.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( ) A .1 :3B .1:6C .1:9D .3:119.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .620.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .24521.(2022·四川雅安)如图,在△AB C 中,D ,E 分别是AB 和AC 上的点,DE △BC ,若AD BD=21,那么DEBC =( )A .49B .12C .13D .2322.(2022·江苏盐城)“跳眼法”是指用手指和眼睛估测距离的方法 步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为( )A .40米B .60米C .80米D .100米23.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB△的周长比是( )A.B .1:2C .1:3D .1:424.(2022·江苏连云港)如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:△GF △EC ;△AB =AD ;△GE ;△OC ;△△COF △△CEG .其中正确的是( )A .△△△B .△△△C .△△△D .△△△25.(2022·重庆)如图,ABC 与DEF 位似,点O 为位似中心,相似比为2:3.若ABC 的周长为4,则DEF 的周长是( )A .4B .6C .9D .16 本号*资料皆来源于微信:数学26.(2021·山东淄博)如图,在Rt ABC 中,90ACB CE ∠=︒,是斜边AB 上的中线,过点E 作EF AB ⊥交AC 于点F .若4,BC AEF =△的面积为5,则sin CEF ∠的值为( )A .35B C .45D 27.(2021·吉林长春)如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x=>>的图象上,x 过点A 作x 轴的垂线,与函数(0)ky x x=->的图象交于点C ,连结BC 交x 轴于点D .若点A 的横坐标为1,3BC BD =,则点B 的横坐标为( )A .32B .2C .52D .328.(2021·黑龙江黑龙江)如图,平行四边形ABFC 的对角线AF BC 、相交于点E ,点O 为AC 的中点,连接BO 并延长,交FC 的延长线于点D ,交AF 于点G ,连接AD 、OE ,若平行四边形ABFC 的面积为48,则EOG S ∆的面积为( )A .4B .5C .2D .329.(2021·黑龙江)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在BC 的延长线上,连接DE ,点F 是DE 的中点,连接OF 交CD 于点G ,连接CF ,若4CE =,6OF =.则下列结论:△2GF =;△OD =;△1tan 2CDE ∠=;△90ODF OCF ∠=∠=︒;△点D 到CF .其中正确的结论是( )A .△△△△B .△△△△C .△△△△D .△△△△30.(2021·海南)如图,在菱形ABCD 中,点E F 、分别是边BC CD 、的中点,连接AE AF EF 、、.若菱形ABCD 的面积为8,则AEF 的面积为( ) 本号资料*皆来源于微信:数学A .2B .3C .4D .531.(2021·广西来宾)如图,矩形纸片ABCD ,:AD AB =,点E ,F 分别在AD ,BC 上,把纸片如图沿EF 折叠,点A ,B 的对应点分别为A ',B ',连接AA '并延长交线段CD 于点G ,则EFAG的值为( )A B .23C .12D 32.(2021·江苏连云港)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 33.(2021·浙江绍兴)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CE AD的值为( )A .32 B C D .2二、填空题34.(2022·湖南邵阳)如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.35.(2021·贵州黔西)如图,A B C '''与ABC 是位似图形,点O 为位似中心,若OA A A '=',则A B C '''与ABC 的面积比为__.36.(2020·辽宁盘锦)AOB 三个顶点的坐标分别为()5,0A ,()0,0O ,()3,6B ,以原点O 为位似中心,相似比为23,将AOB 缩小,则点B 的对应点'B 的坐标是__________.37.(2020·辽宁锦州)如图,在ABC 中,D 是AB 中点,//DE BC ,若ADE 的周长为6,则ABC 的周长为______.38.(2020·湖南娄底)若1()2b d a c a c ==≠,则b d a c-=-________. 39.(2020·湖南湘潭)若37y x =,则x y x -=________.40.(2020·贵州黔东南)如图,矩形ABC D 中,AB =2,BC ,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ △BC 于点Q ,则PQ =_____.41.(2021·的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形,边AB 1,则该矩形的周长为 __________________.42.(2021·贵州黔东南)已知在平面直角坐标系中,△AOB 的顶点分别为点A (2,1)、点B (2,0)、点O (0,0),若以原点O 为位似中心,相似比为2,将△AOB 放大,则点A 的对应点的坐标为________. 43.(2021·吉林)如图,为了测量山坡的护坡石坝高,把一根长为4.5m 的竹竿AC 斜靠在石坝旁,量出竿上AD 长为1m 时,它离地面的高度DE 为0.6m ,则坝高CF 为__________m .44.(2021·内蒙古)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD,与AB相交于点M,过点M作MN CB⊥,垂足为N.若2AC=,则MN的长为__________.45.(2022·广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是________米.46.(2022·浙江杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB△BC,DE△EF,DE=2.47m,则AB=_________m.47.(2022·北京)如图,在矩形ABCD中,若13,5,4AFAB ACFC===,则AE的长为_______.48.(2022·上海)如图,在△AB C中,△A=30°,△B=90°,D为A B中点,E在线段AC上,AD DEAB BC=,则AEAC=_____.49.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.50.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x 轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33OA B ,44OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.51.(2022·湖北鄂州)如图,在边长为6的等边△AB C 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.52.(2022·辽宁沈阳)如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别在E ,F 且点F 在矩形内部,MF 的延长线交BC 与点G ,EF 交边BC 于点H .2EN =,4AB =,当点H 为GN 三等分点时,MD 的长为______.53.(2022·湖南常德)如图,已知F 是ABC 内的一点,FD BC ∥,FE AB ∥,若BDFE 的面积为2,13BD BA =,14BE BC =,则ABC 的面积是________.54.(2021·四川内江)如图,矩形ABCD 中,6AB =,8BC =,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为 __.55.(2021·甘肃兰州)如图,在矩形ABCD 中,1AB =,3AD =.△以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;△分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为______.56.(2021·辽宁营口)如图,矩形ABCD 中,5AB =,4BC =,点E 是AB 边上一点,3AE =,连接DE ,点F 是BC 延长线上一点,连接AF ,且12F EDC ∠=∠,则CF =_________.57.(2021·江苏无锡)如图,在Rt ABC △中,90BAC ∠=︒,AB =6AC =,点E 在线段AC 上,且1AE =,D 是线段BC 上的一点,连接DE ,将四边形ABDE 沿直线DE 翻折,得到四边形FGDE ,当点G 恰好落在线段AC 上时,AF =________.58.(2020·四川眉山)如图,等腰ABC 中,10AB AC ==,边AC 的垂直平分线交BC 于点D ,交AC 于点E .若ABD △的周长为26,则DE 的长为________.59.(2020·四川宜宾)在直角三角形AB C 中,90,ACB D ︒∠=是AB 的中点,BE 平分ABC ∠交AC 于点E 连接CD 交BE 于点O ,若8,6AC BC ==,则OE 的长是________.60.(2020·山东潍坊)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AG EG AE ,将ABG 和ECG分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠=_______.三、解答题61.(2021·江苏南通)如图,利用标杆DE 测量楼高,点A ,D ,B 在同一直线上,DE AC ⊥,BC AC ⊥,垂足分别为E ,C .若测得1m AE =, 1.5m DE =,5m CE =,楼高BC 是多少?62.(2021·广西贵港)尺规作图(只保留作图痕迹,不要求写出作法),如图,已知ABC ,且AB >A C . 本号资料皆来源于微信公众#号:数学(1)在AB 边上求作点D ,使DB =DC ;(2)在AC 边上求作点E ,使ADE △AC B .63.(2021·广西玉林)如图,在ABC 中,D 在AC 上,//DE BC ,//DF AB .(1)求证:DFC △△AED ;(2)若13CD AC =,求DFC AED S S △△的值.64.(2021·湖北黄冈)如图,在ABC 和DEC 中,A D ∠=∠,BCE ACD ∠=∠.(1)求证:ABC DEC △△;(2)若:4:9ABC DEC S S =,6BC =,求EC 的长.65.(2020·湖北省直辖县级单位)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.66.(2022·上海)如图所示,在等腰三角形AB C中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB求证:(1)△CAE=△BAF;(2)CF·FQ=AF·BQ67.(2022·吉林长春)如图△、图△、图△均是55⨯的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是________;(2)在图△中确定一点D ,连结DB 、DC ,使DBC △与ABC 全等:(3)在图△中ABC 的边BC 上确定一点E ,连结AE ,使ABE CBA △∽△:(4)在图△中ABC 的边AB 上确定一点P ,在边BC 上确定一点Q ,连结PQ ,使PBQ ABC △∽△,且相似比为1:2.68.(2022·湖南常德)在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.69.(2022·湖北黄冈)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证AB AC =BD CD.小慧的证明思路是:如图2,过点C 作CE △AB ,交AD 的延长线于点E ,构造相似三角形来证明AB AC =BD CD .(1)尝试证明:请参照小慧提供的思路,利用图2证明AB AC =BD CD; (2)应用拓展:如图3,在Rt △AB C 中,△BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.△若AC =1,AB =2,求DE 的长;△若BC =m ,△AED =α,求DE 的长(用含m ,α的式子表示).70.(2022·山东泰安)如图,矩形ABCD 中,点E 在DC 上,DE BE =,AC 与BD 相交于点O .BE 与AC 相交于点F .(1)若BE 平分CBD ∠,求证:BF AC ⊥;(2)找出图中与OBF 相似的三角形,并说明理由;(3)若3OF =,2EF =,求DE 的长度.71.(2022·四川自贡)如图,用四根木条钉成矩形框ABCD ,把边BC 固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB 由AB 旋转得到,所以EB AB =.我们还可以得到FC = , EF = ;(2)进一步观察,我们还会发现EF △AD ,请证明这一结论;(3)已知BC 30,DC 80==cm cm ,若BE 恰好经过原矩形DC 边的中点H ,求EF 与BC 之间的距离.72.(2021·四川雅安)如图,OAD △为等腰直角三角形,延长OA 至点B 使OB OD =,其对角线AC ,BD 交于点E .(1)求证:OAF DAB △≌△;(2)求DF AF的值.73.(2021·广西贺州)如图,在Rt ABC 中,90C ∠=︒,D 是AB 上的一点,以AD 为直径的O 与BC 相切于点E ,连接AE ,DE .(1)求证:AE 平分BAC ∠;(2)若30B ∠=︒,求CE DE的值.74.(2021·湖南永州)如图1,AB 是O 的直径,点E 是O 上一动点,且不与A ,B 两点重合,EAB ∠的平分线交O 于点C ,过点C 作CD AE ⊥,交AE 的延长线于点D .(1)求证:CD 是O 的切线;(2)求证:22AC AD AO =⋅;(3)如图2,原有条件不变,连接,BE BC ,延长AB 至点M ,EBM ∠的平分线交AC 的延长线于点P ,CAB ∠的平分线交CBM ∠的平分线于点Q .求证:无论点E 如何运动,总有P Q ∠=∠.75.(2021·湖南益阳)如图,在等腰锐角三角形ABC 中,AB AC =,过点B 作BD AC ⊥于D ,延长BD 交ABC 的外接圆于点E ,过点A 作AF CE ⊥于F ,,AE BC 的延长线交于点G .(1)判断EA 是否平分DEF ∠,并说明理由;(2)求证:△BD CF =;△22BD DE AE EG =+⋅.76.(2021·黑龙江绥化)如图所示,四边形ABCD 为正方形,在ECH 中,90,,ECH CE CH HE ∠=︒=的延长线与CD 的延长线交于点F ,点D B H 、、在同一条直线上.(1)求证:CDE CBH ≌;(2)当15HB HD =时,求FD FC 的值; (3)当3,4HB HG ==时,求sin CFE ∠的值.77.(2021·山西)阅读与思考,请阅读下列科普材料,并完成相应的任务. 图算法 图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:9325F C =+得出,当10C =时,50F .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式12111R R R =+求得R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个120︒的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:△用公式12111R R R =+计算:当17.5R =,25R =时,R 的值为多少; △如图,在AOB 中,120AOB ∠=︒,OC 是AOB 的角平分线,7.5OA =,5OB =,用你所学的几何知识求线段OC 的长.78.(2022·辽宁大连)综合与实践问题情境:数学活动课上,王老师出示了一个问题:如图1,在ABC 中,D 是AB 上一点,ADC ACB ∠=∠.求证ACD ABC ∠=∠.独立思考:(1)请解答王老师提出的问题.实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长CA至点E ,使CE BD =,BE 与CD 的延长线相交于点F ,点G ,H 分别在,BF BC 上,BG CD =,BGH BCF ∠=∠.在图中找出与BH 相等的线段,并证明.” 本号资料皆来源@于微信:数学问题解决:(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当90BAC ∠=︒时,若给出ABC 中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若90BAC ∠=︒,4AB =,2AC =,求BH 的长.”79.(2022·广东深圳)(1)【探究发现】如图△所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF 处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图△,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF 处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图△,在菱形ABCD 中,E 为CD 边上的三等分点,60,D ∠=︒将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.80.(2022·山东烟台)(1)【问题呈现】如图1,△ABC 和△ADE 都是等边三角形,连接BD ,CE .求证:BD =CE .(2)【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,△ABC =△ADE =90°.连接BD ,CE .请直接写出BD CE的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,△ABC=△ADE=90°,且ABBC=ADDE=34.连接BD,CE.△求BDCE的值;△延长CE交BD于点F,交AB于点G.求sin△BFC的值.。
专题20 相似三角形重要模型之母子型(共边共角模型)(学生版)

专题20.相似三角形重要模型--母子型(共边共角模型)相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。
在相似三角形中存在众多的相似模型,其中“母子型”相似模型应用较为广泛,深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“母子”模型。
母子相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等;④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。
模型1.“母子”模型(共边角模型)【模型解读与图示】“母子”模型的图形(通常有一个公共顶点和另外一个不是公共的顶点,由于小三角形寓于大三角形中,恰似子依母怀),也是有一个“公共角”,再有一个角相等或夹这个公共角的两边对应成比例就可以判定这两个三角形相似.图1图2图3图41)“母子”模型(斜射影模型)条件:如图1,∠C=∠ABD ;结论:△ABD ∽△ACB ,AB 2=AD ·AC .2)双垂直模型(射影模型)条件:如图2,∠ACB=90o ,CD ⊥AB ;结论:△ACD ∽△ABC ∽△CBD ;CA 2=AD ·AB ,BC 2=BD ·BA ,CD 2=DA ·DB .3)“母子”模型(变形)条件:如图3,∠D=∠CAE ,AB=AC ;结论:△ABD ∽△ECA ;4)共边模型条件:如图1,在四边形ABCD 中,对角线BD 平分ABC ∠,ADB DCB ∠=∠,结论:2BD BA BC =⋅;例1.(2022·贵州贵阳·中考真题)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是()A .B .1:2C .1:3D .1:4例3.(2022.山西九年级期中)如图,点C ,D 在线段AB 上,△PCD 是等边三角形,且∠APB =120°,求证:(1)△ACP ∽△PDB ,(2)CD 2=AC •BD .例4.(2023·湖南·统考中考真题)在Rt ABC △中,90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 的长.例5.(2023.浙江中考模拟)如图,在ABC 中,∠ACB =90°,CD ⊥AB .(1)图1中共有对相似三角形,写出来分别为(不需证明):(2)已知AB =5,AC =4,请你求出CD 的长:(3)在(2)的情况下,如果以AB 为x 轴,CD 为y 轴,点D 为坐标原点O ,建立直角坐标系(如图2),若点P 从C 点出发,以每秒1个单位的速度沿线段CB 运动,点Q 出B 点出发,以每秒1个单位的速度沿线段BA 运动,其中t 秒是否存在点P ,使以点B 、P 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.例6.(2022·陕西汉中·九年级期末)如图,CD 是等腰直角ABC 斜边AB 的中线,以点D 为顶点的EDF ∠绕点D 旋转,角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AE 交于点M ,DE 与BC 交于点N ,且45EDF ∠=︒.(1)如图1,若CE CF =,求证:DE DF =;(2)如图2,若CE CF ≠,求证:2CD CE CF =⋅;(3)如图2,过D 作DG BC ⊥于点G ,若2CD =,CF =DN 的长.例7.(2023·浙江·九年级期末)(1)如图1,在ABC 中,D 为AB 上一点,2AC AD AB =⋅.求证:ACD B ∠=∠.(2)如图2,在ABCD 中,E 是AB 上一点,连接AC ,EC .已知4AE =,6AC =,9CD =.求证:23AD EC =.(3)如图3,四边形ABCD 内接于O ,AC 、BD 相交于点E .已知O 的半径为2,AE CE =,AB =,BD =,求四边形ABCD 的面积.【拓展提高】(3)如图3,在ABC D 是BC 上一点,连结AD ,点E ,F 分别在AD ,AC 上,连结BE EF ,若DE DC =,BEC AEF ∠=∠16BE =,7EF =,34CE BC =,求AF FC 的值.课后专项训练1.(2023成都市九年级期中)如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,㫠 ,△CEF 的面积为S 1,△AEB 的面积为S 2,则 的值等于()A .B .C .D .A .AG CG =B .2B HAB ∠=∠C .3.(2023·湖北恩施·校考模拟预测)如图,在A .2BC BD AB =⋅B .2CD AD BD =⋅36 A.36∠=︒B.BCE5.(2023·云南临沧·统考三模)的面积比为()A.1:2B.1:2,8.(2022·河北邢台·校考二模)如图1,在ABC 中,AB AC =,24BC =,5tan 12C =,点P 为BC 边上一点,则点P 与点A 的最短距离为______.如图2,连接AP ,作APQ ∠,使得APQ B ∠=∠,PQ 交AC 于Q ,则当11BP =时,AQ 的长为______.逆时针旋转到11.(2021·四川南充·中考真题)如图,在ABC 中,D 为BC 上一点,3BC BD ==,则:AD AC 的值为________.12.(2022·四川宜宾·九年级期末)如图,在△ABC 中,点D 在BC 边上,点E 在AC 边上,且AD =AB ,∠DEC =∠B .(1)求证:△AED ∽△ADC ;(2)若AE =1,EC =3,求AB 的长.13.(2022·江苏盐城·中考真题)如图,在ABC 与A B C '''V 中,点D 、D ¢分别在边BC 、B C ''上,且ACD A C D '''∽△△,若___________,则ABD A B D '''△∽△.请从①BD B D CD C D ''='';②AB A B CD C D ''='';③BAD B A D '''∠=∠这三个选项中选择一个作为条件(写序号),并加以证明.14.(2023·湖南·统考中考真题)在Rt ABC △中,90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 的长.=.探究发现:如图1,在ABC中,︒,AB AC(1)操作发现:将ABC折叠,使边落在边BA上,点C的对应点是点E,折痕交AC于点D,连接DE,DB AC=,,那么AE=______(用含x的式子表示);则BDE∠=_______︒,设1,这个比值被称为黄金比.在(在三角形的一条边上,且满足AD校考三模)约定:若三角形一边上的中线将三角形分得的两个小三角形中有一个三角形与原三(1)如图2,在ABC中,2=,求证:ABC为关于边BC的“华益美三角”;BC AB(2)如图3,已知ABC为关于边BC的“华益美三角”,点D是ABC边BC的中点,以BD为直径的⊙O恰好经过点A.①求证:直线CA与O相切;20.(2022·浙江台州·统考一模)已知在▱ABCD,AB=BC=10,∠B=60°,E是边BC上的动点,以AE为一边作▱AEFG,且使得直线FG经过点D.(1)如图1,EF与AD相交于H,若H是EF的中点.①求证:GF=DF;②若GF⊥CD,求GD的长;(2)如图2,设AE=x,AG=y,当点E在边BC上移动时,始终保持∠AEF=45°,①求y关于x的函数关系式,并求函数y的取值范围;②连接ED,当△AED是直角三角形时,求DF的值.请阅读下列材料,并完成相应的任务.2BAC B BAD CAD ∠∠∠∠=∴=,设DC x =,则AD BD a x ==-.22b ax a ax bc ∴=-=,22a b ∴-=任务:(1)上述材料中的证法(2)请补全证法2剩余的部分.22.(2022·安徽·校联考三模)在ABC 中,2ABC ACB ∠=∠,BD 平分ABC ∠.(1)如图1,若3AB =,5AC =,求AD 的长.(2)如图2,过A 分别作AE AC ⊥交BC 于E ,AF BD ⊥于F .①求证:ABC EAF ∠=∠;②求BF AC 的值.23.(2023春·山东淄博·八年级统考期末)如图,已知ABP ,点C ,D 在边AB 上,连接PC ,PD ,使60ADP ∠=︒,且ACP PDB ∽.(1)请判定PCD 的形状,并说明理由;(2)若2AC =,3BD =,求ABP 的面积.统考中考真题)鲜艳的中华人民共和国国旗始终是当代中华儿女永不褪色的信仰,国旗上的每AEFS △平分。
中考复习函数专题28 二次函数中的三角形问题(学生版)

专题28 二次函数中的三角形问题知识对接考点一、二次函数中的三角形问题考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
考点二、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
要点补充:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
要点补充:一、单选题1.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s (阴影部分),则s与t的大致图象为()A .B .C .D .2.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l :13y x b =+经过点10,4M ⎛⎫ ⎪⎝⎭一组抛物线的顶点()111B y ,,()222,B y ,()333,B y ,…(),n n B n y (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()11,0A x ,()22,0A x ,()33,0A x ,…()11,0n n A x ++(n 为正整数).若()101x d d =<<,当d 为( )时,这组抛物线中存在美丽抛物线A .512或712B .512或1112C .712或1112D .7123.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是A .16B .15C .14D .134.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A.7B.8C.14D.165.如图,在矩形纸片ABCD中,AB=3,BC=2,沿对角线AC剪开(如图△);固定△ADC,把△ABC沿AD方向平移(如图△),当两个三角形重叠部分的面积最大时,移动的距离AA′等于()A.1B.1.5C.2D.0.8或1.26.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.7.如图,正三角形ABC和正三角形ECD的边BC,CD在同一条直线上,将ABC向右平移,直到点B 与点D 重合为止,设点B 平移的距离为x ,=2BC ,4CD =.两个三角形重合部分的面积为Y ,现有一个正方形FGHI 的面积为S ,已知sin 60Y S=︒,则S 关于x 的函数图像大致为( )A .B .C .D .8.以下说法正确的是( )A .三角形的外心到三角形三边的距离相等B .顺次连接对角线相等的四边形各边中点所得的四边形是菱形C .分式方程11222x x x -=---的解为x =2 D .将抛物线y =2x 2-2向右平移1个单位后得到的抛物线是y =2x 2-39.二次函数2(1)22y m x mx m =+-+-的图象与x 轴有两个交点()1,0x 和()2,0x ,下列说法:△该函数图象过点(1,1)-;△当0m =时,二次函数与坐标轴的交点所围成的三角形面积是△若该函数的图象开口向下,则m 的取值范围为21m -<<-;△当0m >,且21x --时,y 的最大值为(92)m +.正确的是( )A .△△△B .△△△C .△△△D .△△△△ 10.以下四个命题:△如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;△在实数-7.54-π,)2中,有4个有理数,2个无理数;△的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为43; △二次函数221y ax ax =-+,自变量的两个值x 1,x 2对应的函数值分别为y 1,y 2,若|x 1-1|>|x 2-1|,则a (y 1-y 2)>0.其中正确的命题的个数为( )A .1个B .2个C .3个D .4个二、填空题11.定义[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0)的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的函数的一些结论:△当m ≠0时,点(1,0)一定在函数的图象上;△当m >0时,函数图象截x 轴所得的线段长度大于32;△当m <0时,函数在14x >时,y 随x 的增大而减小;△当m >0,若抛物线的顶点与抛物线与x 轴两交点组成的三角形为等腰直角三角形,则13m =,正确的结论是________.(填写序号)12.如图,在第一象限内作与x 轴的夹角为30°的射线OC ,在射线OC 上取点A ,过点A作AH △x 轴于点H ,在抛物线y =x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 有____个.13.如图,直线l :1134y x =+经过点M(0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3)…B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0)…,A n+1(x n+1,0)(n 为正整数),设x 1=d (0<d <1)若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当d (0<d <1)的大小变化时美丽抛物线相应的d 的值是__.14.如图,抛物线与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点()0,3C ,设抛物线的顶点为D .坐标轴上有一动点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似.则点P 的坐标______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
&4.2三角形及其全等考点一、三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2、三角形的特性与表示3、三角形的分类三角形按边的关系分类如下:不等边三角形三角形 底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
8、三角形的面积:三角形的面积=21×底×高 考点二、全等三角形1、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)2、全等变换全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
【典型例题】例1.如图所示,小明欲从A地去B地,有三条路可走:①A→B;②A→D→B;③A→C→B.(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC+BC>AD+DB,你能说明其原因吗?例2.(2006•郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.例3.(2010•南宁)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.【随堂练习】1.(2012•广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.162.(2012•呼和浩特)如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=___3. (2012•黄石)将下列正确的命题的序号填在横线上_______.①若n为大于2的正整数,则n边形的所有外角之和为(n-2)•180°.②三角形三条中线的交点就是三角形的重心.③证明两三角形全等的方法有:SSS,SAS,ASA,SSA及HL等.4.(2012•河南)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为_______.5. (2012•绍兴)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.6.(2011•河北)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.137.(2011•福州)如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2 B.3 C.4 D.58.(2010•南宁)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()A.3 B.4 C.5 D.69.(2009•江西)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90° 10. (2009•太原)如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得的三角形的周长可能是( )A .4B .4.5C .5D .5.5 11. (2008•沈阳)如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE ,交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 12. 如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC=40°,求∠CAP=______13. (2011•南昌)如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF 丄BC ;②△ADG ≌△ACF ;③O 为BC 的中点;④AG :DE=3:4,其中正确结论的序号是 _____14. 在△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,若△ABC 的周长为10cm ,则△DEF 的周长是______ cm .15. (2008吉林)如图所示,点D 、B 、C 在同一直线上,∠A =60°,∠C =50°,∠D =25°,则∠1=______16. (2010•苏州)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD ≌△BCE ;(2)若∠D=50°,求∠B 的度数.&4.3等腰三角形与直角三角形【知识清单】1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质与判定等腰三角形性质 等腰三角形判定中线 1、等腰三角形底边上的中线垂直底边,平分顶角; 2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形; 2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形角平分线 1、等腰三角形顶角平分线垂直平分底边; 2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形; 2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线 1、等腰三角形底边上的高平分顶角、平分底边; 2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形; 2、有两条高相等的三角形是等腰三角形。
角 等边对等角 等角对等边边 底的一半<腰长<周长的一半 两边相等的三角形是等腰三角形4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
三角形共有三条中位线,并且它们又重新构成一个新的三角形。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
2.直角三角形的性质1、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: BC=21AB ∠C=90°2、直角三角形斜边上的中线等于斜边的一半∠ACB=90° 可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+5、射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=26、常用关系式:由三角形面积公式可得:AB •CD=AC •BC3. 直角三角形的判定1、有一个角是直角的三角形是直角三角形。