大学物理(1)

合集下载

大学物理(1)总复习

大学物理(1)总复习

k a b k(k 1,2,3,...;k只能取整数) a
计算缺级的基本公式。
[B ]
16
补:若用衍射光栅准确测定一单色可见光的波长,在下列各种 光栅常数的光栅中选用哪一种最好?
(A) 5.0×10-1 mm. (B) 1.0×10-1 mm.
(C) 1.0×10-2 mm. (D) 1.0×10-3 mm.
(A) 1.5J (C) 4.5J
(B) 3J (D) -1.5J
F
d
r
1m(v 2
2 2
v12 ),
v
v
2 x
v
2 y
vx
dx dt
5,v y
dy dt
t,
v12
29,v
2 2
41
[B ]
4
4、对质点组有以下几种说法:
(1)质点组总动量的改变与内力无关。
(2)质点组总动能的改变与内力无关。
(3)质点组机械能的改变与保守内力无关。
v 0, t 3
[B ]
r xi yj
v
d
r
d
x
i
d
y
j
dt dt dt
v
v
2 x
v
2 y
d
x
2
d
y
2
dt dt
2
2. 质量为2kg的质点,受力F = t i(SI)的作用,t =0 时刻该质点以v =6i m·s-1的速度通过坐标原点,则该 质点任意时刻的位置矢量为
25
20.一绝热容器被隔板分成两半,一半是真空,另一半是理想 气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后
(A)温度不变,熵增加. (B)温度升高,熵增加. (C)温度降低,熵增加. (D)温度不变,熵不变.

大学物理(一)题库1(黄时中)

大学物理(一)题库1(黄时中)

⼤学物理(⼀)题库1(黄时中)⼤学物理(1)期末复习题库第⼀篇⼒学⼀、判断题1. 平均速度和瞬时速度通常都是相等的。

()2. 若⼒⽮量F 沿任何闭合路径的积分0=??Ll d F ,则该⼒为保守⼒() 3. 任意刚体的形状、⼤⼩和质量确定,则该刚体的转动惯量⼤⼩确定。

()4. 在狭义相对论时空观下,⼀个惯性系中同时(异地)发⽣的两件事,在另⼀个与它相对运动的惯性系中则⼀定不同时发⽣。

()5. 物体做曲线运动时,速度⽅向⼀定在运动轨道的切线⽅向,法向分速度恒为零,因此其法向加速度也⼀定为零。

()6. 在太阳系中,⾏星相对于太阳的的⾓动量不守恒。

()7. 因为 r r ?=?,所以速率等于速度的⼤⼩。

()8. 物体的运动⽅向与合外⼒⽅向不⼀定相同。

()。

9. 若系统外⼒所作的功0≠ext W ,只要0int,=+non ext W W ,则系统机械能保持不变。

()10. 在⾼速飞⾏的光⼦⽕箭中的观测者观测到地球上的钟变慢了,则地球上的观测者可认为光⼦⽕箭中的钟变快了。

()11. 假设光⼦在某惯性系中的速度为c ,那么存在这样的⼀个惯性系,光⼦在这个惯性系中的速度不等于c 。

()。

12. ⼀物体可以具有恒定的速率但仍有变化的速度()13. 物体运动的⽅向⼀定与它所受的合外⼒⽅向相同()14. 物体运动的速率不变,所受合外⼒⼀定为零()15. 相对论的运动时钟变慢和长度收缩效应是⼀种普遍的时空属性,与过程的具体性质⽆关()16. 质点作圆周运动的加速度不⼀定指向圆⼼。

()17. 有⼀竖直悬挂的均匀直棒,可绕位于悬挂点并垂直于棒的⼀端的⽔平轴⽆摩擦转动,原静⽌在平衡位置。

当⼀质量为m 的⼩球⽔平飞来,并与棒的下端垂直地相撞,则在⽔平⽅向上该系统的动量守恒。

()18. ⼀物体可具有机械能⽽⽆动量,但不可能具有动量⽽⽆机械能。

()19. 内⼒不改变质点系的总动量,它也不改变质点的总动能。

()20. 在某个惯性系中同时发⽣在相同地点的两个事件,对于相对该系有相对运动的其它惯性系⼀定是不同时的。

大学物理(一)试题

大学物理(一)试题

一、填空题(每空2分,共20分)1. 一质点沿半径为R =0.1m 的圆周运动,其运动方程为θ=2+4t 3,则t =2s 时切向加速度a τ= .2. 均匀柔软链条,质量为m ,长为l ,一部分(l -a )放在桌面上,一部分(长为a )从桌面边缘下垂,链条与桌面间的摩擦系数为μ,则下垂长度为 时,链条才可能下滑;当链条以此下垂长度从静止开始下滑,在链条末端离开桌面时,它的速率为 .3. 质量为m 的质点在流体中作直线运动,受到与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为v 0,则t 时刻的速度为v = .4. 一匀质转台质量为M ,半径为R ,可绕竖直的中心轴转动,初角速度为ω0,一人立在台中心,质量为m .若他以恒定的速度u 相对转台沿半径方向走向边缘,如下图所示,则人到达转台边缘时转台的角速度为 .第4题图 第5题图5. 如上图所示,磁感应强度为B 的均匀磁场中,长为L 的载流直导线通有电流I ,电流方向与B 的夹角为θ.则L 所受的安培力大小为 .6. 静电场的环路定理为 .7. 如下图所示,长度为L 的铜棒在磁感应强度为B 的均匀磁场中,以角速度ω绕O 轴沿逆时针方向转动.则棒中感应电动势的大小为 ;方向为 .第7题图 第8题图 8. 在圆柱形的均匀磁场中,若∂B ∂t>0,柱内直导线ab 的长度为L ,与圆心垂直距离为h ,如上图所示,则此直导线ab 上的感应电动势大小为 .二、单项选择题(每小题3分,共15分)9. 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来? ( )(A )北偏东30° ; (B ) 南偏东30°;(C ) 北偏西30° ; (D ) 西偏南30°.10. 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是 ( )(A )k mg; (B )k g2;(C )gk ; (D )gk .11. 关于刚体对轴的转动惯量,下列说法中正确的是()(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关;(B)取决于刚体的质量和质量的空间分布,与轴的位置无关;(C)取决于刚体的质量、质量的空间分布和轴的位置;(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.12.半径为R的无限长均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为()13. 根据电磁场满足的麦克斯韦方程组:()(A)电场产生磁场,磁场产生电场;(B)变化的电场产生电场但不产生磁场;(C)有电场时磁场为零,有磁场时电场为零;(D)变化的电场产生磁场,变化的磁场产生电场.三、判断题(每小题1分,共10分)14.一个质点的运动方程为x=t3-3t2-9t+5 (m)则质点作变加速直线运动. ()15. 动量守恒定律在高速、微观领域中不成立. ()16. 一个质点的运动轨道为一抛物线x2=4y,作用在质点上的力为F=2y i+4j(N),则质点从x1=-2m处运动到x2=3m处力F所做的功为10.8(J)()17. 创造力强的国家或个人是可以创造能量的. ()18. 一转轮以角速度ω0转动,由于轴承的摩擦力的作用,第1秒末的角速度为0.8ω.若摩擦力矩与角速度成正比,求第2秒末的角速度为0.6ω. ()19. 电场线总是指向电势降低的方向. ()20. ∮S B·d S=0称为磁场中的高斯定理. ()21. 感应电流的效果,总是要反抗引起感应电流的原因. ()22. 电动势是描述电路中静电力做功的物理量. ()23. 静电场,有源无旋;稳恒磁场,有旋无源. ()四、简答题(每小题5分,共15分)24. 力的定义是什么?按性质可以分成哪4类?.25. 一个静止的点电荷能在它的周围空间任一点激起电场;一个线电流元是否也能够在它的周围空间任一点激起磁场?26. 试举出法拉第总结出的5种可以产生感应电流的情况.五、计算题(每小题10分,共40分)27.质点沿直线运动,速度v=t3+3t2+2 (m·s-1),如果当t=2 s时,x=4 m,求:t=3 s时质点的位置、速度和加速度.28.如下图所示丁字形物体由两根相互垂直且均匀的细杆构成,OA=OB=OC=l,OC杆的质量与AB杆的质量均为m,可绕通过O点的垂直于物体所在平面的水平轴无摩擦地转动.开始时用手托住C使丁字形物体静止(OC杆水平),释放后求:(1)释放瞬间丁字形物体的角加速度;(2)转过90°时的角加速度、角动量、转动动能.r r r第28题图 第29题图29. 如上图所示,圆柱半径为R ,电流I 均匀流过导体横截面,求空间磁场大小的分布.30. 求均匀带电球体的空间电场大小的分布,已知球体半径为R ,电荷体密度为 .。

大学物理上册试卷及答案(完整版)

大学物理上册试卷及答案(完整版)

大学物理(I )试题汇总《大学物理》(上)统考试题一、填空题(52分)1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________;(2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2214πt +=θ (SI) 则其切向加速度为t a =__________________________.3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________.4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v=_______.6、一电子以0.99 c 的速率运动(电子静止质量为9.11×10-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________.7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比热c = 501.6 J ·kg -1·K -1)8、某理想气体在温度为T = 273 K 时,压强为p =1.0×10-2 atm ,密度ρ = 1.24×10-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.013×105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:(1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________.11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.12、折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_________________________.13、平行单色光垂直入射在缝宽为a =0.15 mm 的单缝上.缝后有焦距为f =400mm 的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm ,则入射光的波长为λ=_______________.14、一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.15、用相互平行的一束自然光和一束线偏振光构成的混合光垂直照射在一偏振片上,以光的传播方向为轴旋转偏振片时,发现透射光强的最大值为最小值的5倍,则入射光中,自然光强I 0与线偏振光强I 之比为__________.16、假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.二、计算题(38分)17、空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)18、3 mol 温度为T 0 =273 K 的理想气体,先经等温过程体积膨胀到原来的5倍,然后等容加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为Q = 8×104 J .试画出此过程的p -V 图,并求这种气体的比热容比γ = C p / C V 值. (普适气体常量R =8.31J·mol -1·K -1)19、一质量为0.20 kg 的质点作简谐振动,其振动方程为 )215cos(6.0π-=t x (SI).求:(1) 质点的初速度; (2) 质点在正向最大位移一半处所受的力.17、20、一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程; (2) 求此波的波动表达式;(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程.21、在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.22、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?三、问答题(5分)23、两个大小与质量相同的小球,一个是弹性球,另一个是非弹性球.它们从同一高度自由落下与地面碰撞后,为什么弹性球跳得较高?地面对它们的冲量是否相同?为什么?《大学物理》(下)物探统考试题一、填空题1,如图所示,在边长为a的正方形平面的中垂线上,距中心0点21a处,有一电量为q的正点电荷,则通过该平面的电场强度通量为____________.2_______________________。

大学物理 第一章(1)

大学物理 第一章(1)

a

v2 R
n0

dv dt
t0
R―曲率半径
思考 求抛体运动过程中的曲率半径?
如B 点 at 0 , an g ,v B v 0cosθ
RB
v2
B an

(v 0cosθ)2
g
y v
B
思考
· a4 v
· a1
a·2
O
a3


O
x C
上图中分别是什么情形? a4情形是否存在?
(2)物体各点运动情况相同
本课程力学部分,除刚体外,一般都可视为质点.
2 位置矢量(position vector of a particle)
表征某时刻质点位置的矢量, 简称位矢或矢径

r xi yj zk
r 位矢 的大小:
y
r r x2 y2 z2 r 位矢 的方向余弦:
a

ddtv

20
2

sin2ti
16
2
t 1s

cos 2tj
dt
t 1s
16 2 j (m / s2 )
x 5 sin2t
x2 y2
{
y 4 cos 2t
52 42 1
解题思路:
位移(求矢量差)
1 运动方程 轨道 方程(消去t)

an

v2 R
n0
(改变速度方向)
切向加速度(tangential acceleration)
:at

dv dt t0
v

(改变速度大小)
v2 dv a R n0 dt t0

大学物理1试卷

大学物理1试卷

大学物理1试卷11。

一质点在力F = 5m(5- 2t )(SI)的作用下,t=0时从静止开始作直线运动,式中m为质点的质量,t为时间,则当t = 5 s时,质点的速率为(A)50 m·s—1.。

(B) 25 m·s-1.(C) 0.(D) -50 m·s—1.[ ]2一人造地球卫星到地球中心O的最大距离和最小距离分别是R A和R B.设卫星对应的角动量分别是L A、L B,动能分别是E KA、E KB,则应有(A)L B〉L A,E KA〉E KB.(B)L B > L A,E KA = E KB.(C) L B = L A,E KA = E KB.(D) L B < L A,E KA = E KB.(E) L B = L A,E KA〈E KB.[ ] 3.(质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ,顺时针.(B) ,逆时针.(C) ,顺时针.(D),逆时针.[]4.根据高斯定理的数学表达式可知下述各种说法中,正确的是:(A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.[]5. 一空心导体球壳,其内、外半径分别为R1和R2,带电荷q,如图所示.当球壳中心处再放一电荷为q的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A).(B) .(C)。

(D).[]6. 电流由长直导线1沿半径方向经a点流入一电阻均匀的圆环,再由b点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I,圆环的半径为R,且a、b与圆心O三点在一直线上.若载流直导线1、2和圆环中的电流在O点产生的磁感强度分别用、和表示,则O点磁感强度的大小为(A)B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B1≠0、B2≠0,但,B3 = 0.(C)B≠0,因为虽然,但B3≠0.(D)B≠0,因为虽然B3 = 0,但.[]7.两个同心圆线圈,大圆半径为R,通有电流I1;小圆半径为r,通有电流I2,方向如图.若r〈〈R(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) .(B).(C).(D) 0.[]8。

《大学物理1》内容提要(PDF)

1.参考系:描述物体运动时用作参考的其它物体和一套同步的钟.2.位矢和位移一运动的描述➢运动方程kt z j t y i t x t r r)()()()(++==➢位移)()(t r t t r r−∆+=∆注意: 一般rr ∆≠∆ 3.速度和速率tsd d =v k t z j dt y i t x t rd d d d d d d ++==v ➢速度➢速率(速度合成)第一章质点运动学3.加速度任意曲线运动都可以视为沿x ,y ,z 轴的三个各自独立的直线运动的叠加(矢量加法).——运动的独立性原理或运动叠加原理.kj i t r t a z y x tv t v t v v d d d d d d d d d d 22++===二. 匀加速运动=a常矢量初始条件:or v ,0ta +=0v v 2021ta t r++=0v r➢匀加速直线运动at+=0v v 2021att x ++=0v x ax22=−20v v ➢抛体运动0=x a ga y −=θcos 0x v v =gty −=θsin 0vv t⋅=θcos 0v x 221sin gtt −⋅=θ0vy 三. 圆周运动➢角速度Rt v ==d d θω➢角加速度td d ωβ=➢速度tt t d d e r e e ts ω===v vnn t t e a e a a +=➢圆周运动加速度22nt a a a +=切向加速度22t d d d d ts r t a ===αv 法向加速度rr a 22n v v ===ωω(指向圆心)(沿切线方向)➢力学的相对性原理:动力学定律在一切惯性系中都具有相同的数学形式.四. 相对运动➢伽利略速度变换u+='v v第二章牛顿定律一牛顿运动定律第一定律:惯性和力的概念,惯性系的定义.第二定律:tp F d d =vm p =当时,写作c <<v a m F=第三定律2112F F−=力的叠加原理+++=321F F F F 二国际单位制力学基本单位m 、kg 、s量纲:表示导出量是如何由基本量组成的关系式.t mma F xx x d d v ==tmma F yy y d d v ===直角坐标表达形式自然坐标表达形式d d t t F ma mt ==vn n F ma mρ==2v牛顿第二定律的数学表达式am t p F ==d d 一般的表达形式nn t t y x e F e F j F i F F +=+=(1)万有引力r221e r m m G F−=重力gm P =三几种常见的力(3)摩擦力滑动摩擦力静摩擦力Nf F F μ=N0f0m 0f F F F μ=≤(2)弹性力:弹簧弹力(张力、正压力和支持力)kxF−=四应用牛顿定律解题的基本思路1)确定研究对象,几个物体连在一起需作隔离体,把内力视为外力;2)受力分析:画受力图;3)建立坐标系,列方程求解;(用分量式)4)先用文字符号求解,后代入数据计算结果.第三章动量守恒定律和能量守恒定律一动量、冲量、动量定理vm p =——机械运动的量度质点的动量力的冲量——力对时间的累计⎰=21d t tt F I1221d v v m m t F t t −=⎰质点的动量定理:质点所受合外力的冲量等于质点在此时间内动量的增量。

大学物理(1)期末答疑1


R
6.以一定初速度 vr 斜向上抛出一个物体,如果忽略空
气阻力,当该物体的速度与水平面的夹角为 时,它
的切向加速度的大小为aτ=
小为an=
.
, 法向加速度的大
a g sin an g cos
a
an
g
运动守恒量和守恒定律 一、选择题:
1、两个质量相等的小球A和B由一轻弹簧相连接,再用 一细绳悬挂于天花板上,处于静止状态,如图所示。在 绳子被剪断的瞬间,A球和B球的加速度分别为:[ ]
4、花样滑冰运动员绕过自身的竖直转轴运动,开始
时两臂伸开转动惯量为 I 0 ,角速度为0 。然后她将
两臂收回使转动惯量减少为I0 3,这时她的角速度变 为[ ]
(A) 0 3 (B) 0 3 (C) 3 0 (D) 30
角动量守恒:
I 00

I0 3

答:C
5、一根质量为 m 、长度为L的匀质细直棒,平放在水
A.I A IB
B.I A IB
C. I A I B
D.不能确定哪个大
I 1 mR2 2
mR2d I 1 m m
2 d
答:B
3、刚体角动量守恒的充分而必要的条件是[ ] (A)刚体不受外力矩的作用。 (B)刚体所受的合外力和合外力矩均为零。 (C) 刚体所受合外力矩为零。 (D)刚体的转动惯量和角速度均保持不变。 答:C
(D) (3)是正确的 答案:D
10.某人骑自行车以速率v 向正西方行驶,遇到由北向
南刮的风(设风速大小也为v ),则骑车人感觉风是来
自于[ ]
y
y
(A)东北方向 (B)东南方向
(C)西北方向 (D)西南方向。

大学物理(一)教学大纲

《大学物理(一)》课程教学大纲一、课程名称1.中文名称大学物理(一)2.英文名称 University Physics (I)3.课程号 WL310011二、学时总学时54学时其中:授课54学时实验0学时三、考核方式考试四、适用专业应用型非物理各专业五、课程简介(200字以内)本课程系统地阐述了物理学中“力学”和“热学”的基本概念、基本理论和基本方法。

“力学”包括质点运动学、牛顿定律、动量守恒定律和能量守恒定律、刚体转动、振动、波动、相对论等;“热学”包括气体动理论和热力学基础等。

六、本门课程在教学计划中的地位、作用和任务物理学是探讨人类直接接触世界、时间、空间、以及时空中的物质结构和物质运动规律的科学,物理学着重研究世界中最普遍、最基本的运动形式及规律。

因此,它是自然科学和工程技术的基础,也是人类思想方法、世界观建立的基础。

在高等工科院校中,物理是一门重要的必修基础课,是一门建立正确的科学思想和科学方法论的基础课。

它的教学目的和任务是: 使学生对物理学的基本概念、基本原理和基本规律有较全面系统的认识,了解各种运动形式之间的联系,以及物理学的近现代发展和成就。

使学生在运算能力、抽象思维能力和对世界的认识能力等方面受到初步的训练;熟悉研究物理学的基本思想和基本方法;培养学生分析问题和解决问题的能力。

使学生在学习物理学知识的同时,逐步建立正确的思想方法和研究方法,充分发挥本课程在培养学生辩证唯物主义世界观方面的作用,进行科学素质教育。

大学物理课的教学宗旨不仅是为后续专业课打好基础,而且也是使学生建立正确的科学思想和方法论的一门基础课。

作为处在当今科学、社会高速发展阶段的大学生,应了解科学的进展,具备科学的思想和方法。

学生通过物理学的学习可以培养自己判断、推理、归纳的逻辑思维能力;细致、敏锐、准确的观察能力、想象创造力和运用其他学科知识处理、解决实际问题的能力等。

这些能力正是人们在自然界和社会中生存与发展必不可少的基本素质。

大学物理1期末复习纲要

大学物理I 复习纲要本期考试比例:力学:28分;热学:25分;振波:22分;光学:25分。

大学物理I 包括:力学(运动学、牛顿力学、刚体的定轴转动);热学(气体动理论、热力学第一定律);振动波动(机械振动、机械波);光学(光的干涉、衍射和偏振)。

根据大纲对各知识点的要求以及总结历年考试的经验,现列出期末复习的纲要如下: 1. 计算题可能覆盖范围a. 刚体碰撞及转动定律;b. 热力学第一定律;c. 机械振动与机械波波动方程;d. 单缝衍射及光栅衍射 2. 大学物理I 重要规律与知识点(一)力学 质点运动学(速度、加速度、位移、路程概念分析、圆周运动);质点的相对运动,伽利略变换;质点运动的机械能与角动量;牛顿第二定律;质点动量定理;变力做功;刚体定轴转动定理;刚体定轴转动角动量定理及角动量守恒定律;刚体力矩(二)热学 理想气体的状态方程;理想气体的温度、压强、内能;能均分定理;麦克斯韦速率分布函数的统计意义和三种统计速率;热力学第一定律在理想气体等值过程中的应用;循环过程及效率、绝热过程。

(三)振动、波动 旋转矢量法的应用;同方向同频率简谐振动的合成;波速、周期(频率)与波长的关系(uT =λ);波程、波程差以及相位差;相干波及驻波;振动曲线和波动曲线,振动方程与波动方程的求解;波的能量。

(四)光学 光程差与相位差;杨氏双缝干涉;干涉与光程;半波损失;劈尖薄膜干涉、增透,增反;单缝衍射,光栅衍射;马吕斯定律。

1. 计算题21.(本题10分)一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子m , lOvm '弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问: (1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ? 21. (本题10分) 解:(1) 角动量守恒:ω⎪⎭⎫⎝⎛'+='2231l m ml l m v 2分∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31v ω=15.4 rad ·s -1 2分(2) -M r =(231ml +2l m ')β2分0-ω 2=2βθ2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分22.(本题10分)一定量的单原子分子理想气体,从A 态出发经等压过程膨胀到B 态,又经绝热过程膨胀到C 态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量. 22. (本题10分)解:由图可看出 p A V A = p C V C从状态方程 pV =νRT T A =T C ,因此全过程A →B →C∆E =0.3分B →C 过程是绝热过程,有Q BC = 0. A →B 过程是等压过程,有 )(25)( A A B B A B p AB V p V p T T C Q -=-=ν=14.9×105 J . 故全过程A →B →C 的 Q = Q BC +Q AB =14.9×105 J . 4分A BCV (m 3)p (Pa) 2 3.4981×1054×105O根据热一律Q =W +∆E ,得全过程A →B →C 的W = Q -∆E =14.9×105 J . 3分24.(本题10分)(3530)一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm ,在光栅后放一焦距f=1 m 的凸透镜,现以λ=600 nm (1 nm =10-9 m)的单色平行光垂直照射光栅,求: (1) 透光缝a 的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内,有几个光栅衍射主极大(亮纹)?24.解:(1) a sin ϕ = k λ tg ϕ = x / f 2分当x << f 时,ϕϕϕ≈≈sin tg , a x / f = k λ , 取k = 1有x = f l / a = 0.03 m 1分 ∴中央明纹宽度为 ∆x = 2x = 0.06 m 1分(2)( a + b ) sin ϕλk '=2分='k ( a +b ) x / (f λ)= 2.5 2分取k '= 2,有k '= 0,±1,±2 共5个主极大2分22.(本题10分)气缸内贮有36 g 水蒸汽(视为刚性分子理想气体),经abcda 循环过程如图所示.其中a -b 、c -d 为等体过程,b -c 为等温过程,d -a 为等压过程.试求:(1) d -a 过程中水蒸气作的功W da (2) a -b 过程中水蒸气内能的增量∆E ab (3) 循环过程水蒸汽作的净功W(4) 循环效率η(注:循环效率η=W /Q 1,W 为循环过程水蒸汽对外作的净功,Q 1为循环过程水蒸汽吸收的热量,1 atm=1.013×105 Pa) 22. (本题10分)解:水蒸汽的质量M =36×10-3 kg 水蒸汽的摩尔质量M mol =18×10-3 kg ,i = 6(1) W da = p a (V a -V d )=-5.065×103 J (2)ΔE ab =(M /M mol )(i /2)R (T b -T a )=(i /2)V a (p b - p a )=3.039×104 J(3) 914)/(==RM M V p T mol ab b KW bc = (M /M mol )RT b ln(V c /V b ) =1.05×104 J净功 W =W bc +W da =5.47×103 J(4) Q 1=Q ab +Q bc =ΔE ab +W bc =4.09×104 Jp (atm )V (L)Oabcd25 5026η=W / Q 1=13%23.(本题10分)图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程. 23. (本题10分)解:(1) O 处质点,t = 0 时0c o s 0==φA y , 0sin 0>-=φωA v 所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2c o s [04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s(04.0π-π=t (SI) 2分 补充题3-1用铁锤把质量很小的钉子敲入木板,设木板对钉子的阻力与钉子进入木板的深度成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题六6-1 气体在平衡态时有何特征气体的平衡态与力学中的平衡态有何不同答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化.力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零. 6-2 气体动理论的研究对象是什么理想气体的宏观模型和微观模型各如何答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法.从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点.6-3 何谓微观量何谓宏观量它们之间有什么联系答:用来描述个别微观粒子特征的物理量称为微观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量.气体宏观量是微观量统计平均的结果. 6-4 计算下列一组粒子平均速率和方均根速率解:平均速率2864215024083062041021++++⨯+⨯+⨯+⨯+⨯==∑∑iii NVN V7.2141890==1s m -⋅ 方均根速率28642150240810620410212232222++++⨯+⨯+⨯+⨯+⨯==∑∑iii NV N V6.25= 1s m -⋅6-5 速率分布函数)(v f 的物理意义是什么试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)⎰vv v f 0d )( (5)⎰∞d )(v v f (6)⎰21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 内的分子数占总分子数的百分比. (2) v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数. (4)⎰vv v f 0d )(:表示分布在21~v v 区间内的分子数占总分子数的百分比.(5)⎰∞d )(v v f :表示分布在∞~0的速率区间内所有分子,其与总分子数的比值是1.(6)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数.6-6 最概然速率的物理意义是什么方均根速率、最概然速率和平均速率,它们各有何用 处 答:气体分子速率分布曲线有个极大值,与这个极大值对应的速率叫做气体分子的最概然速率.物理意义是:对所有的相等速率区间而言,在含有P v 的那个速率区间内的分子数占总分子数的百分比最大.分布函数的特征用最概然速率P v 表示;讨论分子的平均平动动能用方均根速率,讨论平均自由程用平均速率.6-7 容器中盛有温度为T的理想气体,试问该气体分子的平均速度是多少为什么答:该气体分子的平均速度为0.在平衡态,由于分子不停地与其他分子及容器壁发生碰撞、其速度也不断地发生变化,分子具有各种可能的速度,而每个分子向各个方向运动的概率是相等的,沿各个方向运动的分子数也相同.从统计看气体分子的平均速度是0.6-8 在同一温度下,不同气体分子的平均平动动能相等,就氢分子和氧分子比较,氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子大,对吗答:不对,平均平动动能相等是统计平均的结果.分子速率由于不停地发生碰撞而发生变化,分子具有各种可能的速率,因此,一些氢分子的速率比氧分子速率大,也有一些氢分子的速率比氧分子速率小.6-9 如果盛有气体的容器相对某坐标系运动,容器内的分子速度相对这坐标系也增大了,温度也因此而升高吗答:宏观量温度是一个统计概念,是大量分子无规则热运动的集体表现,是分子平均平动动能的量度,分子热运动是相对质心参照系的,平动动能是系统的内动能.温度与系统的整体运动无关.只有当系统的整体运动的动能转变成无规则热运动时,系统温度才会变化.6-10 题6-10图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢题6-10图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高.题6-10图6-11 温度概念的适用条件是什么温度微观本质是什么答:温度是大量分子无规则热运动的集体表现,是一个统计概念,对个别分子无意义.温度微观本质是分子平均平动动能的量度.6-12 下列系统各有多少个自由度: (1)在一平面上滑动的粒子;(2)可以在一平面上滑动并可围绕垂直于平面的轴转动的硬币; (3)一弯成三角形的金属棒在空间自由运动. 解:(1) 2,(2)3,(3)6 6-13 试说明下列各量的物理意义. (1)kT 21 (2)kT 23 (3)kT i2(4)RT i M M mol 2 (5)RT i 2 (6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 21T . (2)在平衡态下,分子平均平动动能均为kT 23. (3)在平衡态下,自由度为i 的分子平均总能量均为kT i2. (4)由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT iM M 2mol .(5) 1摩尔自由度为i 的分子组成的系统内能为RT i2. (6) 1摩尔自由度为3的分子组成的系统的内能RT 23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT 23.6-14 有两种不同的理想气体,同压、同温而体积不等,试问下述各量是否相同(1)分子数密度;(2)气体质量密度;(3)单位体积内气体分子总平动动能;(4)单位体积内气体分子的总动能. 解:(1)由kTpn nkT p ==,知分子数密度相同; (2)由RTp M V M mol ==ρ知气体质量密度不同; (3)由kT n23知单位体积内气体分子总平动动能相同; (4)由kT in 2知单位体积内气体分子的总动能不一定相同.6-15 何谓理想气体的内能为什么理想气体的内能是温度的单值函数解:在不涉及化学反应,核反应,电磁变化的情况下,内能是指分子的热运动能量和分子间相互作用势能之总和.对于理想气体不考虑分子间相互作用能量,质量为M 的理想气体的所有分子的热运动能量称为理想气体的内能.由于理想气体不计分子间相互作用力,内能仅为热运动能量之总和.即RT iM M E 2mol =是温度的单值函数.6-16 如果氢和氦的摩尔数和温度相同,则下列各量是否相等,为什么(1)分子的平均平动动能;(2)分子的平动动能;(3)内能. 解:(1)相等,分子的平均平动动能都为kT 23. (2)不相等,因为氢分子的平均动能kT 25,氦分子的平均动能kT 23. (3)不相等,因为氢分子的内能RT 25υ,氦分子的内能RT 23υ.6-17 有一水银气压计,当水银柱为0.76m 高时,管顶离水银柱液面0.12m ,管的截面积为×10-4m 2,当有少量氦(He)混入水银管内顶部,水银柱高下降为0.6m ,此时温度为 27℃,试计算有多少质量氦气在管顶(He 的摩尔质量为0.004kg ·mol -1) 解:由理想气体状态方程RT M MpV mol=得 RTpV M M mol= 汞的重度 51033.1⨯=Hg d 3m N -⋅氦气的压强 Hg )60.076.0(d P ⨯-= 氦气的体积 4100.2)60.088.0(-⨯⨯-=V 3m)27273()100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯-⨯=-R d M)27273(31.8)100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯⨯-⨯=-d61091.1-⨯=Kg6-18 设有N 个粒子的系统,其速率分布如题6-18图所示.求(1)分布函数)(v f 的表达式; (2)a 与0v 之间的关系;(3)速度在0v 到0v 之间的粒子数. (4)粒子的平均速率.(5)0v 到10v 区间内粒子平均速率.题6-18图解:(1)从图上可得分布函数表达式⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2(0)()2()()0(/)(00000v v v Nf v v v a v Nf v v v av v Nf ⎪⎩⎪⎨⎧≥≤≤≤≤=)2(0)2(/)0(/)(00000v v v v v Na v v Nv av v f )(v f 满足归一化条件,但这里纵坐标是)(v Nf 而不是)(v f 故曲线下的总面积为N ,(2)由归一化条件可得⎰⎰==+0002032d d v v v v Na Nv a v v av(3)可通过面积计算N v v a N 31)5.12(00=-=∆ (4) N 个粒子平均速率⎰⎰⎰⎰+===∞∞00202d d d )(1d )(v v v v av v v av v v vNf Nv v vf v02020911)2331(1v av av N v =+=(5)05.0v 到01v 区间内粒子平均速率⎰⎰==0005.0115.0d d v v v v NNv N N N Nv v ⎰⎰==00005.05.00211d d )(v v v v v Nv av N N v v vf N N 2471)243(1d 12103003015.002100av N v av v av N v v av N v v v =-==⎰ 05.0v 到01v 区间内粒子数N av v v a a N 4183)5.0)(5.0(210001==-+=9767020v N av v ==6-19 试计算理想气体分子热运动速率的大小介于1100-⋅-p p v v 与1100-⋅+p p v v 之间的分子数占总分子数的百分比. 解:令Pv vu =,则麦克斯韦速率分布函数可表示为 du e u N dN u 224-=π因为1=u ,02.0=∆u 由u e u N N u ∆=∆-224π得 %66.102.0141=⨯⨯⨯=∆-e N N π6-20 容器中储有氧气,其压强为p = MPa(即1atm)温度为27℃,求(1)单位体积中的分子n ;(2)氧分子的质量m ;(3)气体密度ρ;(4)分子间的平均距离e ;(5)平均速率v ;(6)方均根速率2v ;(7)分子的平均动能ε. 解:(1)由气体状态方程nkT p =得242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n 3m -(2)氧分子的质量26230mol 1032.51002.6032.0⨯=⨯==N M m kg (3)由气体状态方程RT M MpV mol=得 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ 3m kg -⋅(4)分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==ne m(5)平均速率58.446032.030031.860.160.1mol =⨯≈=M RT v 1s m -⋅ (6) 方均根速率87.48273.1mol2=≈M RTv 1s m -⋅ (7) 分子的平均动能20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ6-21 1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少 解:理想气体分子的能量RT iE 2υ= 平动动能 3=t 5.373930031.823=⨯⨯=t E J 转动动能 2=r 249330031.822=⨯⨯=r E J内能5=i 5.623230031.825=⨯⨯=i E J6-22 一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求(1)氧气和氢气分子数密度之比;(2)氧分子和氢分子的平均速率之比. 解:(1)因为 nkT p =则1=HOn n (2)由平均速率公式mol60.1M RTv = 41mol mol ==O H HOM M v v6-23 一真空管的真空度约为×10-3Pa(即×10-5mmHg),试 求在27℃时单位体积中的分子数及分子的平均自由程(设分子的有效直径d =3×10-10m).解:由气体状态方程nkT p =得172331033.33001038.11038.1⨯=⨯⨯⨯==-kT p n 3m - 由平均自由程公式 nd 221πλ=5.71033.3109211720=⨯⨯⨯⨯=-πλ m6-24 (1)求氮气在标准状态下的平均碰撞频率;(2)若温度不变,气压降到×10-4Pa ,平均碰撞频率又为多少(设分子有效直径10-10m) 解:(1)碰撞频率公式v n d z 22π= 对于理想气体有nkT p =,即 kTp n =所以有 kTp v d z 22π= 而mol60.1M RT v ≈ 43.455102827331.860.13=⨯⨯≈-v 1s m -⋅ 氮气在标准状态下的平均碰撞频率8235201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=--πz 1s - 气压下降后的平均碰撞频率123420s714.02731038.11033.143.455102----=⨯⨯⨯⨯⨯⨯=πz6-25 1mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间(1)气体分子方均根速率之比; (2)分子平均自由程之比. 解:由气体状态方程经过等容升压2211T p T p =故 212121==P p T T 经过等温膨胀过程 3322V p V p = 1232232p pV V p p ===方均根速率公式 mol273.1M RT v =21212122===p p T T v v 末初 对于理想气体,nkT p =,即 kTpn = 所以有 pd kT 22πλ=212131==T p p T 末初λλ 6-26 飞机起飞前机舱中的压力计指示为 atm ×105Pa),温度为27 ℃;起飞后压力计指示为 atm ×105Pa),温度仍为27 ℃,试计算飞机距地面的高度. 解:气体压强随高度变化的规律:由nkT p =及kTmgzen n 0=RTgz M kTmgz kTmgz ep ep kTen p mol 000---===pp g M RTz 0mol ln =31096.18.01ln 8.90289.030031.8⨯=⨯⨯=z m6-27 上升到什么高度处大气压强减少为地面的75%(设空气的温度为0℃). 解:压强随高度变化的规律p p g M RT z 0mol ln = 3103.275.01ln 8.90289.027331.8⨯=⨯⨯=z m 6-28在标准状态下,氦气的粘度 = ×105 Pa ·s ,摩尔质量M mol =0.004 kg/mol ,分子平均速率v =×103 m/s .试求在标准状态下氦分子的平均自由程.解:据 λρηv 31= 得 vv mol M V 033ηρηλ== = ×107 m6-29在标准状态下氦气的导热系数= ×102 W ·m 1·K 1,分子平均自由程=λ×107 m ,试求氦分子的平均速率.解: λυρκmolV M C 31=λυ031V C V = 得 λκλκλκυR V R V C V V 00022333=== = ×103 m/s6-30实验测得在标准状态下,氧气的扩散系数为×105 m 2/s ,试根据这数据计算分子的平均自由程和分子的有效直径.(普适气体常量R = J ·mol 1·K 1,玻尔兹曼常量k = ×1023 J ·K 1) 解:(1) ∵ λv 31=D氧气在标准状态下 8v molRT M ==π425 m/s 73 1.310v D λ-==⨯ m (2) ∵ p d kT22π=λ∴ 10105.22-⨯=π=p kTd λ m。

相关文档
最新文档