吉林省2020年8月份普通高中学业考试仿真卷01数学试题(解析版)
2020年吉林省高考理科数学仿真模拟试题一(附答案)

2020年吉林省高考理科数学仿真模拟试题一(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}03A x x =<<,{}2log 1B x x =>则A B ⋂=( ) A. (2,3)B. (0,3)C. (1,2)D. (0,1)2. 若p :x R ∀∈,c o s 1x ≤,则( ) A. p ⌝:0x R ∃∈,0cos 1x > B. p ⌝:x R ∀∈,cos 1x > C. p ⌝:0x R ∃∈,0cos 1x ≥ D. p ⌝:x R ∀∈,cos 1x ≥3. 下列说法中,正确的是( )A. 命题“若22am bm <,则a b <”的逆命题是真命题B. 命题“存在2,0x R x x ∈->”的否定是:“任意2,0x R x x ∈-≤” C. 命题“p 或q”为真命题,则命题“p”和命题“q”均为真命题 D. 已知x R ∈,则“1x >”是“2x >”的充分不必要条件4. 设函数2,3,()(1),3x x f x f x x ⎧≥=⎨+<⎩则()2log 6f 值为( ) A. 3B. 6C. 8D. 125. 函数21010()x xf x x--=的图像大致为( )A. B. C. D.6. 已知向量a ,b 满足1a =,1a b ⋅=-,则(2)a a b ⋅-=( ) A. 4B. 3C. 2D. 17. 某三棱锥的三视图如图所示,其俯视图是一个等腰直角三角形,在此三棱锥的六条棱中,最长棱的长度为( )正视图 仰视图 俯视图A. B.C.D.8. 一布袋中装有个小球,甲,乙两个同学轮流且不放回的抓球,每次最少抓一个球,最多抓三个球,规定:由乙先抓,且谁抓到最后一个球谁赢,那么以下推断中正确的是( ) A. 若,则乙有必赢的策略 B. 若,则甲有必赢的策略 C. 若,则甲有必赢的策略D. 若,则乙有必赢的策略9.若函数f (x )=a sin x +cos x (a 为常数,x ∈R)的图象关于直线x =6π对称,则函数g (x )=sin x +a cos x 的图象( ) A .关于直线x =-3π对称 B .关于直线x =6π对称 C .关于点(3π,0)对称 D .关于点(56π,0)对称 10.三棱锥S ﹣ABC 中,SA ⊥底面ABC ,若SA =AB =BC =AC =3,则该三棱锥外接球的表面积为( )A .18πB .212πC .21πD .42π11.直线12=+by ax 与圆122=+y x 相交于A 、B 两点(其中b a ,是实数),且AOB ∆是直角三角形(O 是坐标原点),则点P ),(b a 与点)1,0(之间距离的最小值为( ) A 0 B. 2 C.12- D. 12+12.抛物线2y 2px =p>0()的焦点为F ,点A 、B 在抛物线上,且120AFB ∠=,弦AB 中点M 在准线l 上的射影为1M ,则1MM AB的最大值为( )二、填空题:本题共4小题,每小题5分,共20分。
【附20套高考模拟试题】2020届吉林省高考数学模拟试卷含答案

A. 2 B. 3 C. 5 D. 2 2
9.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则 该“堑堵”的外接球的表面积为( )
8 3
4 3
A. 3 B. 8 C. 6 D. 3
10.如图,网格纸上正方形小格的边长为 1(表示 1cm),图中粗线画出的是某零件的三视图,该零件由一
个底面半径为 3cm,高为 6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
17 5
10 1
A. 27 B. 9 C. 27 D. 3
11.定义在0, 上的函数 f x 满足:当 0 x 2时,f x 2x x2 ;当 x 2 时,f x 3 f x 2 .
求 ξ 的分布列及数学期望 E ξ .
20.(12 分)如图,在四棱锥 P-ABCD 中,底面 ABCD 是正方形,侧棱 PD⊥底面 ABCD,PD=DC,E 是 PC 的中点,作 EF⊥PB 交 PB 于点 F.
证明 PA//平面 EDB;证明 PB⊥平面 EFD. 21.(12 分)全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水
19.(12 分)某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用
电量标准 a,用电量不超过 a 的部分按平价收费,超出 a 的部分按议价收费.为此,政府调查了 100 户居
民的月平均用电量 ( 单位:度 ) ,以160,180 ,180, 200,200, 220,220, 240,240, 260,
记函数 f x 的极大值点从小到大依次记为 a1, a2 , , an , , 并记相应的极大值为 b1, b2 , , bn , , 则
【2020】高三数学第一次阶段性考试8月试题理

A4B3C2D1
二、填空题(本大题共4小题,每小题5分,共20分)
13.设集合 则 .
14.在极坐标系中,点 到直线 的距离为.
15.已知函数 ,则 .
16.已知“ ”是“ ”的必要不充分条件,则实数 的取值范围为.
三、解答题
20.(本小题12分)已知命题 函数 在R上有零点 .命题 在区间 内恒成立.若命题“ ”是假命题,求实数 的取值范围.
.21.(本小题12分).已知曲线 的极坐标方程为 ,以极点为原点,极轴为 轴的正半轴建立平面直角坐标系,直线 过点 ,倾斜角为 .
1.求曲线C的直角坐标方程与直线l的参数方程;
2.若曲线C经过伸缩变换 后得到曲线 ,且直线 与曲线 交于 两点,求 的值.
【2020】高三数学第一次阶段性考试8月试题理
编 辑:__________________
时 间:__________________
吉林省××市第八高级中学20xx届高三数学第一次阶段性考试(8月)试题 理
一、选择题(本大题共12题,每小题5分,共60分)
则
A (-2,0)B ຫໍສະໝຸດ -1,2)C (-2,-1)D (0, 2)
2.已知函数 在R上可导,则“ ”是“ 为函数 的极值”的 ( )
A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件
3.函数 的定义域为( )
A. B. C. D.
4.设函数为 ,若 则 等于( )
A B e C D 15.实数 的大小关系是 ( )
A B C D
6.已知命题P: 命题q: 则 .下列命 题为真命题的是( )
2020年吉林省高考理科数学仿真模拟试题(附答案)

2020年吉林省高考理科数学仿真模拟试题(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 集合A= {*∈-N x x x ,0<72},则B={A y N yy ∈*∈,6|}的子集个数是( ) A.4 个 B.8 个 C.16 个 D.32 个2. 某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效果却大着呢,原来这句话的等价命题是( )A.不拥有的人们不一定幸福B.不拥有的人们可能幸福C.拥有的人们不一定幸福D.不拥有的人们不幸福3. 已知各项为正数的等比数列{}n a 满足11a =,2416a a =,则6a =( ) A. 64B. 32C. 16D. 44. 欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4i i e eππ表示的复数在复平面中位于( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 记n S 为等差数列{}n a 的前n 项和,公差2d =,1a ,3a ,4a 成等比数列,则8S =( ) A. -20B. -18C. -10D. -86. 如图所示,程序框图(算法流程图)的输出结果是( )A.16B.2524C.34D.11127.直线 m,n 和平面βα, 则下列命题中,正确的是( )A .m ∥n, m αβα⇒⊆⊆n ,∥βB .m αβα⇒⊆⊥⊥n n m ,,∥β C.m ∥n,n ,β⊥m βαα⊥⇒⊆ D.m ∥n,m βαβα⊥⇒⊥⊥n , 8.已知函数()sin()(,0)4f x x x πωω=+∈>R 的最小正周期为π,为了得到函数()cos()4g x x πω=+的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度B .向右平移8π个单位长度C .向左平移4π个单位长度D .向右平移4π个单位长度9. 下图是某几何体的三视图,其中网格纸上小正方形的边长为1,则该几何体的体积为( )A. 12B. 15C.D.10. 在平面区域,内任取一点,则存在,使得点的坐标满足的概率为( )A.B.C.D.11. 已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN 平行于对角面11A ACC ,则||MN 的最小值为( ) A. 1D.312. 已知函数()ln 2f x a x x =-+(a 为大于1的整数),若()y f x =与(())y f f x =的值域相同,则a 的最小值是( )(参考数据:ln20.6931≈,ln3 1.0986≈,ln5 1.6094≈) A. 5 B. 6C. 7D. 8二、填空题:本题共4小题,每小题5分,共20分。
2020年吉林省长春市中考数学一模试卷 (解析版)

2020年吉林省长春市中考数学一模试卷一、选择题(共8小题).1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣12.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×1033.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.10.因式分解:m2﹣4m+4=.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为.12.如图,一束平行太阳光线照射到正五边形上,则∠1=.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为cm.14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣1【分析】直接利用数轴得出结果即可.解:数轴上蝴蝶所在点表示的数可能为﹣1,故选:D.2.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×103【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数﹣1.解:42000=4.2×104,故选:B.3.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.【分析】找到各选项中从左面看不是所给视图的立体图形即可.解:各选项中只有选项D从左面看得到从左往右2列正方形的个数依次为2,1,1,故选:D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【分析】利用不等式的基本性质,移项后再除以2,不等号的方向不变.解:移项,得2x≤2,系数化为1,得x≤1,不等式的解集在数轴上表示如下:.故选:D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.解:设有x匹大马,y匹小马,根据题意得,故选:C.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【分析】如果△ACD∽△CBD,可得∠CDA=∠BDC=90°,即CD是AB的垂线,根据作图痕迹判断即可.解:当CD是AB的垂线时,△ACD∽△CBD.∵CD⊥AB,∴∠CDA=∠BDC=90°,∵∠ACB=90°,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD.根据作图痕迹可知,A选项中,CD是∠ACB的角平分线,不符合题意;B选项中,CD不与AB垂直,不符合题意;C选项中,CD是AB的垂线,符合题意;D选项中,CD不与AB垂直,不符合题意;故选:C.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.【分析】作BC⊥AC,垂足为C,在Rt△ABC中,利用三角函数解答即可.解:如图,作BC⊥AC,垂足为C.在Rt△ABC中,∠ACB=90°,∠BAC=32°,AB=50×16=800(米),sin∠BAC=,∴BC=sin∠BAC•AB=800•sin32°.故选:A.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2【分析】过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,利用相似三角形的判定定理得出△AOM∽△OBN,再由反比例函数系数k的几何意义得出S△AOM:S△BON=1:(﹣a),进而可得出结论.解:过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠OAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠OAM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上,∴S△AOM:S△BON=1:(﹣a),∴AO:BO=1:,∵OB:OA=2,∴a=﹣4,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.解:原式=2﹣=.故答案为:.10.因式分解:m2﹣4m+4=(m﹣2)2.【分析】原式利用完全平方公式分解即可.解:原式=(m﹣2)2.故答案为:(m﹣2)2.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为﹣.【分析】根据关于x的方程2x2﹣3x﹣k=0有两个相等的实数根可得△=(﹣3)2﹣4×2(﹣k)=0,求出k的值即可.解:∵关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,∴△=(﹣3)2﹣4×2(﹣k)=0,∴9+8k=0,∴k=﹣.故答案为:﹣.12.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为(16+3)cm.【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AD=10,进而得出A′C=16,从而得出FA″=3,得出答案即可.解:∵当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.∴AD=10,∵钟面显示3点45分时,A点距桌面的高度为16公分,∴A′C=16,∴AO=A″O=6,则钟面显示3点55分时,∠A″OA′=45°,∴FA″=3,∴A点距桌面的高度为:16+3(cm).故答案为:().14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.解:原式=a2﹣2a+1﹣2a2+2a+4a2﹣1=3a2,当a=时,原式=3×5=15.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.【分析】首先根据题意列表求得所有等可能的结果与抽到的两张卡片上的数字之和为偶数的情况,再利用概率公式即可求得答案.解:根据题意,列表如下:1271238234978914所以P(两次抽取的卡片上数字之和为偶数)=.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.【分析】设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为1.4x 元/个,根据数量=总价÷单价结合第二次比第一次多购进了10000个,即可得出关于x 的分式方程,解之经检验后即可得出结论.解:设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为 1.4x 元/个,依题意,得:,解得:x=5,经检验,x=5是原方程的解,且符合题意.答;该爱心人士第一次购进口罩的单价为5元/个.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.【分析】(1)连接OD,如图,由切线的性质得到OD⊥BC,则OD∥AC,根据平行线的性质得到∠CAD=∠ODA,由∠ODA=∠OAD,所以∠CAD=∠DAE;(2)由(1)知,∠FAE=50°,由弧长公式可得答案.解:(1)如图,连结OD,∵⊙O与边BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠C=∠ODB=90°,∴OD∥AC.∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)如图,连结OF,∵AD平分∠BAC,且∠CAD=25°,∴12﹣3=9,∴∠EOF=100°,∴的长为.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.【分析】(1)根据线段垂直平分线的性质画图即可;(2)根据相似三角形的性质,构造相似三角形即可;(3)由相似三角形的性质,构造相似三角形即可.解:(1)如图①所示,点C即为所求;(2)如图②所示,点M即为所求;(3)如图③所示,点P即为所求.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为20米/分,无人机在40米的高度上飞行了3分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.【分析】(1)利用图象信息,根据速度=计算即可解决问题;(2)利用待定系数法即可解决问题;(3)求出无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),分两种情形构建方程即可解决问题;解:(1)无人机上升的速度为=20米/分,无人机在40米的高度上飞行了6﹣1﹣2=3分.故答案为20,3;(2)设y=kx+b,把(9,60)和(12,0)代入得到,解得,∴无人机下落过程中,y与x之间的函数关系式为y=﹣20x+240.(3)易知无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),由20x﹣60=50,解得x=5.5,由﹣20x+240=50,解得x=9.5,综上所述,无人机距地面的高度为50米时x的值为5.5和9.5.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为6.【分析】教材呈现:如图①中,证明△PAC≌△PBC即可解决问题.定理应用:(1)如图②中,设直线l、m交于点O,连结AO、BO、CO.利用线段的垂直平分线的判定和性质解决问题即可.(2)连接BD,BE,证明△BDE是等边三角形即可.【解答】教材呈现:解:如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)证明:如图②中,设直线l、m交于点O,连结AO、BO、CO.∵直线l是边AB的垂直平分线,∴OA=OB,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(2)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=18,∴DE=AC=6.故答案为6.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.【分析】(1)分0<t≤3时,3<t≤7时,两种情形分别求解即可.(2)分两种情形①如图2中,当点N在AC上时,②如图3中,当点N在BC上时,利用平行线分线段成比例定理解决问题即可.(3)分三种情形:①如图4中,当0<t≤时,重叠部分是五边形EFPDM,②如图5或6中.当<t≤5时,重叠部分是正方形PDMN.③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,分别求解即可.(4)分三种情形画出图形,利用平行线分线段成比例定理构建方程即可解决问题.解:(1)如图1中,作CD′⊥AB于D.∵∠B=45°,BC=4,∴CD′=BD′=4,∴AD′===3,∵AD=3,∴AD=AD′,∴D′与D重合,当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3;(2)①如图2中,当点N在AC上时,∵MN∥AD,∴,∴,解得t=;②如图3中,当点N在BC上时,∵MN∥BD,∴,∴,解得t=5;综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,S=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣t+;②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,S=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,S=S正方形MNPD﹣S△EFN=(t ﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,S=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴,则,解得t=1;如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴,∴,解得t=;如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.【分析】(1)由题意即可求解;(2)分m≥0、m<0两种情况分别求解即可;(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,CD=DD′,即可求解;(4)通先分段表示出y',进而确定出最大值,最后用m的范围建立不等式组,即可得出结论.解:(1)由题意得:点A'的坐标为(2,1)(2)①当m≥0时,m+1=2,m=1∴B(1,2)∵点B在一次函数y=kx+3图象上,∴k+3=2,解得:k=﹣1∴一次函数解析式为y=﹣x+3②m<0时,m+1=﹣2,m=﹣3∴B(﹣3,﹣2)∵点B在一次函数y=kx+3图象上,∴﹣3k+3=﹣2解得:k=一次函数解析式为y=x+3.(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,∴点C的坐标为(n,﹣n2+4),∴点D的坐标为(﹣n,﹣n2+4),D′(﹣n,n2﹣4)∵CD=DD′,∴2n=2(﹣n2+4),解得:n=;∵点C在第一象限,∴D′的横坐标为;(4)当﹣1≤x≤0时,y'=x2﹣n,此时,﹣n≤y'≤1﹣n,当0≤x≤2时,y'=﹣x2+n,此时,n﹣4≤y'≤n,当n≥1﹣n时,即:n≥,y'的最大值是n,①∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤n≤3,当n<时,y'最大值为1﹣n,②∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤1﹣n≤3,∴﹣2≤n≤0,∴n的取值范围应为1≤n≤3或﹣2≤n≤0.。
2020年8月份吉林省普通高中学业水平考试数学模拟题附参考答案(1)

2020年8月份吉林省普通高中学业考试仿真卷01数 学本卷满分120分,考试时间100分钟。
注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。
考试结束时,将试卷和答题卡一并交回。
2.本试题分两卷,第 1 卷为选择题,第Ⅱ卷为书面表达题。
试卷满分为120分。
答题时间 为 100 分钟。
3.第 1 卷选择题的答案都必须涂在答题卡上。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,选择题答案写在试卷上无效。
4.第Ⅱ卷的答案直接写在试卷规定的位置上 . 注意字迹清楚 . 卷面整洁。
参考公式:标准差: (n s x x =++- 锥体体积:13V Sh =其中s 为底面面积,h 为高 , 柱体体积公式 V=s.h 球的表面积、体积公式:24S R π=,343V R π=其中s 为底面面积,h 为高,V 为体积,R 为球的半径。
第 I 卷 (共 50 分)一、 选择题 (本大题共15小题,每小题的四个选项中只有一项是正确的。
第 1-10 小题每小题3 分,第11-15小题每小题4分,共50分)1.集合A ={1,3},B ={2,3,4}则A∩B =( )A .{1}B .{2}C .{3}D .{1,2,3,4}2.函数f (x )=2x –1的零点为( )A .2B .12C .12-D .–2 3.函数1()2f x x =-的定义域是( ) A .{|2}x x <B .{|2}x x >C .RD .{|2}x x ≠4.cos30的值是( )A.22 B .32 C .22- D .32- 5.已知向量(1,1),(2,2)a b ==,则a b +=( )A .(0,0)B .(3,3)C .(4,4)D .(5,5)6.为了得到函数cos()4y x π=+的图象只需将cos y x =的图象向左平移( )A .12个单位长度B .2π个单位长度C .14个单位长度D .4π个单位长度 7.已知一个几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .球D .四棱柱8.设1,(1)()2,(1)x f x x x ⎧≥⎪=⎨⎪<⎩,则(1)f 的值为( )A .0B .1C .2D .-19.下列函数为偶函数的是( )A .()3f x x =+B .22f x xC .()3f x x =D .()1f x x= 10.在等差数列{}n a 中,12a =,公差1d =,则3a =( )A .6B .5C .4D .311.已知两条相交直线a ,b ,a ∥平面,则b 与的位置关系是( )A .b 平面B .b 与平面相交C .b ∥平面D .b 在平面外12.已知直线2x =与直线21y x =-交于点P ,则点P 的坐标为( )A .(1,5)B .(2,3)C .(3,1)D .(0,0)13.掷一枚质地均匀的骰子,向上的点数小于3的概率是( )A .16B .13C .12D .2314.某班有男生20人,女生25人,用分层抽样的方法从该班抽取9人参加志愿者活动,则应抽取的女生人数为( )A .2B .3C .4D .515.已知0a >,0b >,1a b +=,则11a b +的最小值为( ) A .-2 B .2 C .4 D .-4第Ⅱ卷 (共 70 分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)16.在某五场篮球比赛中,甲乙两名运动员得分的茎叶图如下,则在这五场比赛中,平均得分比较好的运动员是_________.17.求值:013312log log 12(0.7)0.252-+-+=____. 18.取一个正方形及其外接圆,在圆内随机取一点,该点取自正方形内的概率为______.19.给出右边的程序框图,程序输出的结果是 .三、解答题(本大题共5小题,每小题10分,共50分,解答应写 出文字说明、证明过程或演算步骤)20.已知正方体1111ABCD A B C D -,(1)证明:1//D A 平面1C BD ;(2)求异面直线1D A 与BD 所成的角.21.已知a ,b ,c 分别为锐角三角形ABC 三个内角A ,B ,C 32sin c a C =. (1)求A ;(2)若2a =,ABC 3,求b ,c .22.设等差数列{}n a 的前n 项和为n S ,,已知35a =,39S =.(1)求首项1a 和公差d 的值;(2)若100n S =,求n 的值.23.设圆的方程为22450x y x +--=(1)求该圆的圆心坐标及半径.(2)若此圆的一条弦AB 的中点为(3,1)P ,求直线AB 的方程.24.已知函数2()22f x x ax =++,[5,5]x ∈-.(1)当1a =-时,求()f x 的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数.参考答案第 I 卷 (共 50 分)一、 选择题1.C 2.B 3.D 4.B 5.B 6.D 7.A 8.A 9.B10.C 11. D 12.B 13.B 14.D 15.C第Ⅱ卷 (共 70 分)二、填空题16.乙 17.4 18.2π 19.10三、解答题20.(1)证:在正方体1111ABCD A B C D -中,11//AB C D ,且11AB C D =,∴四边形11ABC D 为平行四边形,∴11//D A C B ,又∵1D A ⊄平面1C BD ,1C B ⊂平面1C BD ;∴1//D A 平面1C BD ;(2)解:∵11//D A C B ,∴1C BD ∠即为异面直线1D A 与BD 所成的角,设正方体1111ABCD A B C D -的边长为a ,则易得11C B BD C D ===,∴1C BD ∆为等边三角形,∴13C BD π∠=,故异面直线1D A 与BD 所成的角为3π.21.(12sin a C =,2sin sin C A C =,因为sin 0C ≠,所以sin 2A =. 因为A 为锐角,所以3A π=.(2)由2222cos a b c bc A =+-,得:224b c bc +-=.又ABC ∆1sin 2bc A = 所以4bc =.则228b c +=.解得2b c ==.22.(1)由题意得:()()1313335922a a a S ++===,解得:11a =, 则公差3151222a a d --===。
2020年吉林省高考文科科数学仿真模拟试题一(附答案)

2020年吉林省高考文科数学仿真模拟试题一(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( )A .{-1,0,1,2}B .{-1,0,1}C .{-1,0,2}D .{0,1} 2.“sin A =12”是“A =30°”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.下列函数中,既是偶函数又存在零点的是( )A.y=lnxB.21y x =+ C.y=sinx D.y=cosx 4.已知命题p :∀x>2,x 3-8>0,那么¬p 是( ) A .∀x≤2,x 3-8≤0 B .∃x>2,x 3-8≤0 C .∀x>2,x 3-8≤0 D .∃x≤2,x 3-8≤05. 若函数22,0()(),0x x f x g x x -⎧-<=⎨>⎩为奇函数,则f (g (2))=( )A. ﹣2B. ﹣1C. 0D. 26. 从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A.23B.12C.25D.137. 某几何体的三视图如图所示,则该几何体的表面积为( )A. 3+B. 3+C. 2D. 2+8. 已知直线2y kx =-与抛物线24x y =相切,则双曲线2221x k y -=的离心率等于( )A.2B.29. 已知球O 与棱长为2的正方体1111ABCD A B C D -的各面都相切,则平面1ACB 截球O 所得的截面圆与球心O 所构成的圆锥的体积为 ( )B.18C.27D. 5410. 已知函数()sin cos f x x x ωω=-(0ω>),若()3y f x π=+的图象与()6y f x π=-的图象重合,记ω的最小值为0ω,函数0()cos()3g x x πω=-的单调递增区间为 ( )A. 2[,]63k k ππππ++(k Z ∈)B. 27[,]36k k ππππ+++(k Z ∈) C. [,]12232k k ππππ++(k Z ∈) D. 7[,]32122k k ππππ++(k Z ∈) 11. 若x ,y 满足约束条件220330240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,目标函数z ax y =+仅在点(2,0)处取得最小值,则实数a 的取值范围是 ( ) A. 1(2,)2-B. 1100,32(-,)()C. 1(0,)2D. 11(,)32-12. 若函数212[]22(xf x a x e ax ax a R =---+∈()()())在1,12()上有极大值,则a 的取值范围为 ( )A. )eB.)C. (2,eD. (),e +∞二、填空题:本题共4小题,每小题5分,共20分。
2020年吉林普通高中会考数学真题及答案(完整版)

2020年吉林普通高中会考数学真题及答案姓名:________ 班级:________ 成绩:________一、选择题(本大题共18小題,每小题3分,共54分.) (共18题;共54分)1. ( 3分)已知集合,,且,则()A .B .C .D .2. ( 3分)已知实数,,则大小关系为()A .B .C .D .3. ( 3分)圆( x+2)2+( y+3)2=2 圆心和半径分别是()A . (﹣2,3),1B . ( 2,﹣3),3C . (﹣2,﹣3),D . ( 2,﹣3),4. ( 3分)不等式x2+2x<对任意a,b∈( 0,+∞)恒成立,则实数x 取值范围是()A . (﹣2,0)B . (﹣∞,﹣2)∪( 0,+∞)C . (﹣4,2)D . (﹣∞,﹣4)∪( 2,+∞)5. ( 3分)椭圆+=1 焦点坐标是()A . ( 0,±)B . ( ±, 0)C . ( 0,±)D . ( ±, 0)6. (3分)已知=(2,﹣1,3),=(﹣1,4,﹣2),=(7,5,λ),若、、三向量共面,则实数λ等于()A .B .C .D .7. ( 3分)已知sin(+α)=,则cos2α等于()A .B .C . -D . -8. ( 3分)已知变量、满足,则取值范围是()A .B .C .D .9. ( 3分)如图,平面平面,过平面,外一点引直线分别交平面,平面于、两点,,,引直线分别交平面,平面于、两点,已知,则长等于()A . 9B . 10C . 8D . 710. ( 3分)关于函数f(x)=tan|x|+|tanx|有下述四个结论:①f(x)是偶函数; ②f(x)在区间上单调递减;③f(x)是周期函数; ④f(x)图象关于对称其中所有正确结论编号是()A . ①③B . ②③C . ①②D . ③④11. ( 3分)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1 中点,则下列判断错误是()A . MN与CC1垂直B . MN与AC垂直C . MN与BD平行D . MN与A1B1平行12. ( 3分)已知某几何体三视图,如图所示,则该几何体体积为()A .B .C .D .13. ( 3分)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”()A . 充要条件B . 既不充分也不必要条件C . 充分不必要条件D . 必要不充分条件14. ( 3分)数列通项为,若要使此数列前项和最大,则值为()A . 12B . 12或13C . 13D . 1415. (3分)已知四棱锥底面是正方形,侧棱长均相等,E是线段上点(不含端点),设直线与所成角为,直线与平面所成角为,二面角平面角为,则()A .B .C .D .16. ( 3分)已知ABP 顶点A,B分别为双曲线左右焦点,顶点P在双曲线C上,则值等于()A .B .C .D .17. (3分)已知函数,数列满足,,若要使数列成等差数列,则取值集合为()A .B .C .D .18. ( 3分)一个圆锥和一个半球有公共底面,如果圆锥体积与半球体积恰好相等,则圆锥轴截面顶角余弦值是()A .B .C .D .二、填空题(本大题共4小题,每空3分,共15分.) (共4题;共15分)19. ( 6分)设等比数列{an} 前n项和为Sn ,若S10:S5=1:2,则S15:S5=________.20. ( 3分)若向量满足: ,则| |=________.21. ( 3分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB 取值范围是________22. ( 3分)已知函数,若对任意,不等式恒成立,则实数a 取值范围是________.三、解答题(本大题共3小题,共31分.) (共3题;共31分)23. (10分)已知函数,在一个周期内图象如图所示,A为图象最高点,B,C为图象与x轴交点,且△ABC为正三角形.(Ⅰ)求ω值及函数f( x)值域;(Ⅱ)若x∈[0,1],求函数f( x)值域;(Ⅲ)若,且,求f( x0+1)值.24. ( 10分)已知椭圆 + =1( a>b>0)离心率为,且过点(,).( 1)求椭圆方程;( 2)设不过原点O 直线l:y=kx+m( k≠0),与该椭圆交于P、Q两点,直线OP、OQ 斜率依次为k1、k2 ,满足4k=k1+k2 ,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你结论;若不是,请说明理由.25. ( 11分)已知函数 .(Ⅰ)求函数单调递减区间;(Ⅱ)求函数在区间上最大值及最小值.参考答案一、选择题(本大题共18小題,每小题3分,共54分.) (共18题;共54分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、二、填空题(本大题共4小题,每空3分,共15分.) (共4题;共15分)19-1、20-1、21-1、22-1、三、解答题(本大题共3小题,共31分.) (共3题;共31分) 23-124-1、24-2、25-1、全卷完 1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理想的学校。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省2020年8月份普通高中学业考试仿真卷01本卷满分120分,考试时间100分钟。
注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。
考试结束时,将试卷和答题卡一并交回。
2.本试题分两卷,第 1 卷为选择题,第Ⅱ卷为书面表达题。
试卷满分为120分。
答题时间 为 100 分钟。
3.第 1 卷选择题的『答案』都必须涂在答题卡上。
每小题选出『答案』后,用2B 铅笔把答题卡上对应题目的『答案』标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他『答案』标号,选择题『答案』写在试卷上无效。
4.第Ⅱ卷的『答案』直接写在试卷规定的位置上 . 注意字迹清楚 . 卷面整洁。
参考公式:标准差: (n s x x =++-锥体体积:13V Sh =其中s 为底面面积,h 为高 , 柱体体积公式 V=s.h 球的表面积、体积公式:24S R π=,343V R π=其中s 为底面面积,h 为高,V为体积,R 为球的半径。
第 I 卷 (选择题 共 50 分)一、 选择题 (本大题共15小题,每小题的四个选项中只有一项是正确的。
第 1-10 小题每小题3 分,第11-15小题每小题4分,共50分) 1.集合A ={1,3},B ={2,3,4}则A∩B =( ) A .{1}B .{2}C .{3}D .{1,2,3,4}2.函数f (x )=2x –1的零点为( ) A .2 B .12C .12- D .–23.函数1()2f x x =-的定义域是( )A .{|2}x x <B .{|2}x x >C .RD .{|2}x x ≠4.cos30的值是( ) A .22B .3 C .22-D .3-5.已知向量(1,1),(2,2)a b ==,则a b +=( ) A .(0,0)B .(3,3)C .(4,4)D .(5,5)6.为了得到函数cos()4y x π=+的图象只需将cos y x =的图象向左平移( )A .12个单位长度 B .2π个单位长度 C .14个单位长度 D .4π个单位长度 7.已知一个几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .球D .四棱柱8.设1,(1)()2,(1)x f x x x ⎧≥⎪=⎨⎪<⎩,则(1)f 的值为( )A .0B .1C .2D .-19.下列函数为偶函数的是( ) A .()3f x x =+B .22f xxC .()3f x x =D .()1f x x=10.在等差数列{}n a 中,12a =,公差1d =,则3a =( ) A .6B .5C .4D .311.已知两条相交直线a ,b ,a ∥平面,则b 与的位置关系是( ) A .b平面 B .b 与平面相交C .b ∥平面 D .b 在平面外12.已知直线2x =与直线21y x =-交于点P ,则点P 的坐标为( ) A .(1,5)B .(2,3)C .(3,1)D .(0,0)13.掷一枚质地均匀的骰子,向上的点数小于3的概率是( ) A .16B .13C .12D .2314.某班有男生20人,女生25人,用分层抽样的方法从该班抽取9人参加志愿者活动,则应抽取的女生人数为( ) A .2B .3C .4D .515.已知0a >,0b >,1a b +=,则11a b+的最小值为( ) A .-2B .2C .4D .-4第Ⅱ卷 (书面表达题 共 70 分)二、填空题(本大题共4小题,每小题5分,共20分,把『答案』填在题中横线上) 16.在某五场篮球比赛中,甲乙两名运动员得分的茎叶图如下,则在这五场比赛中,平均得分比较好的运动员是_________.17.求值:013312log log 12(0.7)0.252-+-+=____. 18.取一个正方形及其外接圆,在圆内随机取一点,该点取自正方形内的概率为______.19.给出右边的程序框图,程序输出的结果是 .三、解答题(本大题共5小题,每小题10分,共50分,解答应写 出文字说明、证明过程或演算步骤)20.已知正方体1111ABCD A B C D -,(1)证明:1//D A 平面1C BD ; (2)求异面直线1D A 与BD 所成的角.21.已知a ,b ,c 分别为锐角三角形ABC 三个内角A ,B ,C 2sin a C =. (1)求A ;(2)若2a =,ABC b ,c .22.设等差数列{}n a 的前n 项和为n S ,,已知35a =,39S =. (1)求首项1a 和公差d 的值; (2)若100n S =,求n 的值.23.设圆的方程为22450x y x +--= (1)求该圆的圆心坐标及半径.(2)若此圆的一条弦AB 的中点为(3,1)P ,求直线AB 的方程.24.已知函数2()22f x x ax =++,[5,5]x ∈-. (1)当1a =-时,求()f x 的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数.——★ 参 考 答 案 ★——本卷满分120分,考试时间100分钟。
注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。
考试结束时,将试卷和答题卡一并交回。
2.本试题分两卷,第 1 卷为选择题,第Ⅱ卷为书面表达题。
试卷满分为120分。
答题时间 为 100 分钟。
3.第 1 卷选择题的『答案』都必须涂在答题卡上。
每小题选出『答案』后,用2B 铅笔把答题卡上对应题目的『答案』标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他『答案』标号,选择题『答案』写在试卷上无效。
4.第Ⅱ卷的『答案』直接写在试卷规定的位置上 . 注意字迹清楚 . 卷面整洁。
参考公式:标准差: (n s x x =++-锥体体积:13V Sh =其中s 为底面面积,h 为高 , 柱体体积公式 V=s.h 球的表面积、体积公式:24S R π=,343V R π=其中s 为底面面积,h 为高,V为体积,R 为球的半径。
第 I 卷 (选择题 共 50 分)一、 选择题 (本大题共15小题,每小题的四个选项中只有一项是正确的。
第 1-10 小题每小题3 分,第11-15小题每小题4分,共50分) 1.集合A ={1,3},B ={2,3,4}则A∩B =( ) A .{1}B .{2}C .{3}D .{1,2,3,4}『答案』C『解析』根据集合交集的运算可知,,故选C .2.函数f (x )=2x –1的零点为( ) A .2 B .12C .12- D .–2『答案』B『解析』根据题意,函数f (x )=2x –1,令f (x )=0,即2x –1=0,解可得x 12=,即函数f (x )=2x –1的零点为12,故选B . 3.函数1()2f x x =-的定义域是( )A .{|2}x x <B .{|2}x x >C .RD .{|2}x x ≠『答案』D 『解析』20x -≠,2x ∴≠即函数1()2f x x =-的定义域为{|2}x x ≠故选:D 4.cos30的值是( )A .2B C .2-D . 『答案』B『解析』根据特殊角的三角函数值,容易知cos30=故选:B. 5.已知向量(1,1),(2,2)a b ==,则a b +=( ) A .(0,0)B .(3,3)C .(4,4)D .(5,5)『答案』B『解析』根据向量加法坐标运算公式得:()()()1,12,23,3a b +=+=.故选:B.6.为了得到函数cos()4y x π=+的图象只需将cos y x =的图象向左平移( )A .12个单位长度 B .2π个单位长度 C .14个单位长度 D .4π个单位长度 『答案』D『解析』由题将cos y x =的图象向左平移4π个单位长度即可得到函数cos()4y x π=+的图象. 故选:D7.已知一个几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .球D .四棱柱『答案』A『解析』由三视图可知该几何体是圆柱,故选:A8.设1,(1)()2,(1)x f x xx ⎧≥⎪=⎨⎪<⎩,则(1)f 的值为( ) A .0B .1C .2D .-1『答案』A『解析』由题意1(1)11f ==.故选:B .9.下列函数为偶函数的是( ) A .()3f x x =+B .22f xxC .()3f x x =D .()1f x x=『答案』B『解析』当()f x =22x -时,22()()22()f x x x f x -=--=-=,所以2()2f x x =-为偶函数,()3f x x =+为非奇非偶函数函数,3()f x x =与1()f x x=为奇函数.故选:B 10.在等差数列{}n a 中,12a =,公差1d =,则3a =( ) A .6B .5C .4D .3『答案』C『解析』3122214a a d =+=+⨯=.故选:C.11.已知两条相交直线a ,b ,a ∥平面,则b 与的位置关系是( ) A .b平面 B .b 与平面相交C .b ∥平面 D .b 在平面外『答案』D『解析』因为两条相交直线a ,b ,a//平面α,所以b 与α相交,或者 b//平面α,因而b 在α外.12.已知直线2x =与直线21y x =-交于点P ,则点P 的坐标为( ) A .(1,5)B .(2,3)C .(3,1)D .(0,0)『答案』B『解析』联立直线2x =与直线21y x =-的方程,容易得2,3x y ==,故点P 的坐标为()2,3.故选:B.13.掷一枚质地均匀的骰子,向上的点数小于3的概率是( ) A .16B .13C .12D .23『答案』B『解析』掷一枚质地均匀的骰子,向上的点数共有6种情况,点数小于3的情况有2种,故2163p ==.故选:B . 14.某班有男生20人,女生25人,用分层抽样的方法从该班抽取9人参加志愿者活动,则应抽取的女生人数为( ) A .2B .3C .4D .5『答案』D『解析』由题得女生所占的比例为25255==20+25459,所以用分层抽样的方法从该班抽取9人参加志愿者活动,则应抽取的女生人数为59=59⨯.故选:D.15.已知0a >,0b >,1a b +=,则11a b+的最小值为( ) A .-2B .2C .4D .-4『答案』C『解析』因为1a b +=所以()111124b a a b a b a b ⎛⎫++=+++≥+=⎪⎝⎭,当且仅当b aa b =即12a b ==时取得等号所以11a b+的最小值为4故选:C 第Ⅱ卷 (书面表达题 共 70 分)二、填空题(本大题共4小题,每小题5分,共20分,把『答案』填在题中横线上) 16.在某五场篮球比赛中,甲乙两名运动员得分的茎叶图如下,则在这五场比赛中,平均得分比较好的运动员是_________.『答案』乙『解析』甲的平均分为12103839185++++=,乙的平均分为1122232430225++++=, 所以乙的平均分高于甲.故『答案』为:乙. 17.求值:013312log log 12(0.7)0.252-+-+=____. 『答案』4『解析』原式3331log log 1214log 331344=+-+=+=+=,故『答案』为4. 18.取一个正方形及其外接圆,在圆内随机取一点,该点取自正方形内的概率为______.『答案』2π『解析』设正方形边长为a,所以正方形的面积为2a ,圆形的面积为22=2a ππ⎝⎭,所以概率为222a a π=2π. 19.给出右边的程序框图,程序输出的结果是 .『答案』10『解析』根据程序框图可知,程序输出的结果是123410S =+++=.三、解答题(本大题共5小题,每小题10分,共50分,解答应写 出文字说明、证明过程或演算步骤)20.已知正方体1111ABCD A B C D -,(1)证明:1//D A 平面1C BD ;(2)求异面直线1D A 与BD 所成的角.『答案』(1)证明见『解析』;(2)3π. 『解析』(1)证:在正方体1111ABCD A B C D -中, 11//AB C D ,且11AB C D =,∴四边形11ABC D 为平行四边形,∴11//D A C B ,又∵1D A ⊄平面1C BD ,1C B ⊂平面1C BD ;∴1//D A 平面1C BD ;(2)解:∵11//D A C B ,∴1C BD ∠即为异面直线1D A 与BD 所成的角,设正方体1111ABCD A B C D -的边长为a ,则易得11C B BD C D ==,∴1C BD ∆为等边三角形, ∴13C BD π∠=,故异面直线1D A 与BD 所成的角为3π.21.已知a ,b ,c 分别为锐角三角形ABC 三个内角A ,B ,C 2sin a C =. (1)求A ;(2)若2a =,ABC b ,c .『答案』(1)3A π=;(2)2b c ==.『解析』(12sin a C =,2sin sin C A C =,因为sin 0C ≠,所以sin A =.因为A 为锐角,所以3A π=.(2)由2222cos a b c bc A =+-,得:224b c bc +-=.又ABC ∆1sin 2bc A = 所以4bc =.则228b c +=.解得2b c ==.22.设等差数列{}n a 的前n 项和为n S ,,已知35a =,39S =.(1)求首项1a 和公差d 的值;(2)若100n S =,求n 的值.『答案』(1)11a =;2d =;(2)10n = 『解析』(1)由题意得:()()1313335922a a a S ++===,解得:11a =, 则公差3151222a a d --===。