常用测量仪器的介绍
测绘技术中的常用仪器设备介绍

测绘技术中的常用仪器设备介绍一、激光测距仪激光测距仪是测绘技术中常用的一种高精度测量仪器。
它通过发射激光束,利用光电转换器接收反射回来的激光信号,从而计算出测量点与激光源之间的距离。
激光测距仪具备快速、精确、非接触等特点,被广泛应用于建筑、地理、环境等领域的测绘工作中。
二、全站仪全站仪是一种集成了测距仪、角度测量仪、水平仪和垂直仪等功能的综合性测量仪器。
它能够实现对水平、竖直方向的测角以及距离的测量,并能将这些数据进行处理、计算和记录。
在测绘工作中,全站仪能够提高测量的效率和精度,广泛应用于土地勘测、道路建设、城市规划等领域。
三、差分GPS差分GPS是基于全球定位系统(GPS)原理的高精度测量技术。
它采用了两个或多个GPS接收机进行同时观测,通过对比不同接收机测得的信号和卫星信号进行校正,从而达到提高测量精度的目的。
差分GPS在测绘工作中广泛应用,特别适用于大面积的地形测量、测量控制网的建立等工作。
四、摄影测量仪摄影测量仪是一种利用航空或航天摄影测量技术进行地物测量的仪器。
它通过航空摄影仪或卫星摄影仪拍摄地面影像,并利用测量原理对影像进行解译和测量。
摄影测量仪能够快速获取大范围的地表信息,广泛应用于地图制作、林业、农业等领域,也是测绘技术中不可缺少的工具之一。
五、数码相机数码相机作为一种普及性的影像采集设备,也在测绘工作中发挥着重要作用。
数码相机能够快速获取高分辨率的影像数据,在地理信息系统(GIS)中有广泛的应用。
通过数码相机拍摄的影像可以进行影像解译和测量,从而获得地面特征、地物分类、地物分布等相关信息。
同时,数码相机也可作为辅助工具,用于拍摄全站仪测量时的目标点信息。
六、地面激光扫描仪地面激光扫描仪是一种能够对地面进行高密度、高精度的三维扫描的仪器。
它通过发射激光束并接收地面反射回来的信号,从而获得地面上各个点的三维坐标数据。
地面激光扫描仪在测绘工作中能够提供丰富的地面信息,尤其适用于地貌、建筑物、道路等复杂场景的三维建模和定量分析。
必备的测绘仪器及其使用方法介绍

必备的测绘仪器及其使用方法介绍引言:测绘仪器在现代测绘工作中起着不可或缺的作用,它们能够帮助测绘人员准确测量和记录地理信息,并且为地图制作、土地规划、工程建设等领域提供基础数据。
本文将重点介绍几种必备的测绘仪器以及它们的使用方法。
1. 全站仪全站仪是一种测量仪器,它能够测量地面上任意点的三维坐标、水平角和垂直角。
在测量过程中,全站仪会通过发射激光束来测量目标点,并通过内置的电子设备计算得出准确的测量结果。
使用全站仪时,我们需要首先设置基准点,然后在目标点上放置反光板,全站仪会自动锁定反光板,进行测量并记录数据。
2. GPS定位仪GPS定位仪是一种利用全球卫星定位系统(GPS)来测量地理坐标的仪器。
它通过接收多颗卫星发出的信号,并通过计算这些信号的时间差来确定接收器与卫星的距离,从而计算出自身的位置。
使用GPS定位仪时,我们需要打开仪器,等待接收卫星信号,然后根据显示屏上的数据确定当前位置的经纬度坐标。
3. 激光测距仪激光测距仪是一种利用激光技术来测量距离的仪器。
它通过发射一束激光束,并在目标上产生反射,然后利用接收到的反射激光束的时间来计算目标与测距仪之间的距离。
使用激光测距仪时,我们需要将仪器对准目标,触发测距按钮,然后根据显示屏上的数据获取距离信息。
4. 高程仪高程仪是一种用于测量地面高程的仪器。
它通过测量地面上的垂直角和水平角来计算目标点的高度。
使用高程仪时,我们首先需要将仪器架设在基准点上,然后将目标点对准高程仪的刻度尺,并记录角度。
通过计算这些角度的差值,我们可以得出目标点与基准点之间的高度差。
5. 水准仪水准仪是一种用于测量地面水平线的仪器。
它通过观察水平准线和测量杆上的刻度值来计算目标点的高度。
使用水准仪时,我们需要在观察过程中保持视线平稳,并将测量杆对准视线。
通过比较水准仪上的刻度值和测量杆上的刻度值,我们可以确定目标点的高度。
结论:在测绘工作中,必备的测绘仪器起到了至关重要的作用。
测绘技术中的常用量测工具与仪器介绍

测绘技术中的常用量测工具与仪器介绍测绘技术是确定地球表面及其特征的方法和方式,在不同领域中都有广泛的应用。
为了精确测量和记录地球表面的各种信息,测绘技术使用了许多不同的工具和仪器。
本文将介绍测绘技术中常用的量测工具和仪器。
1. 全站仪:全站仪是现代测量仪器的重要组成部分。
它可以同时测量水平角、垂直角和斜距,并可以通过跟踪目标来确定位置。
全站仪广泛应用于道路、桥梁、建筑、隧道和其他工程项目中,用于测量和记录地面和建筑物的各种参数,如高度、距离和角度。
2. GPS 接收器:GPS(全球定位系统)接收器可以通过接收卫星信号来确定接收器的位置。
GPS 接收器在测绘技术中被广泛使用,用于确定点的经度、纬度和海拔高度。
它可以提供高精度的位置信息,常用于野外测量、地理信息系统和地图制作。
3. 钢尺:钢尺是测绘工作中最常用的工具之一。
钢尺通常由钢材制成,具有标准的长度和刻度,用于测量线段的长度。
钢尺适用于各种测量任务,从简单的建筑测量到复杂的地面测量,都可以使用钢尺进行准确的测量。
4. 经纬仪:经纬仪是一种用于测量点的经度和纬度的仪器。
它由一个基座和一个转动的仰角杆组成,可以根据天空中可见的特定恒星或行星的位置来确定点的经度和纬度。
经纬仪主要用于天文测量,但也可以用于地理定位和地图制作。
5. 水准仪:水准仪用于测量点之间的高度差。
它通常由一个平台和一个可调节的气泡水平仪组成,可以确定水平线的位置。
水准仪广泛应用于建筑工程、测量工程和地理测量中,用于确定点的高度。
6. 激光测距仪:激光测距仪利用激光技术测量点之间的距离。
它通过发射激光束并计算其中断的时间来确定距离。
激光测距仪在测绘技术中被广泛使用,用于测量建筑物、道路和其他地物的距离,以及地表的高程。
7. 高程仪:高程仪是用于测量地表高程的仪器。
它通常由一个高度调节杆和一个水平仪组成,可以确定点的高度差。
高程仪在土地测量、道路建设和城市规划中被广泛使用,用于确定点在垂直方向上的位置。
测绘技术中常用的测量仪器介绍

测绘技术中常用的测量仪器介绍测绘技术是一门关于地理空间数据获取、处理和分析的学科。
而测量仪器则是测绘技术中不可或缺的工具,它们能够精确测量地球上的各种要素,包括地形、地貌、建筑物等等。
本文将介绍几种常用的测量仪器,并对其原理和应用进行探讨。
一、全站仪全站仪是一种高精度的测量仪器,它结合了全景照相、测距、角度测量等多种功能。
全站仪通过测量目标物体与测站之间的水平和垂直角度,以及距离来获取目标物体的三维坐标。
全站仪广泛应用于測绘、土建工程、矿山测量等领域。
例如,全站仪可以用来确定建筑物的位置和高度,计算地面的坡度和地形的变化等。
二、地面摄影测量仪地面摄影测量仪是一种通过摄影和测量来获取地理空间数据的仪器。
它可以在一幅图像中获取大范围地物的位置和形状信息。
地面摄影测量仪通过将摄影机与测量仪器相结合,能够获取三维坐标和高程数据,并生成数字地图或数字模型。
这些数据可以用于城市规划、环境保护、农业等领域。
例如,地面摄影测量仪可以用来评估城市人口密度、土地利用情况和植被覆盖率等。
三、激光测距仪激光测距仪是一种通过激光测量目标物体与测量仪器之间的距离的仪器。
激光测距仪通过发射激光脉冲,并测量激光脉冲从发射到接收的时间差,然后乘以光速得到距离。
激光测距仪的测量精度高,可以达到毫米级。
激光测距仪广泛应用于测绘、建筑、地理调查等领域。
例如,激光测距仪可以用来测量建筑物的高度、道路的宽度和河流的深度等。
四、无人机无人机是一种通过遥控或自主飞行的无人驾驶飞行器。
无人机配备有航摄仪、GPS和惯性导航系统等测量设备,可以进行航空摄影、三维建模和环境监测等任务。
无人机的应用十分广泛,它可以用于农业、地质勘探、自然资源调查等领域。
例如,在农业中,无人机可以用来监测农田的生长情况,识别病虫害和施肥需求等。
总结起来,测绘技术中常用的测量仪器包括全站仪、地面摄影测量仪、激光测距仪和无人机。
这些仪器能够为测绘工作提供高精度和全面的数据支持。
测绘技术中的常用仪器设备推荐

测绘技术中的常用仪器设备推荐测绘技术作为一种应用广泛的技术,在各个领域都有着重要的应用价值。
在进行测绘工作时,使用合适的仪器设备可以提高测绘精度和效率。
本文将推荐几款常用的测绘仪器设备,并对其特点和适用范围进行详细介绍。
一、全站仪全站仪是测量和放样工作中非常常用的仪器之一。
全站仪可以同时完成测量和放样工作,具有测角、测距、测高等多种功能。
其精度高、测量快速,适用于各类工地和测量场合。
全站仪使用方便,操作简单,是测绘工作中不可或缺的一款仪器。
二、GNSS测量设备GNSS(Global Navigation Satellite System)是一种利用全球卫星定位系统进行测量的技术。
GNSS测量设备可用于获取当前位置的经纬度坐标,并具备高精度定位系统,适用于广泛的领域,如地理信息系统、地形地貌测量等。
GNSS测量设备的优势在于可以快速获取准确的位置信息,帮助测绘工作者进行高精度的位置测量。
三、激光测距仪激光测距仪是一种使用激光技术来测量目标距离的测量仪器。
激光测距仪具有高精度、快速测量的特点,可以应用于测量地形、建筑物高度、距离等方面。
在测绘工作中,激光测距仪可用于快速获取目标距离,提高测量效率和精度。
激光测距仪体积小巧,操作简便,是现代测绘工作中重要的一种测量仪器。
四、数字水准仪数字水准仪是一种用于测量高差的仪器设备。
数字水准仪具有高度精度、自动化程度高等特点,可用于测量建筑物、道路、堤坝等工程的高程。
数字水准仪操作简单,测量准确,适用于各种复杂场地的测绘工作。
在城市规划、土地测量、水利工程等领域,数字水准仪是必不可少的测量仪器。
五、航摄测绘设备航摄测绘是一种通过航空器拍摄地面影像,并借助测绘软件进行地理信息处理和分析的测绘方法。
航摄测绘设备包括航空相机、航摄平台等。
航摄测绘技术具有快速、高效、精度高等特点,广泛应用于土地资源调查、城市规划、资源环境监测等领域。
综上所述,测绘技术中的常用仪器设备包括全站仪、GNSS测量设备、激光测距仪、数字水准仪和航摄测绘设备等。
工程测量常用的仪器及其用途

工程测量常用的仪器及其用途工程测量是一门综合性的学科,需要使用多种仪器和设备进行测量和控制。
这些仪器不仅能够大大提高工作效率,还可以提高测量的精度和准确性。
在工程测量中,常用的仪器有:1.光学仪器光学仪器是工程测量中常用的仪器之一,包括全站仪、经纬仪和测距仪等。
全站仪是一种精密的测量仪器,可以实现水平、垂直和斜距测量,广泛应用于土建工程和地质勘探中。
经纬仪则是用于大地测量和天文测量的仪器,可以测量地球上任意两点之间的经纬度和距离,对于大地测量和定位具有重要意义。
测距仪则是一种测量距离和高度的仪器,可以快速、准确地测量目标物体的距离和高度,广泛应用于工程测量和地理测绘中。
2. GPS定位仪GPS定位仪是一种利用全球定位系统进行测量的仪器,可以快速、准确地测定目标物体的经纬度、高度和时间。
在工程测量中,GPS定位仪可以用于地形测量、地质勘探和导航定位等领域,具有测量范围广、测量精度高、操作简便等特点。
3.激光测距仪激光测距仪是一种利用激光技术进行距离测量的仪器,可以实现快速、准确地测量目标物体的距离和高度。
在工程测量中,激光测距仪可以用于建筑测量、地质勘探和工程测绘等领域,具有测量范围广、测量速度快、测量精度高等特点。
4.高精度水准仪高精度水准仪是一种用于测量地表上点的海拔高度的仪器,可以实现快速、准确地测量目标点的高度。
在工程测量中,高精度水准仪可以用于建筑测量、道路测量和地形测量等领域,具有测量精度高、测量范围广、操作简便等特点。
5.接触式测量仪接触式测量仪是一种用于测量工件形状和尺寸的仪器,包括游标卡尺、千分尺和高度规等。
这些仪器可以实现对工件尺寸的快速、准确测量,广泛应用于机械加工、汽车制造和航空航天等领域。
6.非接触式测量仪非接触式测量仪是一种用于测量工件表面形貌和尺寸的仪器,包括光学测量仪、激光测量仪和机器视觉系统等。
这些仪器可以实现对工件表面形貌和尺寸的快速、准确测量,广泛应用于电子制造、光学加工和医疗器械制造等领域。
常用测量仪器的名称和用途

常用测量仪器的名称和用途一、量角器量角器是一种用来测量角度的仪器,主要用于绘图、建筑设计、工程测量等领域。
它可以通过读取刻度来测量两个直线之间的夹角大小,精确度较高。
量角器通常由一个半圆形的刻度盘和一个可调节的指针组成,通过调整指针的位置来测量角度。
二、卷尺卷尺是一种用来测量长度的仪器,广泛应用于建筑、制造业、家居装修等领域。
它通常由一个带有刻度的金属带和一个可自由伸缩的卷轴组成。
卷尺可以通过拉出金属带来测量物体的长度,刻度标示在带子上,精确度较高。
三、温度计温度计是一种用来测量温度的仪器,广泛应用于医疗、气象、工业等领域。
温度计有多种类型,常见的有水银温度计、电子温度计和红外线温度计等。
它们通过测量物体的热量变化来确定温度值,精确度较高。
四、测量尺测量尺是一种用来测量长度和宽度的仪器,常用于建筑、制造业等领域。
测量尺通常由一个带有刻度的直尺和一个可移动的游标组成,通过调整游标位置来测量物体的大小。
测量尺的精确度较高,可以满足大部分测量需求。
五、电子秤电子秤是一种用来测量物体质量的仪器,广泛应用于商业、家庭等场所。
电子秤通过电子传感器将物体的重力转化为电信号,并显示在秤盘上。
电子秤精确度高,能够快速准确地测量物体的质量。
六、雷达雷达是一种用来测量距离和方向的仪器,广泛应用于航空、军事、气象等领域。
雷达通过发射电磁波并接收其反射信号来测量物体的距离和方向。
雷达具有高精度和远距离探测能力,是现代科技中不可或缺的仪器之一。
七、血压计血压计是一种用来测量血压的仪器,主要用于医疗领域。
血压计通过气压变化来测量人体的血压数值,通常由一个袖带和一个压力计组成。
血压计能够准确地测量人体的血压水平,对于高血压和心血管疾病的诊断和治疗非常重要。
八、pH计pH计是一种用来测量溶液酸碱性的仪器,广泛应用于实验室、环境监测等领域。
pH计通过测量溶液中氢离子的浓度来确定其酸碱性。
pH计精度高,能够快速准确地测量溶液的酸碱性,对于化学实验和水质监测非常重要。
常见的测量仪器有哪些

常见的测量仪器有哪些在日常生活中和工业制造中,常见的测量仪器有很多种。
这些测量仪器在不同场合下使用,能够提供很好的测量结果和分析,帮助人们更好地完成相关工作。
本文将介绍一些常见的测量仪器及其应用。
热量测量仪器热量测量仪器主要指用于测量温度、热量和热流量的仪器,包括测温仪、热像仪、热电偶等。
测温仪根据测量原理的不同,可以分为接触式和非接触式两种类型。
接触式测温仪可以直接接触被测物体,获取温度值;而非接触式测温仪则通过红外线、激光等方式,可以在不接触被测物体的情况下,获取物体表面的温度值。
热像仪是一种高端的热量测量仪器,具有高精度、高分辨率等特点。
它可以将物体的表面温度映射成可见图像,帮助我们更好地识别温度分布、冷热点等信息。
热电偶则是通过热电效应来测量温度的一种仪器,常用于高温场合的温度测量。
电子测量仪器电子测量仪器广泛应用于电子制造、通信、计算机等领域。
其中,万用表是电子测量仪器中最常见、最基础的一种,可以测量电压、电流、电阻、频率等参数。
除此之外,示波器还可以显示波形、电压变化等信息,适合于复杂信号分析和调试。
频谱分析仪则是用于测量信号频率分布情况和频段分析的仪器,广泛应用于无线电、音频、视频等领域。
信号发生器则是一种模拟信号源,可以产生各种频率、形状的信号,常用于实验研究和系统测试。
光学测量仪器光学测量仪器是一类利用光学原理来测量和分析相关参数的仪器。
非常常见的一种是显微镜,它可以放大物体的细节和微观结构,进行精细的观测和分析。
数字显微镜则结合了数字图像处理技术和显微技术,能够以数字图像的方式展示样品细节。
其他常见的光学测量仪器还包括光谱仪、激光干涉仪、衍射仪、偏振仪等。
这些仪器都可以通过不同的分析方式获取样品的形态、色谱、反射、透射、衍射、干涉等信息。
精度测量仪器精度测量仪器是测量精度类仪器的总称,包括经典的卡尺、量角器、镜面测平仪等。
这些仪器在制造和生产中,常用于精度测量、加工和校正等工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺旋测微器螺旋测微器又称千分尺(micrometer)、螺旋测微仪、分厘卡,是比游标卡尺更精密的测量长度的工具,用它测长度可以准确到0.01mm,测量围为几个厘米。
它的一部分加工成螺距为0.5mm的螺纹,当它在固定套管B的螺套中转动时,将前进或后退,活动套管C和螺杆连成一体,其周边等分成50个分格。
螺杆转动的整圈数由固定套管上间隔0.5mm的刻线去测量,不足一圈的部分由活动套管周边的刻线去测量。
螺旋测微器简介一种机械千分尺(螺旋测微器)知名品牌:安一量具、哈量、成量、青量、上工、瑞士TESA、日本Mitutoyo等。
右图为一种常见的螺旋测微器。
螺旋测微器的分类一种电子千分尺(螺旋测微器)螺旋测微器分为机械式千分尺和电子千分尺两类。
①机械式千分尺。
简称千分尺,是利用精密螺纹副原理测长的手携式通用长度测量工具。
1848年,法国的J.L.帕尔默取得外径千分尺的专利。
1869年,美国的J.R.布朗和L.夏普等将外径千分尺制成商品,用于测量金属线外径和板材厚度。
千分尺的品种很多。
改变千分尺测量面形状和尺架等就可以制成不同用途的千分尺,如用于测量径、螺纹中径、齿轮公法线或深度等的千分尺。
②电子千分尺。
也叫数显千分尺,测量系统中应用了光栅测长技术和集成电路等。
电子千分尺是20世纪70年代中期出现的,用于外径测量。
螺旋测微器的组成螺旋测微器组成部分图解图上A为测杆,它的活动部分加工成螺距为0.5mm的螺杆,当它在固定套管B的螺套中转动一周时,螺杆将前进或后退0.5毫米,螺套周边有50个分格。
大于0.5毫米的部分由主尺上直接读出,不足0.5毫米的部分由活动套管周边的刻线去测量。
所以用螺旋测微器测量长度时,读数也分为两步,即(1)从活动套管的前沿在固定套管的位置,读出主尺数(注意0.5毫米的短线是否露出)。
(2)从固定套管上的横线所对活动套管上的分格数,读出不到一圈的小数,二者相加就是测量值。
螺旋测微器的尾端有一装置D,拧动D可使测杆移动,当测杆和被测物相接后的压力达到某一数值时,棘轮将滑动并有咔咔的响声,活动套管不再转动,测杆也停止前进,这时就可以读数了。
不夹被测物而使测杆和小砧E相接时,活动套管上的零线应当刚好和固定套管上的横线对齐。
实际操作过程中,由于使用不当,初始状态多少和上述要求不符,即有一个不等于零的读数。
所以,在测量时要先看有无零误差,如果有,则须在最后的读数上去掉零误差的数值。
螺旋测微器原理和使用螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。
因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。
螺旋测微器的精密螺纹的螺距是0.5mm,可动刻度有50个等分刻度,可动刻度旋转一周,测微螺杆可前进或后退0.5mm,因此旋转每个小分度,相当于测微螺杆前进或推后0.5/50=0.01mm。
可见,可动刻度每一小分度表示0. 01mm,所以以螺旋测微器可准确到0.01mm。
由于还能再估读一位,可读到毫米的千分位,故又名千分尺。
测量时,当小砧和测微螺杆并拢时,可动刻度的零点若恰好与固定刻度的零点重合,旋出测微螺杆,并使小砧和测微螺杆的面正好接触待测长度的两端,那么测微螺杆向右移动的距离就是所测的长度。
这个距离的整毫米数由固定刻度上读出,小数部分则由可动刻度读出。
使用中的注意事项螺旋测微器的注意事项①测量时,在测微螺杆快靠近被测物体时应停止使用旋钮,而改用微调旋钮,避免产生过大的压力,既可使测量结果精确,又能保护螺旋测微器。
不同尺寸的螺旋测微器②在读数时,要注意固定刻度尺上表示半毫米的刻线是否已经露出。
③读数时,千分位有一位估读数字,不能随便扔掉,即使固定刻度的零点正好与可动刻度的某一刻度线对齐,千分位上也应读取为“0”。
④当小砧和测微螺杆并拢时,可动刻度的零点与固定刻度的零点不相重合,将出现零误差,应加以修正,即在最后测长度的读数上去掉零误差的数值。
螺旋测微器的正确使用和保养1. 检查零位线是否准确;2. 测量时需把工件被测量面擦干净;3. 工件较大时应放在V型铁或平板上测量;4. 测量前将测量杆和砧座擦干净;5. 拧活动套筒时需用棘轮装置;6. 不要拧松后盖,以免造成零位线改变;7. 不要在固定套筒和活动套筒间加入普通机油;8. 用后擦净上油,放入专用盒,置于干燥处。
游标卡尺游标卡尺游标卡尺,是一种测量长度、外径、深度的量具。
游标卡尺由主尺和附在主尺上能滑动的游标两部分构成。
主尺一般以毫米为单位,而游标上则有10、20或50个分格,根据分格的不同,游标卡尺可分为十分度游标卡尺、二十分度游标卡尺、五十分度格游标卡尺等。
游标卡尺的主尺和游标上有两副活动量爪,分别是测量爪和外测量爪,测量爪通常用来测量径,外测量爪通常用来测量长度和外径。
简介英文[vernier caliper]知名品牌:瑞士TESA、日本Mitutoyo、安一量具、哈量、成量、青量、上工等。
游标卡尺,是一种测量长度、外径、深度的量具。
游标卡尺由主尺和附在主尺上能滑动的游标两部分构成。
若从背面看,游标是一个整体。
游标与尺身之间有一弹簧片,利用弹簧片的弹力使游标与尺身靠紧。
游标上部有一紧固螺钉,可将游标固定在尺身上的任意位置。
主尺一般以毫米为单位,而游标上则有10、20或50个分格,根据分格的不同,游标卡尺可分为十分度游标卡尺、二十分度游标卡尺、五十分度格游标卡尺等。
游标卡尺的主尺和游标上有两副活动量爪,分别是测量爪和外测量爪,测量爪通常用来测量径,外测量爪通常用来测量长度和外径。
深度尺与游标尺连在一起,可以测槽和筒的深度。
1992年5月在市西北8公里的邗江县甘泉乡(今邗江区甘泉镇)顺利清理了一座东汉早期的砖室墓,从墓中出土了一件铜卡尺(见图),此铜卡尺由固定尺和活动尺等部件构成。
固定尺通长13.3厘米,固定卡爪长5.2厘米、宽0.9厘米、厚0.5厘米。
固定尺上端有鱼形柄,长13厘米,中间开一导槽,槽置一能旋转调节的导销,循着导槽左右移动。
在活动尺和活动卡爪间接一环形拉手,便于系绳或抓握。
两个爪相并时,固定尺与活动尺等长。
使用时,将左手握住鱼形柄,右手牵动环形拉手,左右拉动,以测工件。
用此量具既可测器物的直径,又可测其深度以及长、宽、厚,均较直尺方便和精确。
惜因年代久远,其固定尺和活动尺上的计量刻度和纪年铭文,已锈蚀难以辨认。
东汉原始铜卡尺的出土,纠正了世人过去认为游标卡尺乃是欧美科学家发明的观念。
英国在1973年出版的《英国百科全书》第10卷402页,记述游标卡尺是法国数学家维尼尔?皮尔(公元1580-1637年)在1631年发明的。
游标卡尺的工作原理游标卡尺是工业上常用的测量长度的仪器,它由尺身及能在尺身上滑动的游标组成,如图2.3-1所示。
若从背面看,游标是一个整体。
游标与尺身之间有一弹簧片(图中未能画出),利用弹簧片的弹力使游标与尺身靠紧。
游标上部有一紧固螺钉,可将游标固定在尺身上的任意位置。
尺身和游标都有量爪,利用测量爪可以测量槽的宽度和管的径,利用外测量爪可以测量零件的厚度和管的外径。
深度尺与游标尺连在一起,可以测槽和筒的深度。
尺身和游标尺上面都有刻度。
以准确到0.1毫米的游标卡尺为例,尺身上的最小分度是1毫米,游标尺上有10个小的等分刻度,总长9毫米,每一分度为0.9毫米,比主尺上的最小分度相差0.1毫米。
量爪并拢时尺身和游标的零刻度线对齐,它们的第一条刻度线相差0.1毫米,第二条刻度线相差0.2毫米,……,第10条刻度线相差1毫米,即游标的第10条刻度线恰好与主尺的9毫米刻度线对齐,如图2.3-2。
当量爪间所量物体的线度为0.1毫米时,游标尺向右应移动0.1毫米。
这时它的第一条刻度线恰好与尺身的1毫米刻度线对齐。
同样当游标的第五条刻度线跟尺身的5毫米刻度线对齐时,说明两量爪之间有0.5毫米的宽度,……,依此类推。
在测量大于1毫米的长度时,整的毫米数要从游标“0”线与尺身相对的刻度线读出。
游标卡尺的使用用软布将量爪擦干净,使其并拢,查看游标和主尺身的零刻度线是否对齐。
如果对齐就可以进行测量:如没有对齐则要记取零误差:游标的零刻度线在尺身零刻度线右侧的叫正零误差,在尺身零刻度线左侧的叫负零误差(这件规定方法与数轴的规定一致,原点以右为正,原点以左为负)。
测量时,右手拿住尺身,大拇指移动游标,左手拿待测外径(或径)的物体,使待测物位于外测量爪之间,当与量爪紧紧相贴时,即可读数.游标卡尺的读数读数时首先以游标零刻度线为准在尺身上读取毫米整数,即以毫米为单位的整数部分。
然后看游标上第几条刻度线与尺身的刻度线对齐,如第6条刻度线与尺身刻度线对齐,则小数部分即为0.6毫米(若没有正好对齐的线,则取最接近对齐的线进行读数)。
如有零误差,则一律用上述结果减去零误差(零误差为负,相当于加上相同大小的零误差),读数结果为:L=整数部分+小数部分-零误差判断游标上哪条刻度线与尺身刻度线对准,可用下述方法:选定相邻的三条线,如左侧的线在尺身对应线之右,右侧的线在尺身对应线之左,中间那条线便可以认为是对准了,如图2.3-4。
L= 对准前刻度+游标上第n条刻度线与尺身的刻度线对齐 *(乘以)分度值如果需测量几次取平均值,不需每次都减去零误差,只要从最后结果减去零误差即可。
游标卡尺的精度常用游标卡尺按其精度可分为3种:即0.1毫米、0.05毫米和0.02毫米。
精度为0.05毫米和0.02毫米的游标卡尺。
它们的工作原理和使用方法与本书介绍的精度为0.1毫米的游标卡尺相同。
精度为0.05毫米的游标卡尺的游标上有20个等分刻度,总长为19毫米。
测量时如游标上第11根刻度线与主尺对齐,则小数部分的读数为11/20毫米=0.55毫米,如第1 2根刻度线与主尺对齐,则小数部分读数为12/20毫米=0.60毫米。
一般来说,游标上有n个等分刻度,它们的总长度与尺身上(n-1)个等分刻度的总长度相等,若游标上最小刻度长为x,主尺上最小刻度长为y则 nx=(n-1)y,x=y-(y/n)主尺和游标的最小刻度之差为Δx=y-x=y/ny/n叫游标卡尺的精度,它决定读数结果的位数。
由公式可以看出,提高游标卡尺的测量精度在于增加游标上的刻度数或减小主尺上的最小刻度值。
一般情况下y为1毫米,n取10、20、50其对应的精度为0.1,0.05毫米、0.02毫米。
精度为0.02毫米的机械式游标卡尺由于受到本身结构精度和人的眼睛对两条刻线对准程度分辨力的限制,其精度不能再提高。
游标卡尺的使用用软布将量爪擦干净,使其并拢,查看游标和主尺身的零刻度线是否对齐。
如果对齐就可以进行测量;如没有对齐则要记取零误差:游标的零刻度线在尺身零刻度线右侧的叫正零误差,在尺身零刻度线左侧的叫负零误差(这件规定方法与数轴的规定一致,原点以右为正,原点以左为负)。