2017届高考数学大一轮复习 第七章 立体几何 7.8 立体几何中的向量方法课时规范训练 理 北师大版

合集下载

高三一轮复习数学第7章第7节立体几何中的向量方法

高三一轮复习数学第7章第7节立体几何中的向量方法

高三一轮总复习
利用空间向量求空间角
●命题角度1 利用空间向量求异面直线所成的角 1.(2015· 全国卷Ⅰ)如图772,四边形ABCD为菱形,∠ABC=120° ,E,F 是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF, AE⊥EC.
(1)证明:平面AEC⊥平面AFC; (2)求直线AE与直线CF所成角的余弦值.
高三一轮总复习
而PC∩BC=C,所以DE⊥平面PBC. 而PB 平面PBC,所以PB⊥DE. 又PB⊥EF,DE∩EF=E,所以PB⊥平面DEF. 由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三 角形, 即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠ EFB,∠DFB.
设n=(x,y,z)是平面EHGF的法向量,则
10x=0, -6y+8z=0,

所以可取n=(0,4,3).
高三一轮总复习
→ | n · AF | 4 5 → → 又AF=(-10,4,8),故|cos〈n,AF〉|= = 15 . → |n||AF| 4 5 所以AF与平面EHGF所成角的正弦值为 15 .
A.45° C.45° 或135°
1 2 m· n 【解析】 cos〈m,n〉=|m||n|= = ,即〈m,n〉=45° . 1· 2 2 ∴两平面所成二面角为45° 或180° -45° =135° .
【答案】 C
高三一轮总复习
攻考向·三级提能
利用空间向量证明平行、垂直
(2016· 青岛模拟)如图771,在多面体ABCA1B1C1中,四边形A1ABB1是正方 1 形,AB=AC,BC= 2AB,B1C1綊2BC,二面角A1ABC是直二面角. 求证:(1)A1B1⊥平面AA1C; (2)AB1∥平面A1C1C.

高中数学第七节立体几何中的向量方法(解析)

高中数学第七节立体几何中的向量方法(解析)

第七节立体几何中的向量方法1.理解直线的方向向量与平面的法向量;2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;3.能用向量方法证明有关直线和平面位置关系的一些定理;4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与e共线的向量叫做直线l的方向向量,显然一条直线的方向向量有无数个.(2)平面的法向量如果表示向量n的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作n ⊥α,此时向量n 叫做平面α的法向量.显然一个平面的法向量也有无数个,且它们是共线向量. (3)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ; α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 2.空间向量与空间角的关系 (1)两条异面直线所成角的求法设两条异面直线a ,b 的方向向量分别为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a ||b |(其中φ为异面直线a ,b 所成的角).φ的取值范围是⎝ ⎛⎦⎥⎤0,π2. (2)直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.φ的取值范围是⎣⎢⎡⎦⎥⎤0,π2.(3)求二面角的大小①如图甲,AB 、CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.②如图乙、丙,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.θ的取值范围是[0,π].3.空间向量与距离的关系 (1)点到平面的距离如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离d =|AB →·n ||n |.(2)线面距、面面距均可转化为点面距进行求解.1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( )(3)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) (4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(5)两个平面的法向量所成的角是这两个平面所成的角.( ) [答案] (1)× (2)× (3)× (4)× (5)×2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( )A.(-1,1,1)B.(1,-1,1)C.⎝⎛⎭⎪⎫-33,-33,-33D.⎝ ⎛⎭⎪⎫33,33,-33[解析] 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.[答案] C3.若平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A.平行B.相交但不垂直C.垂直D.重合[解析] 由(1,2,0)·(2,-1,0)=0,可知平面α⊥平面β,选C.[答案] C4.如图所示,若M ,N 分别是棱长为1的正方体ABCD -A ′B ′C ′D ′的棱A ′B ′,BB ′的中点,则直线AM 与CN 所成角的余弦值为( )A.32 B.1010 C.35D.25[解析] 以A 为原点,AB →,AD →,AA ′→所在方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系A -xyz ,则A (0,0,0),M ⎝ ⎛⎭⎪⎫12,0,1,C (1,1,0),N ⎝ ⎛⎭⎪⎫1,0,12,所以AM →=⎝ ⎛⎭⎪⎫12,0,1,CN →=⎝ ⎛⎭⎪⎫0,-1,12,所以cos 〈AM →,CN →〉=AM →·CN →|AM →||CN →|=1254=25.[答案] D5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22C.223D.233[解析] 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),DA 1→=(2,0,2),DB →=(2,2,0), 设平面A 1BD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,即⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.故选D. [答案] D6.正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角是________.[解析] 如图所示,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a , 则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2. 则CA →=(2a,0,0),AP →=⎝⎛⎭⎪⎫-a ,-a 2,a 2,CB →=(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB →,n 〉=CB →·n |CB →||n |=a 2a 2·2=12. ∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 所成的角为90°-60°=30°.[答案] 30°考点一 向量法证明垂直与平行关系——互动型如图,已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .[证明] 如图建立空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4).(1)取AB 中点为N ,则N (2,0,0),C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →.∴DE ∥NC ,又NC 在平面ABC 内,故DE ∥平面ABC . (2)B 1F →=(-2,2,-4), EF →=(2,-2,-2), AF →=(2,2,0),B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, 则B 1F →⊥EF →,∴B 1F ⊥EF ,∵B 1F →·AF →=(-2)×2+2×2+(-4)×0=0. ∴B 1F →⊥AF →,即B 1F ⊥AF ,又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .(1)用向量证明平行的方法①线线平行:证明两直线的方向向量共线.②线面平行:a.证明该直线的方向向量与平面的某一法向量垂直;b.证明直线的方向向量与平面内某直线的方向向量平行.③面面平行:a.证明两平面的法向量为共线向量;b.转化为线面平行、线线平行问题.(2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.(2016·青岛模拟)如图,在直三棱柱ADE-BCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点.求证:(1)OM∥平面BCF;(2)平面MDF⊥平面EFCD.[证明]由题意,AB,AD,AE两两垂直,以A为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.(1)OM →=⎝⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0),∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),由n 1·DF →=n 1·DM →=0,得⎩⎨⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎪⎨⎪⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1). ∵n 1·n 2=0,∴平面MDF ⊥平面EFCD .考点二 向量法求空间角——共研型角度1:向量法求异面直线所成的角(2016·西安模拟)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110 B.25 C.3010D.22[解析] 建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B (0,2,0),A (2,0,0),M (1,1,2),N (1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=|BM →·AN →||BM →|·|AN →|=36×5=3010. [答案] C角度2:向量法求斜线与平面所成的角(2016·全国卷Ⅲ)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.[解] (1)证明:由已知得AM =23AD =2. 取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN ∥AM ,TN =AM ,所以四边形AMNT 为平行四边形,所以MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB . (2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN→=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是直线AN 与平面PMN 所成角的正弦值为|cos 〈n ,AN →〉|=|n ·AN →||n |·|AN →|=8525.角度3:向量法求二面角(2016·全国卷Ⅰ)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°. (1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.[解] (1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF . 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,故∠CEF =60°.从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4). 所以cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E -BC -A 的余弦值为-21919.求空间角的向量方法(1)求异面直线所成的角利用直线的方向向量将异面直线所成的角转化成向量所成的角,即若异面直线a ,b 的方向向量为a ,b ,所成的角为θ,则cos θ=⎪⎪⎪⎪⎪⎪a ·b |a |·|b |. (2)求斜线与平面所成的角①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(锐角或直角时)或其补角(钝角时).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角.(3)求二面角①分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.②分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1.[角度1]如图所示,已知正方体ABCD -A 1B 1C 1D 1,E ,F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是__________.[解析] 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐标系D -xyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°. [答案] 45°2.[角度2](2016·江西九校联考)如图,在三棱柱ABC-A1B1C1中,底面△ABC是边长为2的等边三角形,过A1C作平面A1CD平行于BC1,交AB于点D.(1)求证:CD⊥AB;(2)若四边形BCC1B1是正方形,且A1D=5,求直线A1D与平面CBB1C1所成角的正弦值.[解](1)证明:连接AC1,设AC1与A1C相交于点E,连接DE,则E为AC1的中点.∵BC1∥平面A1CD,平面A1CD∩平面ABC1=DE,∴DE∥BC1,∴D为AB的中点.又∵△ABC为正三角形,∴CD⊥AB.(2)∵AD2+A1A2=5=A1D2,∴A1A⊥AD.又B1B⊥BC,B1B∥A1A,∴A1A⊥BC.又AD∩BC=B,∴A1A⊥平面ABC.设BC的中点为O,B1C1的中点为O1,连接AO,OO1,以O为原点,OB所在的直线为x轴,OO1所在的直线为y轴,OA所在的直线为z轴,建立空间直角坐标系O-xyz,则A 1(0,2,3),D ⎝ ⎛⎭⎪⎫12,0,32.∴A 1D →=⎝ ⎛⎭⎪⎫12,-2,-32.易得平面CBB 1C 1的一个法向量为n =(0,0,1), ∴|cos 〈A 1D →,n 〉|=|A 1D →·n ||A 1D →|·|n |=1510.故直线A 1D 与平面CBB 1C 1所成角的正弦值为1510.3.[角度3]如图,几何体EF -ABCD中,CDEF 为边长为2的正方形,ABCD 为直角梯形,AB ∥CD ,AD ⊥DC ,AD =2,AB =4,∠ADF =90°.(1)求证:AC ⊥FB ;(2)求二面角E -FB -C 的大小. [解] (1)证明:由题意得,AD ⊥DC ,AD ⊥DF ,且DC ∩DF =D ,∴AD ⊥平面CDEF ,∴AD ⊥FC , ∵四边形CDEF 为正方形,∴DC ⊥FC .∵DC ∩AD =D ,∴FC ⊥平面ABCD ,∴FC ⊥AC .又四边形ABCD 为直角梯形,AB ∥CD ,AD ⊥DC ,AD =2,AB =4,∴AC =22,BC =22,则有AC 2+BC 2=AB 2, ∴AC ⊥BC ,又BC ∩FC =C ,∴AC ⊥平面FCB ,∴AC ⊥FB .(2)由(1)知AD ,DC ,DE 所在直线相互垂直,故以D 为原点,DA ,DC ,DE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,可得D (0,0,0),F (0,2,2),B (2,4,0),E (0,0,2),C (0,2,0),A (2,0,0),∴EF →=(0,2,0),FB →=(2,2,-2), 设平面EFB 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·EF →=0,n ·FB →=0,⎩⎪⎨⎪⎧2y =0,2x +2y -2z =0,⎩⎪⎨⎪⎧y =0,x +y -z =0. 令z =1,则n =(1,0,1),由(1)知平面FCB 的一个法向量为AC →=(-2,2,0), 设二面角E -FB -C 的大小为θ,由图知θ∈⎝ ⎛⎭⎪⎫0,π2, ∴cos θ=|cos 〈n ,AC →〉|=12,∴θ=π3.考点三 向量法求距离——自练型(1)在四面体P -ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为( )A.63B.33aC.a 3D.6a(2)在底面为直角梯形的四棱锥P -ABCD 中,侧棱P A ⊥底面ABCD ,BC ∥AD ,∠ABC =90°,P A =AB =BC =2,AD =1,则点D 到平面PBC 的距离是________.[解析] (1)根据题意,可建立如图所示的空间直角坐标系.P -xyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离.∵P A =PB =PC ,∴H 为△ABC 的外心.又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝⎛⎭⎪⎫a 3,a 3,a 3.∴PH =⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a .(2)分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如图,则A (0,0,0),P (0,0,2),B (2,0,0),C (2,2,0),D (0,1,0),∴PC →=(2,2,-2),BC →=(0,2,0).设n =(x ,y ,z )为平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·PC →=0,n ·BC →=0,即⎩⎪⎨⎪⎧x +y -z =0,y =0, 取x =1,则n =(1,0,1). 又BD →=(-2,1,0),∴点D 到平面PBC 的距离为|BD →·n ||n |= 2.[答案] (1)B (2) 2空间距离的求法(1)两点间的距离就是以这两点为端点的向量的模.(2)求点P 到平面α的距离,先在平面α内取一点A ,确定向量P A →的坐标,再确定平面α的法向量n ,最后代入公式d =|P A →·n ||n |求解.课题43:建立适当的空间直角坐标系名师导学:利用向量方法解决立体几何问题的前提是恰当地建立空间直角坐标系,关键是确定明确的线线垂直关系,即“墙角”模型,另外,坐标系建立的是否合适,直接影响计算的速度与结果.(2016·云南毕业生复习统一测试)如图,在三棱锥A-BCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求二面角B -AC-D的平面角的正弦值.[切入点]取BD的中点O,通过证明OE、OD、OA两两垂直,建立空间直角坐标系.[关键点]先进行几何关系的证明,具备建系条件时才能建系.[解](1)证明:设BD的中点为O,连接AO ,EO .∵AB =AD ,∴AO ⊥BD .又∵E 为BC 的中点,∴EO ∥CD . ∵CD ⊥BD ,∴EO ⊥BD .∵OA ∩OE =O ,∴BD ⊥平面AOE . 又∵AE ⊂平面AOE , ∴AE ⊥BD .(2)由(1)知,AO ⊥BD ,EO ⊥BD ,∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AO ⊂平面ABD ,∴AO ⊥平面BCD .∵EO ⊂平面BCD , ∴AO ⊥EO ,∴OE ,OD ,OA 两两互相垂直. ∵CD ⊥BD ,BC =4,CD =2, ∴BD =BC 2-CD 2=2 3.由O 为BD 的中点,AO ⊥BD ,AD =2,得BO =OD =3,OA =AD 2-OD 2=1.以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),A (0,0,1),B (0,-3,0),C (2,3,0),D (0,3,0),∴AB →=(0,-3,-1),AC →=(2,3,-1),AD →=(0,3,-1).设平面ABC 的法向量为n =(x ,y ,z ),则n ⊥AB →,n ⊥AC →,∴⎩⎪⎨⎪⎧ -3y -z =0, 2x +3y -z =0.取y =-3,得⎩⎪⎨⎪⎧x =3, z =3.∴n =(3,-3,3)是平面ABC 的一个法向量.同理可得平面ADC 的一个法向量m =(0,3,3). 设二面角B -AC -D 的平面角为θ, 则|cos θ|=⎪⎪⎪⎪⎪⎪m ·n |m ||n |=77.∵0<θ<π,∴sin θ=1-cos 2θ=427,∴二面角B -AC -D 的平面角的正弦值为427.建立空间直角坐标系的策略(1)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系.如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即建立坐标系时以其中的垂直相交直线为基本出发点.(2)建系的基本思想是寻找其中的线线垂直关系,在没有现成的垂直关系时要通过其他已知条件得到垂直关系.另外,使尽可能多的点在坐标轴上,可以减小运算量.如图所示,四棱锥E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.(1)求证:BD⊥平面ADE.(2)求BE和平面CDE所成角的正弦值.[解](1)证明:由BC⊥CD,BC=CD=2,可得BD=2 2.由EA⊥ED,且EA=ED=2,可得AD=2 2.又AB=4,所以AB2=AD2+BD2,所以BD⊥AD.又平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面ADE.(2)建立如图所示的空间直角坐标系D-xyz ,则D (0,0,0),B (0,22,0),C (-2,2,0),E (2,0,2),所以BE →=(2,-22,2),DE →=(2,0,2), DC →=(-2,2,0).设n =(x ,y ,z )是平面CDE 的法向量,则n ·DE →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,-x +y =0,令x =1,则n =(1,1,-1).设直线BE 与平面CDE 所成的角为α,则sin α=|cos 〈BE →,n 〉|=|BE →·n ||BE →|·|n |=|2-22-2|23×3=23,所以BE 和平面CDE 所成角的正弦值为23.。

大一轮之立体几何中的向量方法

大一轮之立体几何中的向量方法

立体几何中的向量方法[知识梳理]1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔ v 1∥v 2 .(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔ 存在两个实数x ,y ,使v =x v 1+y v 2 .(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔ v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β ⇔ u 1∥u 2 .3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔ v 1⊥v 2 ⇔ v 1·v 2=0 .(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔ v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β ⇔ u 1⊥u 2 ⇔ u 1·u 2=0 .一.思维辨析(在括号内打“√”或“×”).(1)直线的方向向量是唯一确定的.( )(2)若两直线的方向向量不平行,则两直线不平行.()(3)若两平面的法向量平行,则两平面平行或重合.()(4)若空间向量a平行于平面α,则a所在直线与平面α平行.()答案(1)×(2)√(3)√(4)×二.考点突破考点一利用空间向量证明平行问题例1.如图,在四面体A BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.证明:PQ∥平面BCD.证明:方法一如图,取BD的中点O,以O为原点,OD,OP 所在直线分别为y,z轴的正半轴,建立空间直角坐标系Oxyz.由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0).因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1).又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0.又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).因为CF →=14CD →,设点F 的坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),所以⎩⎨⎧ x =34x 0,y =24+34y 0,所以OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又由方法一知PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, 所以OF →=PQ →,所以PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD ,所以PQ ∥平面BCD .方法与技巧 利用空间向量证明平行的方法跟踪训练一如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .证明:∵平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧ t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .考点二 利用空间向量证明垂直问题例2. 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB .求证:平面BCE ⊥平面CDE .证明:设AD =DE =2AB =2a ,建立如图所示的空间直角坐标系A xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a ,0),E (a ,3a,2a ).所以BE →=(a ,3a ,a ),BC →=(2a,0,-a ),CD →=(-a ,3a,0),ED →=(0,0,-2a ).设平面BCE 的法向量为n 1=(x 1,y 1,z 1),由n 1·BE →=0,n 1·BC →=0可得⎩⎪⎨⎪⎧ ax 1+3ay 1+az 1=0,2ax 1-az 1=0,即⎩⎪⎨⎪⎧x 1+3y 1+z 1=0,2x 1-z 1=0. 令z 1=2,可得n 1=(1,-3,2).设平面CDE 的法向量为n 2=(x 2,y 2,z 2),由n 2·CD →=0,n 2·ED →=0可得⎩⎪⎨⎪⎧ -ax 2+3ay 2=0,-2az 2=0,即⎩⎪⎨⎪⎧-x 2+3y 2=0,z 2=0.令y 2=1,可得n 2=(3,1,0). 因为n 1·n 2=1×3+1×(-3)=0.所以n 1⊥n 2,所以平面BCE ⊥平面CDE .【结论探究】 本典例中条件不变,点F 是CE 的中点,证明DF ⊥平面BCE .证明:易得F ⎝ ⎛⎭⎪⎫32a ,32a ,a ,则DF →=⎝ ⎛⎭⎪⎫12a ,-32a ,a ,又平面BCE 的一个法向量为n 1=(1,-3,2),则DF →=a 2n 1,即DF →∥n 1,从而DF ⊥平面BCE .方法与技巧 用空间向量证明垂直问题的方法跟踪训练二如图所示,已知四棱锥PABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明:(1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形,平面PBC ∩底面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3),∴BD →=(-2,-1,0),P A →=(1,-2,-3).∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴P A →⊥BD →,∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3), ∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .考点三 用空间向量解决探索性问题角度1 与平行有关的探索性问题例3. 如图,在四棱锥P ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解:(1)证明:因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ⊥AD ,AB ⊂平面ABCD ,所以AB ⊥平面P AD .所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB .(2)取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD .故PO ,CO ,OA 两两垂直.建立如图所示空间直角坐标系O xyz.由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1). AP →=(0,-1,1),DC →=(2,1,0),DP →=(0,1,1). 设平面PCD 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧ DC →·n =0,DP →·n =0,即⎩⎪⎨⎪⎧ 2x +y =0,y +z =0,令x =1,得y =-2,z =2.所以平面PCD 的一个法向量n =(1,-2,2). 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,当且仅当BM →·n =0, 即(-1,-λ,λ)·(1,-2,2)=0,所以-1+4λ=0, 解得λ=14.所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.角度2 与垂直有关的探索性问题例4. 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出BPPE 的值;若不存在,请说明理由.解:(1)证明:∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF ,∴AF ⊥平面ABCD .∵AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3, ∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB .∵AB ∩AF =A ,∴AC ⊥平面F AB . ∵BF ⊂平面F AB ,∴AC ⊥BF . (2)存在,理由如下:由(1)知,AF ,AB ,AC 两两垂直.以A 为坐标原点,AB →,AC →,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2),F (0,0,2), 假设在线段BE 上存在一点P 满足题意, 则易知点P 不与点B ,E 重合,设BPPE =λ,则λ>0,P ⎝⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ). 由AP →=⎝⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎪⎨⎪⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎨⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ,所以m =⎝ ⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 因为BF →=(-2,0,2),BC →=(-2,23,0), 设n =(a ,b ,c )为平面BCEF 的一个法向量,所以⎩⎨⎧n ·BF →=0,n ·BC →=0,即⎩⎪⎨⎪⎧-2a +2c =0,-2a +23b =0, 取a =1,则b =33,c =1,所以n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量.当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF , 故存在满足题意的点P ,此时BP PE =23.方法与技巧 解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的设点方法:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y,0);一般平面内的点,如ABC 平面内一点,可设为AP →=xAB →+yAC →;③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.提醒:解这类问题时要利用好向量垂直和平行的坐标表示.跟踪训练三如图所示,四棱锥SABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,点P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.解:(1)证明:连接BD ,设AC 交BD 于点O ,则AC ⊥BD . 连接SO ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz .设底面边长为a ,则高SO =62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝⎛⎭⎪⎫-22a ,0,-62a ,则OC →·SD →=0,即OC ⊥SD ,从而AC ⊥SD . (2)棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0.设CE →=t CS →,则BE →=BC →+CE →=BC →+t CS →=⎝⎛⎭⎪⎫-22a ,22a (1-t ),62at ,而BE →·DS →=0⇒t =13.即当SE ∶EC =2∶1时,BE →⊥DS →. 而BE ⊄平面P AC ,故BE ∥平面P AC . 三.真题模拟练习1.(2018·天津卷)如图,AD ∥BC 且AD =2BC ,AD ⊥CD ,EG ∥AD 且EG =AD ,CD ∥FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E -BC -F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.解:依题意,可以建立以D 为原点,分别以DA →,DC →,DG →的方向为x 轴、y 轴、z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2).(1)证明:依题意得M ⎝⎛⎭⎪⎫0,32,1,N (1,0,2).DC →=(0,2,0),DE →=(2,0,2).设n 0=(x 0,y 0,z 0)为平面CDE 的法向量,则⎩⎨⎧n 0·DC →=0,n 0·DE →=0,即⎩⎪⎨⎪⎧2y 0=0,2x 0+2z 0=0.不妨令z 0=-1,可得n 0=(1,0,-1).又MN →=⎝⎛⎭⎪⎫1,-32,1,可得MN →·n 0=0.又因为直线MN ⊄平面CDE , 所以MN ∥平面CDE .(2)依题意,可得BC →=(-1,0,0),BE →=(1,-2,2),CF →=(0,-1,2).设n =(x 1,y 1,z 1)为平面 BCE 的法向量,则⎩⎨⎧n ·BC →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x 1=0,x 1-2y 1+2z 1=0. 不妨令z 1=1,可得n =(0,1,1).设m =(x 2,y 2,z 2)为平面BCF 的法向量,则⎩⎨⎧m ·BC →=0,m ·CF →=0,即⎩⎪⎨⎪⎧-x 2=0,-y 2+2z 2=0.不妨令z 2=1,可得m =(0,2,1). 因此有cos 〈m ,n 〉=m ·n |m ||n |=31010,于是sin 〈m ,n 〉=1010.所以,二面角E -BC -F 的正弦值为1010.(3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP →=(-1,-2,h ).易知,DC →=(0,2,0)为平面ADGE 的一个法向量, 故|cos 〈BP →,DC →〉|=|BP →·DC →||BP →||DC →|=2h 2+5,由题意,可得2h 2+5=sin 60°=32,解得h =33∈[0,2].所以,线段DP 的长为33.2.(2017·浙江卷)如图,已知四棱锥P ABCD ,△P AD 是以AD为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值. 解:(1)证明:设AD 的中点为O ,连接OB ,OP . ∵△P AD 是以AD 为斜边的等腰直角三角形,∴OP ⊥AD . ∵BC =12AD =OD ,且BC ∥OD , ∴四边形BCDO 为平行四边形, 又∵CD ⊥AD ,∴OB ⊥AD , ∵OP ∩OB =O ,∴AD ⊥平面OPB .过点O 在平面POB 内作OB 的垂线OM ,交PB 于M ,以O 为原点,OB 所在直线为x 轴,OD 所在直线为y 轴,OM 所在直线为z 轴,建立空间直角坐标系,如图.设CD =1,则有A (0,-1,0),B (1,0,0), C (1,1,0),D (0,1,0).设P (x,0,z )(z >0),由PC =2,OP =1,得⎩⎪⎨⎪⎧(x -1)2+1+z 2=4,x 2+z 2=1,得x =-12,z =32.即点P ⎝ ⎛⎭⎪⎫-12,0,32,而E 为PD 的中点,∴E ⎝ ⎛⎭⎪⎫-14,12,34.设平面P AB 的法向量为n =(x 1,y 1,z 1), ∵AP →=⎝ ⎛⎭⎪⎫-12,1,32,AB →=(1,1,0),∴⎩⎨⎧-12x 1+y 1+32z 1=0,x 1+y 1=0,⇒⎩⎪⎨⎪⎧x 1=-y 1,z 1=-3y 1,取y 1=-1,得n =(1,-1,3). 而CE →=⎝ ⎛⎭⎪⎫-54,-12,34,则CE →·n =0,而CE ⊄平面P AB ,∴CE ∥平面P AB .(2)设平面PBC 的法向量为m =(x 2,y 2,z 2), ∵BC →=(0,1,0),BP →=⎝ ⎛⎭⎪⎫-32,0,32,∴⎩⎨⎧y 2=0,-32x 2+32z 2=0,取x 2=1,得m =(1,0,3). 设直线CE 与平面PBC 所成角为θ. 则sin θ=|cos 〈m ,CE →〉|=|CE →·m ||CE →|·|m |=28,故直线CE 与平面PBC 所成角的正弦值为28. 四.课时跟踪测 一、选择题1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C .l ⊂αD .l 与α相交B [∵n =-2a ,∴a 与平面α的法向量平行,∴l ⊥α.] 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三向量共面,则实数λ等于( )A.627 B .637C.607D .657D [由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ,∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.]3.若AB→=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面内D .平行或在平面内D [∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面, ∴AB 与平面CDE 平行或在平面CDE 内.]4.(2017·西安月考)如图7­7­8,F 是正方体ABCD ­A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )图7­7­8A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合A [分别以DA 、DC 、DD 1为x 、y 、z 轴建立空间直角坐标系(图略),设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),D 1F →=(0,1,-2),DE →=(2,2,z ),∵D 1F →·DE →=0×2+1×2-2z =0,∴z =1,∴B 1E =EB .]5.如图7­7­9所示,在平行六面体ABCD ­A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:图7­7­9①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.以上说法正确的个数为( ) A .1 B .2 C .3D .4C [A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M→∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.]二、填空题6.如图7­7­10所示,在正方体ABCD ­A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.图7­7­10垂直 [以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A (0,0,0),M⎝⎛⎭⎪⎫0,1,12,O⎝ ⎛⎭⎪⎫12,12,0,N⎝ ⎛⎭⎪⎫12,0,1,AM →·ON →=⎝⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,-12,1=0,∴ON 与AM 垂直.]7.(2017·广州质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.α∥β [设平面α的法向量为m =(x ,y ,z ),由m ·AB→=0,得x ·0+y -z =0⇒y =z , 由m ·AC→=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n , ∴m ∥n ,∴α∥β.]8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________. 257[由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4,所以x +y =407-157=257.]三、解答题9.如图7­7­11,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .图7­7­11[证明] 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA ,DP ,DC 分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系D ­xyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0), 则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC →=0. 即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ , 又PQ平面PQC ,∴平面PQC ⊥平面DCQ .10.(2017·郑州调研)如图7­7­12所示,四棱锥P ­ABCD 的底面是边长为1的正方形,PA ⊥CD ,PA =1,PD =2,E 为PD 上一点,PE =2ED .图7­7­12(1)求证:PA ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.[解] (1)证明:∵PA =AD =1,PD =2, ∴PA 2+AD 2=PD 2, 即PA ⊥AD .又PA ⊥CD ,AD ∩CD =D ,∴PA ⊥平面ABCD .(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎪⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1),使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ),∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点. 11.如图7­7­13,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( )图7­7­13A .(1,1,1)B .⎝⎛⎭⎪⎪⎫23,23,1 C.⎝⎛⎭⎪⎪⎫22,22,1 D .⎝⎛⎭⎪⎪⎫24,24,1 C [设AC 与BD 相交于O 点,连接OE ,由AM ∥平面BDE ,且AM 平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线交点, ∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标⎝⎛⎭⎪⎪⎫22,22,1.]12.已知点P是平行四边形ABCD所在的平面外一点,如果AB→=(2,-1,-4),AD→=(4,2,0),AP→=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③AP→是平面ABCD的法向量;④AP→∥BD→.其中正确的是________.①②③[∵AB→·AP→=0,AD→·AP→=0,∴AB⊥AP,AD⊥AP,则①②正确.又AB→与AD→不平行,∴AP→是平面ABCD的法向量,则③正确.∵BD→=AD→-AB→=(2,3,4),AP→=(-1,2,-1),∴BD→与AP→不平行,故④错误.]13.(2017·北京房山一模)如图7­7­14,四棱锥P­ABCD的底面为正方形,侧棱PA⊥底面ABCD,图7­7­14且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.求证:(1)PB∥平面EFH;(2)PD⊥平面AHF.[证明] 建立如图所示的空间直角坐标系A­xyz.∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),H(1,0,0).(1)∵PB→=(2,0,-2),EH→=(1,0,-1),∴PB→=2EH→,∴PB∥EH.∵PB⊆/平面EFH,且EH平面EFH,∴PB∥平面EFH.(2)∵PD→=(0,2,-2),AH→=(1,0,0),AF→=(0,1,1),∴PD→·AF→=0×0+2×1+(-2)×1=0,PD→·AH→=0×1+2×0+(-2)×0=0,∴PD⊥AF,PD⊥AH.又∵AF∩AH=A,∴PD⊥平面AHF.。

高考数学一轮复习第7讲 立体几何中的向量方法

高考数学一轮复习第7讲 立体几何中的向量方法

第7讲立体几何中的向量方法1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与01共线的向量叫做直线l的方向向量,显然一条直02无数个.(2)平面的法向量如果表示向量n03垂直于平面α,则称这个向量垂直于平面α,记作n⊥α,此时向量n叫做平面α的法向量.04无数个,且它们是05共线向量.(3)设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则l∥m06a∥b⇔07a=k b,k∈R;l⊥m08a⊥b⇔09a·b=0;l∥α10a⊥u⇔11a·u=0;l⊥α12a∥u⇔13a=k u,k∈R;α∥β14u∥v⇔15u=k v,k∈R;α⊥β16u⊥v⇔17u·v=0.2.空间向量与空间角的关系(1)两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ| 18|a·b||a||b|(其中φ为异面直线a,b所成的角,范围是(0°,90°]).(2)直线与平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=19|e ·n ||e ||n |,φ的取值范围是[0°,90°].(3)求二面角的大小如图①,AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=20〈AB→,CD →〉.如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉,取值范围是[0°,180°].确定平面法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两个相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·a =0,n ·b =0,解方程组求得.1.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .重合答案 C解析 由(1,2,0)·(2,-1,0)=1×2+2×(-1)+0×0=0,知两平面的法向量互相垂直,所以两平面互相垂直.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A .⎝ ⎛⎭⎪⎫33,33,-33B .⎝ ⎛⎭⎪⎫33,-33,33C .⎝ ⎛⎭⎪⎫-33,33,33D .⎝ ⎛⎭⎪⎫-33,-33,-33答案 D解析 AB→=(-1,1,0),AC →=(-1,0,1),设平面ABC 的法向量n =(x ,y ,z ),∴⎩⎨⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1).单位法向量为±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(B 1A 1→-B 1B →)+B 1B →+13(AB →+AD →)=23B 1B →+13B 1C 1→,∴MN →,B 1B →,B 1C 1→共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .4. 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 与FD 1所成角的余弦值等于( )A .105B .155C .45D .23答案 B解析 建立如图所示的空间直角坐标系,则O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=FD 1→·OE→|FD1→||OE →|=1+0+25×3=155.故选B .5.如图,已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,E ,F 分别是AB ,PC 的中点.若∠PDA =45°,则EF 与平面ABCD 所成的角的大小是( )A .90°B .60°C .45°D .30°答案 C解析 设AD =a ,AB =b ,因为∠PDA =45°,P A ⊥平面ABCD ,所以P A ⊥AD ,P A =AD =a .以点A 为坐标原点,AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫b 2,0,0,F ⎝ ⎛⎭⎪⎫b 2,a 2,a 2,所以EF→=⎝ ⎛⎭⎪⎫0,a 2,a 2.易知AP →=(0,0,a )是平面ABCD 的一个法向量.设EF 与平面ABCD 所成的角为θ,则sin θ=|cos 〈AP →,EF →〉|=|AP →·EF →||AP →||EF →|=22.所以θ=45°.6. (2020·广东华侨中学高三模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则点M 的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于点O ,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.考向一 利用空间向量证明平行、垂直例1 如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 所成的角为30°.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以点C 为坐标原点,分别以CB ,CD ,CP 所在的直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角. ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,得⎩⎨⎧-y +2z =0,23x +3y =0. 令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD . (2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥P A .又BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,∴BE ⊥平面P AD . 又BE ⊂平面P AB ,∴平面P AB ⊥平面P AD . 1.用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量); ②转化为线面平行、线线平行问题线线垂直 问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直 问题 直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直 问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直1. 如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱, 所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.因为MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2),所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎨⎧-x 1+2y 1=0,x 1+2z 1=0, 令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 多角度探究突破考向二 利用空间向量求空间角 角度1 求异面直线所成的角例2 (1) (2020·汕头模拟)如图,正四棱锥P -ABCD 的侧面P AB 为正三角形,E 为PC 的中点,则异面直线BE 和P A 所成角的余弦值为( )A .33B .32C .22D .12答案 A解析 连接AC ,BD ,交于点O ,连接PO ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设AB =2,则OA =OB =OP =1,A (1,0,0),B (0,1,0),C (-1,0,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫-12,0,12,BE →=⎝ ⎛⎭⎪⎫-12,-1,12,P A →=(1,0,-1),设异面直线BE 和P A 所成角为θ,则cos θ=|BE →·P A →||BE →||P A →|=132×2=33. ∴异面直线BE 和P A 所成角的余弦值为33.故选A .(2) 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是CC 1,AD 的中点,那么异面直线D 1E 和A 1F 所成角的余弦值等于________.答案 25解析 如图,以D 为原点建立空间直角坐标系.则A 1(2,0,2),F (1,0,0),D 1(0,0,2),E (0,2,1), 则A 1F →=(-1,0,-2),D 1E →=(0,2,-1), cos 〈D 1E →,A 1F →〉=D 1E →·A 1F →|D 1E →||A 1F →|=25×5=25, ∴异面直线D 1E 和A 1F 所成角的余弦值等于25.(1)求异面直线所成角的思路①选好基底或建立空间直角坐标系; ②求出两直线的方向向量v 1,v 2;③代入公式cos θ=|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解(θ为两异面直线所成角).(2)两异面直线所成角的关注点两异面直线所成角θ的范围是(0°,90°],两向量的夹角α的范围是[0°,180°],当异面直线的方向向量的夹角为锐角或直角时,该角就是异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.2.(多选)(2020·山东潍坊5月模拟)已知在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F ,H 分别是AB ,DD 1,BC 1的中点,下列结论中正确的是( )A .D 1C 1∥平面CHDB .AC 1⊥平面BDA 1C .三棱锥D -BA 1C 1的体积为56 D .直线EF 与BC 1所成的角为30° 答案 ABD解析 如图1所示,因为D 1C 1∥DC ,D 1C 1⊄平面CHD ,DC ⊂平面CHD ,所以D 1C 1∥平面CHD ,A 正确;建立空间直角坐标系,如图2所示.由于正方体ABCD -A 1B 1C 1D 1的棱长为1,则AC 1→=(-1,1,1),BD →=(-1,-1,0),DA 1→=(1,0,1),所以AC 1→·BD →=1-1+0=0,AC 1→·DA 1→=-1+0+1=0,所以AC 1→⊥BD →,AC 1→⊥DA 1→,所以AC 1⊥平面BDA 1,B 正确;三棱锥D -BA 1C 1的体积为V 三棱锥D -BA 1C 1=V 正方体ABCD -A 1B 1C 1D 1-4V 三棱锥A 1-ABD =1-4×13×12×1×1×1=13,所以C 错误;E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,0,12,所以EF →=⎝ ⎛⎭⎪⎫-1,-12,12,BC →1=(-1,0,1),所以cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=1+0+1232×2=32,所以直线EF 与BC 1所成的角是30°,D 正确.故选ABD.角度2 求直线与平面所成的角例3 (2020·山东高考) 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.解 (1)证明:在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l .因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,又PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD . 因为DC ∩PD =D ,所以l ⊥平面PDC . (2)如图,建立空间直角坐标系Dxyz .因为PD =AD =1,所以D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC→=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎨⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,知直线PB 与平面QCD 所成角的正弦值等于|cos 〈n ,PB→〉|= |1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.提醒:在求平面的法向量时,若能找出平面的垂线,则在垂线上取两个点可构成一个法向量.3.(2019·浙江高考)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.解解法一:(1)证明:如图1,连接A1E.因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又因为平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又因为A1E∩A1F=A1,所以BC⊥平面A1EF.因为EF⊂平面A1EF,所以EF⊥BC.(2)如图1,取BC的中点G,连接EG,GF,连接A1G交EF于点O,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1),得BC⊥平面EGF A1,所以平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 解法二:(1)证明:如图2,连接A 1E .因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又因为平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .以点E 为坐标原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立如图所示的空间直角坐标系Exyz .不妨设AC =4,则E (0,0,0),A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝ ⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0,得EF ⊥BC .(2)由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0. 取n =(1, 3,1),设直线EF 与平面A 1BC 所成的角为θ,故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →||n |=45,所以cos θ=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 角度3 求二面角例4 (2020·济南一模)如图1,平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,DE ,AE ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)已知直线DE 与平面ABC 所成的角为π4,求二面角A -BD -C 的余弦值. 解 (1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC . 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 又BC ∩CD =C ,所以AE ⊥平面BCD . 又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .(2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4. 在Rt △ABC 中,由勾股定理得BC =2,故CD =CE =1.作EF ∥CD 交BD 于点F ,由(1)知EA ,EB ,EF 两两垂直,以E 为原点,EA ,EB ,EF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,1,0),D (0,-1,1), 易知平面BCD 的一个法向量为n 1=(1,0,0), 又AB→=(-1,1,0),AD →=(-1,-1,1), 设平面ABD 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AB →=-x +y =0,n 2·AD →=-x -y +z =0,令x =1,解得n 2=(1,1,2), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=66.由图可知,该二面角为锐角, 所以二面角A -BD -C 的余弦值为66.利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量夹角的大小就是二面角的大小.4. (2020·青岛模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qiàn dǔ);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(biē nào)指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖臑C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.解 (1)证明:∵A 1A ⊥底面ABC ,AB ⊂面ABC , ∴A 1A ⊥AB .又AB ⊥AC ,A 1A ∩AC =A , ∴AB ⊥面ACC 1A 1. 又四边形ACC 1A 1为矩形, ∴四棱锥B -A 1ACC 1为阳马.(2)∵AB ⊥AC ,BC =2,∴AB 2+AC 2=4. 又C 1C ⊥底面ABC ,∴VC 1-ABC =13·C 1C ·12AB ·AC =13·AB ·AC ≤13·AB 2+AC 22=23,当且仅当AB =AC =2时,=13·AB ·AC 取最大值.∵AB ⊥AC ,A 1A ⊥底面ABC ,∴以A 为原点,建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),A 1(0,0,2),C 1(0,2,2),A 1B →=(2,0,-2),BC →=(-2,2,0),A 1C 1→=(0,2,0).设面A 1BC 的一个法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧2x 1-2z 1=0,-2x 1+2y 1=0,令z 1=1,得n 1=(2,2,1). 同理得面A 1BC 1的一个法向量为n 2=(2,0,1),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=155,∴二面角C -A 1B -C 1的余弦值为155.用向量法探究点的位置如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB . (2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD . 又因为PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD . 建立空间直角坐标系Oxyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1),PB →=(1,1,-1),PC→=(2,0,-1),PD →=(0,-1,-1).设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB→=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33,所以直线PB 与平面PCD 所成角的正弦值为33.(3)假设在棱P A 上存在点M ,使得BM ∥平面PCD ,则存在λ∈[0,1]使得AM →=λAP→.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以当且仅当BM →·n =0时,BM ∥平面PCD ,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 答题启示对于点的探究型问题,要善于根据点的位置结合向量的有关定理灵活设出未知量,尽量使未知量个数最少.对点训练(2020·滨州二模) 如图所示,在等腰梯形ABCD 中,AD ∥BC ,∠ADC =60°,直角梯形ADFE 所在的平面垂直于平面ABCD ,且∠EAD =90°,EA =AD =2DF =2CD =2.(1)证明:平面ECD ⊥平面ACE ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MCD 与平面EAB 所成的二面角的余弦值为34.解 (1)证明:因为平面ABCD ⊥平面ADFE ,平面ABCD ∩平面ADFE =AD ,EA ⊥AD ,EA ⊂平面ADFE ,所以EA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以EA ⊥CD , 在△ADC 中,CD =1,AD =2,∠ADC =60°, 由余弦定理得,AC = 1+4-2×1×2cos60°=3, 所以AC 2+CD 2=AD 2,所以CD ⊥AC .又EA ⊥CD ,EA ∩AC =A ,所以CD ⊥平面ACE , 又CD ⊂平面ECD ,所以平面ECD ⊥平面ACE . (2)以C 为坐标原点,以CA ,CD 所在直线分别为x 轴、 y 轴,过点C 且平行于AE 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B ⎝ ⎛⎭⎪⎫32,-12,0,D (0,1,0),E (3,0,2),F (0,1,1),AB →=⎝ ⎛⎭⎪⎫-32,-12,0,AE →=(0,0,2),CD→=(0,1,0),FE →=(3,-1,1),CF →=(0,1,1),设FM →=λFE →=(3λ,-λ,λ)(0≤λ≤1),则CM→=CF →+FM →=(3λ,1-λ,1+λ).设平面EAB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎨⎧-32x 1-12y 1=0,2z 1=0,取x 1=1,得m =(1,-3,0).设平面MCD 的一个法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CM →=0,得⎩⎨⎧y 2=0,3λx 2+(1-λ)y 2+(1+λ)z 2=0,令x 2=1+λ,得n =(1+λ,0,-3λ),因为平面MCD 与平面EAB 所成的二面角的余弦值为34,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+λ|24λ2+2λ+1=34, 整理得8λ2-2λ-1=0,解得λ=12或λ=-14(舍去),所以点M 为线段EF 的中点时,平面MCD 与平面EAB 所成的二面角的余弦值为34.一、单项选择题1.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( )A .l ∥αB .l ⊥αC .l 与α斜交D .l ⊂α或l ∥α答案 B解析 因为a =(1,-3,5),n =(-1,3,-5),所以a =-n ,a ∥n .所以l ⊥平面α.选B .2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C .3. 如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是上底面A 1B 1C 1D 1和侧面ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝ ⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .4.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223答案 A解析 如图所示,建立空间直角坐标系Dxyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧-2x +2y =0,-2x +4z =0, 取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A .5.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5答案 A解析 ∵A (1,-1,2),B (5,-6,2),C (1,3,-1),∴AB→=(4,-5,0),AC →=(0,4,-3).∵点D 在直线AC 上,∴设AD →=λAC →=(0,4λ,-3λ),由此可得BD→=AD →-AB →=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ).又BD →⊥AC →,∴BD →·AC →=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-45.因此BD →=(-4,4λ+5,-3λ)=⎝ ⎛⎭⎪⎫-4,95,125.可得|BD→|= (-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.6. (2020·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A . 2B . 3C .2D .22答案 A解析 分别以CA ,CB ,CC 1所在的直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎨⎧2y +2z =0,x +az =0,令z =-1,得n =(a,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m ·n |m ||n |,得1a 2+2=12,解得a =2,故选A .7. (2021·湖南湘潭高三月考)在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是( )A .⎝ ⎛⎭⎪⎫1,1,12 B .(1,2,1)C .(1,1,1)D .(2,-2,1)答案 A解析 P A →=(1,0,-2),AB →=(-1,1,0),设平面P AB 的法向量为n =(x ,y,1),则⎩⎨⎧ x -2=0,-x +y =0.解得⎩⎨⎧x =2,y =2.∴n =(2,2,1).又⎝ ⎛⎭⎪⎫1,1,12=12n ,∴A 正确.8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12 B .23 C .33 D .22答案 B解析 以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1D →=0,n 1·A 1E →=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B .二、多项选择题9.(2020·海口高考调研) 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =23AB =2,AB ⊥AC ,点D ,E 分别是线段BC ,B 1C 上的动点(不含端点),且EC B 1C =DCBC .则下列说法正确的是( )A .ED ∥平面ACC 1B .该三棱柱的外接球的表面积为68πC .异面直线B 1C 与AA 1所成角的正切值为32 D .二面角A -EC -D 的余弦值为413 答案 AD解析 在直三棱柱ABC -A 1B 1C 1中,四边形BCC 1B 1是矩形,因为ECB 1C =DC BC ,所以ED ∥BB 1∥CC 1,所以ED ∥平面ACC 1,A 正确;因为AA 1=AC =23AB =2,所以AB =3,因为AB ⊥AC ,所以BC =22+32=13,所以B 1C =13+4=17,易知B 1C 是三棱柱外接球的直径,所以三棱柱外接球的表面积为4π×⎝⎛⎭⎪⎫1722=17π,B 错误;因为AA 1∥BB 1,所以异面直线B 1C 与AA 1所成的角为∠BB 1C .在Rt △B 1BC 中,BB 1=2,BC =13,所以tan ∠BB 1C =BC BB 1=132,C 错误;二面角A -EC -D 即二面角A -B 1C -B ,以A 为坐标原点,以AB →,AC →,AA 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,可得平面AB 1C 的一个法向量为(2,0,-3),平面BB 1C 的一个法向量为(2,3,0),故二面角A -EC -D 的余弦值为2×213×13=413,D 正确.10. (2020·山东模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则下列说法正确的是( )A .直线A 1G 与平面AEF 平行B .直线D 1D 与直线AF 垂直C .平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面的面积为98 D .点C 与点G 到平面AEF 的距离相等 答案 AC解析 如图,连接AD 1,D 1F ,因为A 1G ∥D 1F ,且A ,E ,F ,D 1在同一平面内,所以A 1G ∥平面AEF ,故A 正确;因为AF 与C 1C 相交且不垂直,D 1D 与C 1C 平行,所以直线D 1D 与直线AF 不垂直,故B 错误;平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面为等腰梯形AEFD 1,作EH ⊥AD 1,交AD 1于点H ,连接D 1E ,DE ,可得AE =52,AD 1=2,D 1E =1+54=32,所以在△AD 1E中,cos ∠D 1AE =1010,所以sin ∠D 1AE =31010,所以EH =52×31010=324,所以等腰梯形AD 1FE 的面积S =12×⎝ ⎛⎭⎪⎫2+22×324=98,故C 正确;以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,连接AG ,AC ,则可得平面AEF 的一个法向量为n =(2,1,2),AG →=⎝ ⎛⎭⎪⎫0,1,12,AC →=(-1,1,0),所以点G 到平面AEF 的距离d 1=|AG →·n ||n |=23,点C 到平面AEF 的距离d 2=|AC →·n ||n |=13,故D 错误.故选AC .三、填空题11. 如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为________.答案60°解析∵CD→=CA→+AB→+BD→,∴|CD→|=(CA→+AB→+BD→)2= 36+16+64+2CA→·BD→= 116+2CA→·BD→=217.∴CA→·BD→=|CA→||BD→|cos〈CA→,BD→〉=-24.∴cos〈CA→,BD→〉=-12.又所求二面角与〈CA→,BD→〉互补,∴所求的二面角为60°.12. 正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为________.答案 π6解析 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→·AC 2→|AC1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.13.(2020·山西大同高三模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(BA →+AA 1→)+A 1A →+13(AB →+BC →)=23A 1A →+13BC →=23B 1B →+13BC →.∴MN →与B 1B →,BC →共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .14.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,则n =(-1,1,-3),平面ABC 的一个法向量为m =(0,0,-1),cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.四、解答题15.(2020·山东省模拟考) 如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 所成的角为45°.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.解 (1)证明:以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系Axyz .设D (0,b,0),S (0,0,c ),则C (1,b,0),E ⎝ ⎛⎭⎪⎫0,b 2,0,F ⎝ ⎛⎭⎪⎫12,b 2,c 2,EF →=⎝ ⎛⎭⎪⎫12,0,c 2,AS →=(0,0,c ),AD→=(0,b,0). 因为EF 与平面ABCD 所成的角为45°,所以EF →与平面ABCD 的法向量AS →的夹角为45°.所以AS →·EF →=|AS →||EF →|cos45°, 即c 22=22×c ×14+c 24,解得c =1,故EF →=⎝ ⎛⎭⎪⎫12,0,12,SC →=(1,b ,-1), 从而EF →·SC →=0,EF →·AD →=0,所以EF ⊥SC ,EF ⊥AD .因此EF 为异面直线AD 与SC 的公垂线. (2)由B (1,0,0),BC →=(0,b,0), |EF→|=12|BC →|得b = 2. 于是F ⎝ ⎛⎭⎪⎫12,22,12,C (1,2,0),连接FB ,故FB →=⎝ ⎛⎭⎪⎫12,-22,-12,SC →=(1,2,-1),从而FB →·SC→=0,即FB ⊥SC .取CF 的中点G ,连接GD ,则G ⎝ ⎛⎭⎪⎫34,324,14,GD →=⎝ ⎛⎭⎪⎫-34,24,-14,从而GD →·SC→=0,即GD ⊥SC .因此〈FB→,GD →〉等于二面角B -SC -D 的平面角.cos 〈FB →,GD →〉=FB →·GD →|FB →||GD →|=-33.所以二面角B -SC -D 的余弦值为-33.16. (2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解 (1)证明:∵M ,N 分别为BC ,B 1C 1的中点, ∴MN ∥BB 1.又AA 1∥BB 1,∴AA 1∥MN .∵△A 1B 1C 1为等边三角形,N 为B 1C 1的中点, ∴A 1N ⊥B 1C 1.又侧面BB 1C 1C 为矩形,∴B 1C 1⊥BB 1. ∵MN ∥BB 1,∴MN ⊥B 1C 1.又MN ∩A 1N =N ,MN ,A 1N ⊂平面A 1AMN , ∴B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , ∴平面A 1AMN ⊥平面EB 1C 1F .(2)解法一:连接NP ,∵AO ∥平面EB 1C 1F ,平面AONP ∩平面EB 1C 1F =NP , ∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N ,∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m .∴ON =AP =3m . ∵BC ∥B 1C 1,B 1C 1⊂平面EFC 1B 1, ∴BC ∥平面EFC 1B 1.又BC ⊂平面ABC ,平面ABC ∩平面EFC 1B 1=EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP 3m ,解得EP =m .在B 1C 1截取B 1Q =EP =m ,连接PQ ,故QN =2m . ∵B 1Q =EP 且B 1Q ∥EP ,∴四边形B 1QPE 是平行四边形,∴B 1E ∥PQ . 由(1)可知B 1C 1⊥平面A 1AMN ,故∠QPN 为B 1E 与平面A 1AMN 所成角. 在Rt △QPN 中,根据勾股定理可得PQ =QN 2+NP 2=(2m )2+(6m )2=210m , ∴sin ∠QPN =QN PQ =2m 210m=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 解法二:由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .由已知得AM ⊥BC ,以Q 为坐标原点,QA→的方向为x 轴正方向,QN →的方向为z 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,设QM =a ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2,∴PQ =233-a ,NQ = NP 2-PQ 2= 4-⎝ ⎛⎭⎪⎫233-a2, ∴B 10,1,4-⎝ ⎛⎭⎪⎫233-a 2 ,E ⎝ ⎛⎭⎪⎫233-a ,13,0,故B 1E →=233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n ||B 1E →|=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.17.(2020·泰安三模)在四棱锥P -ABCD 中,△P AB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点,DE ⊥PB .(1)证明:平面ABCD ⊥平面P AB ;(2)设二面角A -PC -B 的大小为α,求α的取值范围.解 (1)证明:连接AE ,因为△P AB 为等边三角形,所以AE ⊥PB . 又DE ⊥PB ,AE ∩DE =E ,所以PB ⊥平面ADE ,所以PB ⊥AD . 因为四边形ABCD 为矩形,所以AD ⊥AB ,且AB ∩PB =B , 所以AD ⊥平面P AB .因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面P AB .(2)以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,不妨设PB =AB =P A =1,C (0,1,n ),则A (0,0,0),P ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),由空间向量的坐标运算可得PC →=⎝ ⎛⎭⎪⎫-32,12,n ,AP →=⎝ ⎛⎭⎪⎫32,12,0,BP →=⎝ ⎛⎭⎪⎫32,-12,0.设平面BPC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·BP →=0,即⎩⎪⎨⎪⎧-32x 1+12y 1+nz 1=0,32x 1-12y 1=0,令x 1=1,则y 1=3,z 1=0,所以m =(1,3,0). 设平面P AC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-32x 2+12y 2+nz 2=0,32x 2+12y 2=0,令x 2=1,则y 2=-3,z 2=3n ,所以n =⎝ ⎛⎭⎪⎫1,-3,3n .二面角A -PC -B 的大小为α,由图可知,二面角α为锐二面角, 所以cos α=|m ·n ||m ||n |=|1-3|1+3×1+3+3n 2=14+3n 2∈⎝⎛⎭⎪⎫0,12,所以α∈⎝ ⎛⎭⎪⎫π3,π2. 18.(2020·山东平邑一中模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB ⊥BC ;②FC 与平面ABCD 所成的角为π6;③∠ABC =π3.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A ⊥平面ABCD ,且P A =AB =2,PD 的中点为F .(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若________,求二面角F-AC-D的余弦值.解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示.设PC的中点为H,连接FH,GH,∵FH∥CD,FH=12CD,AG∥CD,AG=12CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PCG,AF⊄平面PCG,∴AF∥平面PCG.(2)选择①AB⊥BC:∵P A⊥平面ABCD,∴P A⊥BC,由题意,知AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系,∵P A=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴AF→=(0,1,1),CF→=(-2,-1,1),设平面F AC 的一个法向量为μ=(x ,y ,z ), ∴⎩⎪⎨⎪⎧μ·AF →=y +z =0,μ·CF →=-2x -y +z =0,取y =1,得μ=(-1,1,-1), 平面ACD 的一个法向量为v =(0,0,1), 设二面角F -AC -D 的平面角为θ, 由图可知,二面角θ为锐二面角, 则cos θ=|μ·v ||μ||v |=33,∴二面角F -AC -D 的余弦值为33. 选择②FC 与平面ABCD 所成的角为π6:∵P A ⊥平面ABCD ,取BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥P A ,且FM =1,∴FM ⊥平面ABCD , FC 与平面ABCD 所成角为∠FCM , ∴∠FCM =π6,在Rt △FCM 中,CM =3,又CM =AE ,∴AE 2+BE 2=AB 2,∴BC ⊥AE , ∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1),设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.选择③∠ABC =π3:∵P A ⊥平面ABCD ,∴P A ⊥BC ,取BC 中点E ,连接AE ,∵底面ABCD 是菱形,∠ABC =60°,∴△ABC 是正三角形,∵E 是BC 的中点,∴BC ⊥AE ,∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1), 设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.。

高考数学一轮复习 立体几何中的向量方法(理)课件

高考数学一轮复习 立体几何中的向量方法(理)课件
(4)解方程组,取其中的一个解,即得法向量.
1.已知向量a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),
则下列结论正确的是
()
A.a∥c,b⊥c
B.a∥b,a⊥c
C.a∥c,a⊥b
D.以上都不对
解析:∵c=(-4,-6,2)=2(-2,-3,1),∴a∥c. 又a·b=-2×2+(-3)×0+1×4=0,∴a⊥b.

(2)设n1,n2分别是二面角α-l-β的两个面α,β的法向量, 则向量n1与n2的夹角(或其补角)的大小就是 二面角的平面 角的大小 (如图②③).
提示:(1)设出平面的法向量为n=(x,y,z); (2)找出(求出)平面内的两个不共线的向量的 坐标a=(a1,b1,c1), b=(a2,b2,c2); (3)根据法向量的定义建立关于x、y、z的方程组
1.设直线l1的方向向量为u1=(a1,b1,c1),直线l2的方向 向量为u2=(a2,b2,c2),则l1∥l2⇔u1∥u2⇔(a1,b1,c1) =k(a2,b2,c2)(k∈R); l1⊥l2⇔u1⊥u2⇔a1a2+b1b2+c1c2=0.
2.设直线l的方向向量为u=(a1,b1,c1),平面α的法向量为 n=(a2,b2,c2),则l∥α⇔u⊥n⇔a1a2+b1b2+c1c2=0; l⊥α⇔u∥n⇔(a1,b1,c1)=k(a2,b2,c2)(k∈R).
【注意】 利用空间向量方法求二面角时,注意结合图形判 断二面角是锐角还是钝角.
(2009·全国卷Ⅰ改编)如图,四棱锥S-ABCD中, 底面ABCD为矩形,SD⊥底面ABCD,AD= DC=SD=2, 点M在侧棱SC上,∠ABM=60°. (1)证明:M是侧棱SC的中点; (2)求二面角S-AM-B的余弦值.

高三数学一轮复习: 第7章 第7节 立体几何中的向量方法

高三数学一轮复习: 第7章 第7节 立体几何中的向量方法

第七节立体几何中的向量方法[考纲传真] 1.理解直线的方向向量与平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系.3.能用向量方法证明有关直线和平面位置关系的一些简单定理(包括三垂线定理).4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.1.直线的方向向量与平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示3.求两条异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则4.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.5.求二面角的大小(1)若AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图7-7-1①).图7-7-1(2)设n 1,n 2分别是二面角α-l -β的两个面α,β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图7-7-2②③).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π].[答案] (1)× (2)× (3)× (4)√2.(教材改编)设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t =( )A .3B.4C.5D.6C [∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.]3.(2014·全国卷Ⅱ)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.3010D.22C [建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B (0,2,0),A (2,0,0),M (1,1,2),N (1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=|BM →·AN →||BM →|·|AN →|=36×5=3010.]4.如图7-7-3所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.图7-7-3垂直 [以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A (0,0,0),M ⎝ ⎛⎭⎪⎫0,1,12,O ⎝ ⎛⎭⎪⎫12,12,0,N ⎝ ⎛⎭⎪⎫12,0,1,AM →·ON →=⎝ ⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,-12,1=0,∴ON 与AM 垂直.]5.(2017·唐山模拟)过正方形ABCD 的顶点A 作线段P A ⊥平面ABCD ,若AB =P A ,则平面ABP 与平面CDP 所成的二面角为________.45° [如图,建立空间直角坐标系,设AB =P A =1,则A (0,0,0),D (0,1,0),P (0,0,1),由题意,AD ⊥平面P AB ,设E 为PD 的中点,连接AE ,则AE ⊥PD ,又CD ⊥平面P AD ,∴CD ⊥AE ,从而AE ⊥平面PCD .∴AD →=(0,1,0),AE →=⎝ ⎛⎭⎪⎫0,12,12分别是平面P AB ,平面PCD 的法向量,且〈AD →,AE →〉=45°.故平面P AB 与平面PCD 所成的二面角为45°.]ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2. 【导学号:01772274】(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面PDC .图7-7-4[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).3分(1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB .又AB ⊂平面P AB ,EF ⊄平面P AB ,所以EF ∥平面P AB .6分(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,所以AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .9分又因为AP ∩AD =A ,AP ⊂平面P AD ,AD ⊂平面P AD ,所以DC ⊥平面P AD .因为DC ⊂平面PDC ,所以平面P AD ⊥平面PDC .12分[规律方法] 1.利用向量证明平行与垂直,充分利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.2.运用向量知识判定空间位置关系,不可忽视几何定理满足的条件,如用直线的方向向量与平面的法向量垂直来证明线面平行,必需强调直线在平面外.[变式训练1] (2017·北京房山一模)如图7-7-5,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD =2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .图7-7-5[证明] 建立如图所示的空间直角坐标系A -xyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).3分(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .6分(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,9分PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH .又∵AF ∩AH =A ,∴PD ⊥平面AHF .12分☞将正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,异面直线AD 与BC 所成的角为( )【导学号:01772275】A.π6B.π4C.π3D.π2C [不妨以△ABC 为底面,则由题意当以A ,B ,C ,D 为顶点的三棱锥体积最大,即点D 到底面△ABC 的距离最大时,平面ADC ⊥平面ABC .设点O 是AC 的中点,连接BO ,DO .则易知BO ,CO ,DO 两两互相垂直.以O 为坐标原点,建立如图所示的空间直角坐标系,令BO =CO =DO =1. 则O (0,0,0),A (0,-1,0),D (0,0,1),B (1,0,0),C (0,1,0),于是AD →=(0,1,1),BC →=(-1,1,0),因此cos 〈AD →,BC →〉=AD →·BC →|AD →|·|BC →|=12×2=12. 所以异面直线AD 与BC 所成的角为π3.][规律方法] 1.利用向量法求异面直线所成的角.(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量ν1,ν2;(3)代入公式|cos 〈ν1,ν2〉|=|ν1·ν2||ν1||ν2|求解. 2.两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.☞角度2 求直线与平面所成的角(2015·全国卷Ⅱ)如图7-7-6所示,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.图7-7-6(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.[解] (1)交线围成的正方形EHGF 如图所示.5分(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8,因为四边形EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE →=(10,0,0),HE →=(0,-6,8).8分设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧ n ·FE →=0,n ·HE →=0,即⎩⎨⎧10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n||AF →|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.12分[规律方法] 1.利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影,直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.(1)求直线与平面所成的角,不要误认为是直线的方向向量与平面法向量的夹角.(2)若求线面角的余弦值,要利用平方关系sin 2θ+cos 2θ=1求值.面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.图7-7-7(1)证明:平面ABEF ⊥平面EFDC ;(2)求二面角E -BC -A 的余弦值.[解] (1)证明:由已知可得AF ⊥DF ,AF ⊥FE , 所以AF ⊥平面EFDC .2分又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .4分(2)过D 作DG ⊥EF ,垂足为G .由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .6分由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得AB ∥EF ,所以AB ∥平面EFDC .8分又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°.从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧ n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0, 所以可取n =(3,0,-3).10分设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧ m ·AC →=0,m ·AB →=0, 同理可取m =(0,3,4).则cos 〈n ,m 〉=n·m |n||m |=-21919.故二面角E -BC -A 的余弦值为-21919.12分[规律方法] 1.求解本题要抓住几点:(1)充分利用垂线,建立恰当的直角坐标系;(2)确定二面角D -AF -E 与二面角C -BE -F 的平面角;(3)从空间图形能判定二面角E -BC -A 为钝角.2.利用向量计算二面角大小的常用方法:(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.[变式训练2](2017·郑州质检)如图7-7-8,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1.图7-7-8(1)求证:AD ⊥平面BFED ;(2)点P 在线段EF 上运动,设平面P AB 与平面ADE 所成锐二面角为θ,试求θ的最小值.[解] (1)证明:在梯形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠BCD =120°,∴AB =2. ∴BD 2=AB 2+AD 2-2AB ·AD ·cos 60°=3. ∴AB 2=AD 2+BD 2,∴AD ⊥BD .2分 ∵平面BFED ⊥平面ABCD ,平面BFED ∩平面ABCD =BD ,DE ⊂平面BFED ,DE ⊥DB , ∴DE ⊥平面ABCD , 则DE ⊥AD .又DE ∩BD =D ,∴AD ⊥平面BFED .5分(2)由(1)知可建立以直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令EP =λ(0≤λ≤3),则D (0,0,0),A (1,0,0),B (0,3,0),P (0,λ,1), ∴AB →=(-1,3,0),BP →=(0,λ-3,1). 设n 1=(x ,y ,z )为平面P AB 的法向量, 由⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BP →=0,得⎩⎨⎧-x +3y =0,(λ-3)y +z =0,取y=1,则n1=(3,1,3-λ).10分∵n2=(0,1,0)是平面ADE的一个法向量,∴cos θ=|n1·n2||n1||n2|=13+1+(3-λ)2×1=1(λ-3)2+4.∵0≤λ≤3,∴当λ=3时,cos θ有最大值1 2.∴θ的最小值为π3.12分E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图7-7-9②所示.①②图7-7-9(1)试判断直线AB与平面DEF的位置关系,并说明理由;(2)求二面角E-DF-C的余弦值;(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.[解](1)如图,在△ABC中,由E,F分别是AC,BC中点,得EF∥AB.又AB⊄平面DEF,EF⊂平面DEF,∴AB∥平面DEF.3分(2)以D为原点,建立如图所示的空间直角坐标系,则A(0,0,2),B(2,0,0),C(0,23,0),E(0,3,1),F(1,3,0),易知平面CDF 的法向量为DA →=(0,0,2).5分设平面EDF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0.取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →|·|n |=217,∴二面角E -DF -C 的余弦值为217.8分 (3)设P (x ,y,0),则AP →·DE →=3y -2=0, ∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0). ∵BP →∥PC →,∴(x -2)(23-y )=-xy , ∴3x +y =2 3.10分 把y =233代入上式得x =43, ∴BP →=13BC →,∴在线段BC 上存在点P ⎝ ⎛⎭⎪⎫43,233,0,使AP ⊥DE .12分 [规律方法] 1.根据题目的条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.2.假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.[变式训练3] 如图7-7-10,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.图7-7-10(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.[解] 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.设AB =a .1分(1)证明:A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1.3分因为B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, 因此B 1E →⊥AD 1→, 所以B 1E ⊥AD 1.5分 (2)存在满足要求的点P ,假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0), 再设平面B 1AE 的一个法向量为n =(x ,y ,z ). AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.7分因为n ⊥平面B 1AE ,所以n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0,取x =1,则y =-a2,z =-a ,则平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a 2,-a .10分要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12. 所以存在点P ,满足DP ∥平面B 1AE ,此时AP =12.12分[思想与方法]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量来求空间角,都需将各类角转化成对应向量的夹角来计算,问题的关键在于确定对应线段的向量.[易错与防范]1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.若用直线的方向向量与平面的法向量垂直来证明线面平行,必需强调直线在平面外.2.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.3.求二面角要根据图形确定所求角是锐角还是钝角.。

立体几何中的向量方法高考一轮复习课件总结.ppt


A(0,0,0),P(0,0,3),B(0,3,0),D(3,0,0),C(3,6,0)
uuur uuur
uuur PD
=(3,0,-3),uBuCur=(3,3,0),所以
cos〈
uuur PD
,uBuCur 〉=|
PuuDur·BuCuur PD||BC |
= 3
9 2×3
2=12,即〈 uPuDur ,
得 uSuAr =(
2,0,-2),
uuur SC
=(0,
2,-2).
设平面 ACS 的一个法向量为 n=(x,y,z),
则 nn··uuSSuuACrur==00,,

2x-2z=0, 2y-2z=0.
取 z= 2,得 n=(2,2, 2). uuur
易知平面 ASD 的一个法向量为 DC =(0, 2,0).
CuuDur=(-1,0,0).
设平面 ACM 的一个法向量为 n=(x,y,z),

n⊥
uuur AC
,n⊥
uAuMuur可得xy++z2=y=0 0

令 z=1,得 x=2,y=-1.∴n=(2,-1,1).
设直线 CD 与平面 ACM 所成的角为 α,
uuur

sinα=||CuCuDDur|·|nn||=
l3 l1
l2
1.直线a,b的方向向量分别为a=(1,-1,2),b=(-2,2,-4),
则( )
A.a∥b或a与b重合
B.a⊥b
C.a与b相交但不垂直
D.a与b异面但不垂直
解析:∵a=(1,-1,2),b=(-2,2,-4),∴b=-2a, ∴a与b共线.即a∥ b或a与b重合.

届高考数学(理)一轮复习课件:7.8立体几何中的向量方法(人教A版).ppt


【即时应用】
(1)已知向量m,n分别是直线l和平面α的方向向量和法向量, 若cos〈m,n〉= 1 ,则l与α所成角的大小为______.
2
(2)长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的 中点,则异面直线BC1与AE所成角的余弦值为______.
【解析】(1)由于cos〈m,n〉= 1 ,∴〈m,n〉=120°,所以直
uuur
uuur
| AB || cos〈n, AB〉|
|
uuur AB |
uuuur | n AuuBur |
uuur | n AB |.
| n || AB | | n |
(2)已知在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形, 高为4,则点A1到截面AB1D1的距离是______. 【解析】如图,建立坐标系Dxyz,
【例2】(2012 • 天津模拟)如图,在五面体 ABCDEF中,FA⊥平面ABCD, AD∥BC∥FE, AB⊥AD,M为EC的中点,AF=AB=BC=FE= 1 AD.
2
(1)求异面直线BF与DE所成角的大小; (2)证明:平面AMD⊥平面CDE; (3)求二面角A-CD-E的余弦值.
【解题指南】(1)通过求向量 BuuFr,的DuuEur夹角来求异面直线所成的
22
(1)
uur
uuur
BF 1,0,1,DE 0,1,1,
于是
uur uuur cos〈BF, DE〉

x y
2,z 令z=1,则n=(2,-2,1),
2z
设点A1到平面AB1D1的距离为d,
uuuur
则d= | AA1 n | 4 .
|n| 3

高三数学复习课件:立体几何中的向量方法

|1 |||
=
解析
√3
√8
=
关闭
√6
4
.
答案
-10-
知识梳理
知识梳理
1
双基自测
2
3
4
5
3.
关闭
不妨令 CB=1,则 CA=CC1=2.
已知直三棱柱ABC-A
可得 O(0,0,0),B(0,0,1),C
1(0,2,0),A(2,0,0),B1(0,2,1),
1B1C1在空间直角坐标系中,如图所示,且
n1与n2的夹角的大小就是二面角的大小.
-5-
知识梳理
知识梳理
双基自测
1
2
3
4
-6-
5
4.利用空间向量求距离
(1)两点间的距离
设点 A(x1,y1,z1),点 B(x2,y2,z2),则
|AB|=||= (1 -2 )2 + (1 -2 )2 + (1 -2 )2 .
(2)点到平面的距离
(2)平面的法向量的确定:设 a,b 是平面 α 内两个不共线向量,n
· = 0,
为平面 α 的一个法向量,则可用方程组
求出平面 α 的一个
· = 0
法向量 n.
-8-
知识梳理
知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“√”,错误的打“×”.
(1)直线的方向向量是唯一确定的. (
)
(2)平面的单位法向量是唯一确定的. (
√5
关闭
A ∴直线 BC1 与直线 AB1 夹角的余弦值为 .
5
解析
答案
-11-
知识梳理

立体几何中的向量方法(全)


数量积的性质 a·b = b·a(交换律)。 (a + b)·c = a·c + b·c(分配律)。
03
立体几何中常见问
题及解决方法
平行与垂直问题
判断两直线平行
通过证明两直线的方向向量平行,即方向向量的对应 分量成比例。
判断两平面平行
通过证明两平面的法向量平行,即法向量的对应分量 成比例。
判断直线与平面平行
两个向量垂直的充要条件是它们的数量积为零。即若向量a与向量b垂直,则 a·b=0;反之,若a·b=0,则向量a与向量b垂直。
02
空间向量及其坐标
表示
空间向量基本概念
零向量
长度为0的向量叫做 零向量,记作0。
相等向量
长度相等且方向相 同的向量叫做相等 向量。
向量的定义
既有大小又有方向 的量叫做向量。
向量表示方法
向量可以用小写字母a、b、c等表示, 也可以用表示向量的有向线段的起点 和终点字母表示,如向量AB、向量 CD等。
向量的线性运算
向量的加法
向量加法满足平行四边形法则或三角形法则,即两个向量相加,等于以这两个 向量为邻边作平行四边形,这个平行四边形的对角线就表示这两个向量的和。
向量的减法
通过证明直线的方向向量与平面的法向量垂直,即方 向向量与法向量的点积为零。
角度与距离问题
计算异面直线所成角
通过找出两直线的方向向量,利用向量的夹 角公式计算夹角。
计算二面角
通过找出两个平面的法向量,利用向量的夹 角公式计算夹角。
计算线面角
通过找出直线的方向向量和平面的法向量, 利用向量的夹角公式计算夹角。
,导致计算过程繁琐或结果错 误
纠正方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 立体几何 7.8 立体几何中的向量方法课时规范训练 理 北师大版[A 级 基础演练]1.(2014·高考广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( )A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)解析:各选项给出的向量的模都是2,|a |= 2.对于选项A ,设b =(-1,1,0),则cos 〈a ,b 〉=a ·b|a ||b |=-2×2=-12.因为0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=120°.对于选项B ,设b =(1,-1,0),则cos 〈a ,b 〉=a ·b |a ||b |=1×12×2=12.因为0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=60°,正确.对于选项C ,设b =(0,-1,1),则cos 〈a ,b 〉=a ·b |a ||b |=-1×12×2=-12.因为0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=120°.对于选项D ,设b =(-1,0,1),则cos 〈a ,b 〉=a ·b |a ||b |=-1-12×2=-1.因为0°≤〈a ,b 〉≤180°,所以〈a ,b 〉=180°.故选B.答案:B2.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2 B. 3 C. 2D .1解析:连接AC 交BD 于O ,连结OE (图略),由题意得AC 1∥OE ,∴AC 1∥平面BED ,直线AC 1到平面BED 的距离等于点A 到平面BED 的距离,也等于点C 到平面BED 的距离,作CH ⊥OE 于H ,则CH =12OE =1为所求,故选D.答案:D3.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =2,∠ACB =90°,F 、G 分别是线段AE 、BC 的中点,则AD 与GF 所成的角的余弦值为( )A.36 B .-36 C.33D .-33解析:如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =2,∠ACB =90°,F 、G 分别是线段AE 、BC 的中点.以C 为原来建立空间直角坐标系C -xyz (图略),A (0,2,0),B (2,0,0),D (0,0,2),G (1,0,0),F (0,2,1),AD →=(0,-2,2),GF →=(-1,2,1), ∴|AD →|=22,|GF →|=6,AD →·GF →=-2, ∴cos 〈AD →,GF →〉=AD →·GF →|AD →||GF →|=-36.∴直线AD 与GF 所成角的余弦值为36. 答案:A4.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为________.解析:建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2),BC 1→=(-1,0,2),AE →=(-1,2,1), ∴cos 〈BC 1→,AE →〉=BC 1→·AE→|BC 1→||AE →|=3010.答案:30105. 若A ⎝ ⎛⎭⎪⎫0,2,198,B ⎝ ⎛⎭⎪⎫1,-1,58,C ⎝ ⎛⎭⎪⎫-2,1,58是平面α内的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.解析:AB →=⎝ ⎛⎭⎪⎫1,-3,-74,AC →=⎝ ⎛⎭⎪⎫-2,-1,-74,由⎩⎪⎨⎪⎧n ·AB →=x -3y -74z =0n ·AC →=-2x -y -74z =0得⎩⎪⎨⎪⎧x =23y ,z =-43y .所以x ∶y ∶z =23y ∶y ∶⎝ ⎛⎭⎪⎫-43y =2∶3∶(-4).答案:2∶3∶(-4)6.如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN所成的角的大小是________.解析:连结D 1M ,则D 1M 为A 1M 在平面DCC 1D 1上的射影,在正方形DCC 1D 1中,∵M 、N 分别是CD 、CC 1的中点,∴D 1M ⊥DN ,由三垂线定理得A 1M ⊥DN .即异面直线A 1M 与DN 所成的角为90°.答案:90°7.(2015·高考湖南卷)如图,已知四棱台ABCD ­A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形,A 1A =6,且A 1A ⊥底面ABCD ,点P ,Q 分别在棱DD 1,BC 上.(1)若P 是DD 1的中点,证明:AB 1⊥PQ ;(2)若PQ ∥平面ABB 1A 1,二面角P ­QD ­A 的余弦值为37,求四面体ADPQ 的体积.解:由题设知,AA 1,AB ,AD 两两垂直.以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m,0),其中m =BQ,0≤m ≤6.(1)证明:若P 是DD 1的中点,则P ⎝ ⎛⎭⎪⎫0,92,3,PQ →=⎝ ⎛⎭⎪⎫6,m -92,-3. 又AB 1→=(3,0,6),于是AB 1→·PQ →=18-18=0, 所以AB 1→⊥PQ →,即AB 1⊥PQ .(2)由题设知,DQ →=(6,m -6,0),DD 1→=(0,-3,6)是平面PQD 内的两个不共线向量. 设n 1=(x ,y ,z )是平面PQD 的一个法向量,则⎩⎨⎧n 1·DQ →=0,n 1·DD 1→=0,即⎩⎪⎨⎪⎧6x +m -y =0,-3y +6z =0.取y =6,得n 1=(6-m,6,3).又平面AQD 的一个法向量是n 2=(0,0,1),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=3-m 2+62+32·1=3-m2+45. 而二面角P ­QD ­A 的余弦值为37,因此3-m 2+45=37, 解得m =4或m =8(舍去),此时Q (6,4,0). 设DP →=λDD 1→(0<λ≤1), 而DD 1→=(0,-3,6). 由此得点P (0,6-3λ,6λ), 所以PQ →=(6,3λ-2,-6λ).因为PQ ∥平面ABB 1A 1,且平面ABB 1A 1的一个法向量是n 3=(0,1,0). 所以PQ →·n 3=0,即3λ-2=0,亦即λ=23,从而P (0,4,4).于是,将四面体ADPQ 视为以△ADQ 为底面的三棱锥P ­ADQ ,则其高h =4, 故四面体ADPQ 的体积V =13S △ADQ ·h =13×12×6×6×4=24.[B 级 能力突破]1.(2014·高考四川卷) 如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎢⎡⎦⎥⎤33,1 B.⎣⎢⎡⎦⎥⎤63,1 C.⎣⎢⎡⎦⎥⎤63,223D.⎣⎢⎡⎦⎥⎤223,1 解析:根据直线与平面所成的角以及点P 的特殊位置求解.根据题意可知平面A 1BD ⊥平面A 1ACC 1且两平面的交线是A 1O ,所以过点P 作交线A 1O 的垂线PE ,则PE ⊥平面A 1BD ,所以∠A 1OP 或其补角就是直线OP 与平面A 1BD 所成的角α.设正方体的边长为2,则根据图形可知直线OP 与平面A 1BD 可以垂直.当点P 与点C 1重合时可得A 1O =OP =6,A 1C 1=22,所以12×6×6×sin α=12×22×2,所以sin α=223;当点P 与点C 重合时,可得sin α=26=63.根据选项可知B 正确.答案:B2.在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60° 解析:根据新定义及线面垂直知识进行推理.设P 1=f α(P ),P 2=f β(P ),则PP 1⊥α,P 1Q 1⊥β,PP 2⊥β,P 2Q 2⊥α.若α∥β,则P 1与Q 2重合、P 2与Q 1重合,所以PQ 1≠PQ 2,所以α与β相交.设α∩β=l ,由PP 1∥P 2Q 2,所以P ,P 1,P 2,Q 2四点共面.同理P ,P 1,P 2,Q 1四点共面.所以P ,P 1,P 2,Q 1,Q 2五点共面,且α与β的交线l 垂直于此平面.又因为PQ 1=PQ 2,所以Q 1,Q 2重合且在l 上,四边形PP 1Q 1P 2为矩形.那么∠P 1Q 1P 2=π2为二面角α-l -β的平面角,所以α⊥β.答案:A3.(2016·黄冈模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:如图,建立空间直角坐标系D -xyz ,则D 1(0,0,1),C 1(0,2,1),A 1(1,0,1),B (1,2,0), ∴D 1C 1→=(0,2,0),设平面A 1BC 1的一个法向量为n =(x ,y ,z ),由⎩⎨⎧n ·A 1C 1→=x ,y ,z -1,2,=-x +2y =0,n ·A 1B →=x ,y ,z,2,-=2y -z =0,得⎩⎪⎨⎪⎧x =2y z =2y ,令y =1,得n =(2,1,2),设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1→,n 〉|=|D 1C 1→·n ||D 1C 1→||n |=22×3=13,即直线D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:134.(2015·高考四川卷)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为______.解析:以AB ,AD ,AQ 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系A ­xyz ,设正方形边长为2,M (0,y,2)(0≤y ≤2),则A (0,0,0),E (1,0,0),F (2,1,0),∴EM →=(-1,y,2),|EM →|=y 2+5,AF →=(2,1,0),|AF →|=5,∴cos θ=|EM →·AF →||EM →|·|AF →|=|y -2|5·y 2+5 =2-y5·y 2+5. 令t =2-y ,要使cos θ最大,显然0<t ≤2. ∴cos θ=15×t9-4t +t2=15×1⎝ ⎛⎭⎪⎫3t -232+59≤15×1⎝ ⎛⎭⎪⎫32-232+59=15×25=25. 当且仅当t =2,即点M 与点Q 重合时,cos θ取得最大值25.答案:255.正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成的角是________.解析:如图,以O 为原点建立空间直角坐标系O -xyz ,设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C(-a,0,0),P ⎝⎛⎭⎪⎫0,-a 2,a 2,则CA →=(2a,0,0), AP →=⎝⎛⎭⎪⎫-a ,-a 2,a 2,CB →=(a ,a,0),设平面PAC 的一个法向量为n ,可取n =(0,1,1), 则cos 〈CB →,n 〉=CB →·n |CB →|·|n |=a 2a 2·2=12, ∴〈CB →,n 〉=60°,∴直线BC 与平面PAC 所成的角为90°-60°=30°.答案:30°6.(2015·高考陕西卷)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图②.(1)证明:CD ⊥平面A 1OC .(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. 解:证明:(1)在题图①中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图②中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC . 又CD ∥BE , 所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC , 所以∠A 1OC 为二面角A 1­BE ­C 的平面角, 所以∠A 1OC =π2.如图③,以O 为原点,OB →,OC →,OA →的方向为x 轴,y 轴,z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝⎛⎭⎪⎫22,0,0, E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎨⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎨⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1);从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

相关文档
最新文档