通信原理实验指导书
通信原理实验指导书

输
INH
B
L
L
L
L
L
HLຫໍສະໝຸດ HHX入
A L H L H X
导通通道
X0 X,Y0 Y X1 X,Y1 Y X2 X,Y2 Y X3 X,Y3 Y
无
该模块中选X0=0,X1=-1,X2=0,X3=+1;Y0=Y1= Y2=0,Y3=+1; INH=0。B为合路码,A为256kHZ 时钟信 号。
为可控模拟开关。U12A为2/4译码器。U13为4位二进制计数器。由U 6 分频出的32kHZ 方波信号经U13的二、四分频分别得到16kHZ、8kHZ 方 波信号,送U12A的 2/4译码器。其功能表如表1-2所示。
表1-2 2/4译码器功能表
输
入
输
G
B
H
X
A
Y0
Y1
X
H
H
L
L
L
H
H
L
L
H
H
L
L
H
验证是否符合其编码规则。 3.观察HDB3编码中的四连零检测、补V、加B补奇、单/双极
性变换的波形,并验证是否符合编码规则。 4.观察并比较单、双极性码(非归零、归零)、时钟信号、时序信号
及双相码的波形和相位特点。 三、基本原理:
本实验使用数字信源模块和HDB3编、译码模块。(两个实验一起做) 1. 数字信源:
1
表1-1 8选1数据选择器功能表
输
入
输
出
A2 A1
A0
ST
Y
W
XX
X
H
L
H
LL
L
L
D
D
通信原理实验指导书(完整)

实验一:抽样定理实验一、实验目的1、熟悉TKCS—AS型通信系统原理实验装置;2、熟悉用示波器观察信号波形、测量频率与幅度;3、验证抽样定理;二、实验预习要求1、复习《通信系统原理》中有关抽样定理的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理和电路说明1、概述在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
图1-1 单路PCM系统示意图为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。
2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。
通信原理实验指导书

通信原理实验指导书一、实验目的本实验旨在帮助学生深入理解通信原理的基本概念和原理,通过搭建实验电路和进行实验操作,掌握通信原理的实际应用。
二、实验器材1. 发射器:一台信号发生器2. 接收器:一台示波器3. 连接电缆:适用于信号传输的电缆三、实验步骤1. 准备工作a. 检查实验器材是否齐全,并确保其正常工作。
b. 将信号发生器和示波器连接电源,并确保电源正常。
2. 实验电路的搭建a. 将信号发生器与示波器通过连接电缆连接起来。
b. 确保电缆的连接牢固可靠,避免信号传输过程中出现干扰。
3. 实验操作a. 设置信号发生器的输出频率和幅度,以产生所需的信号波形。
b. 调节示波器的时间和幅度尺度,以正确显示接收到的信号波形。
c. 运行实验电路,观察信号的传输和接收情况。
d. 根据实验结果,记录并分析接收到的信号波形的特点和变化。
四、实验结果记录与分析根据实验操作所得到的结果,记录并分析接收到的信号波形的特点和变化。
可以通过示波器的屏幕截图来展示实验结果,并结合文字对实验结果进行描述和分析。
五、实验总结通过本次实验,我们深入了解了通信原理的基本概念和原理,并通过实验操作掌握了通信原理的实际应用。
通过实验结果的记录和分析,我们对信号的传输和接收过程有了更深入的理解。
本次实验对于我们进一步学习和研究通信原理的知识非常重要,也为今后从事相关工作打下了扎实的基础。
六、实验注意事项1. 在进行实验之前,务必做好准备工作,并确保实验器材的正常工作。
2. 在实验操作过程中,要小心操作,避免对实验器材造成损坏。
3. 注意信号发生器和示波器的连接方式和操作方法,并正确设置参数。
4. 在记录实验结果时,要准确描述实验过程和实验结果,并结合图示进行分析。
5. 在实验结束后,要及时关闭器材电源,并进行相关器材的清理和整理。
七、参考文献[此处请根据实际情况填写所参考的文献或资料]以上为通信原理实验指导书的内容,请照此进行实验操作。
通信原理实验指导书

实验1 平台介绍及实验注意事项一、实验目的1.了解实验箱的功能分布;2.掌握实验箱的操作习惯;3.掌握实验箱的操作注意事项。
二、实验仪器1.RZ8681实验平台 1台2.各个实验模块配套三、实验原理1. 实验平台整体功能介绍RZ8681型现代通信技术平台是由底板+模块组成的模块化可定制的系统平台,平台底板提供了基本的信源和信宿并预留了外接接口,中间设置了9个模块放置区,在实验时可以通过选择不同的实验模块,完成不同的实验内容,或者通过多个模块的组合完成综合通信实验内容,另外可以为学校提供底板的接口标准,以便学生基于该平台进行设计,开发。
图1-1 RZ8681底板功能分布图实验底板主要由几个部分组成:(1)USB接口:可将电脑端的数据发送到实验箱上进行传输。
(2)DDS信号源:产生常见的各种信号,并且频率幅度可调。
另外为抽样定理实验提供了抽样脉冲信号。
(3)电话接口:产生真实的语音信号。
(4)电源指示:指示不同电压的工作状态,开电后,3个灯常亮为正常状态,闪烁说明有故障。
(5)模块分布图:指示了底板9个模块放置位置的分布图,序号为A-I。
(6)调制接口:外部调制信号输入和输出铆孔。
(7)光纤接口:可选配置接口,可以通过光纤完成系统的全双工通信。
(8)眼图电路:眼图观察电路,相当于一个参数可调的信道。
(9)滤波器及功放:包含一个参数可调(2.6k和5k)的低通滤波器,滤波器输出信号连接到扬声器。
(10)模块安放区:共9个位置,用来放置实验模块,对应上述的模块分布图。
2. 平台操作及教材编写常识在平台研发及教材编写过程中,默认采用了一些习惯用语,下面将部分习惯用法给出说明,以便理解。
(1)在实验中,测量点主要分为两类:Pxx和TPxx。
其中Pxx是指可插线的测量铆孔,而TPxx则是测量针。
(2)实验中连线时需要注意,连线铆孔分输入孔和输出孔,在铆孔上有箭头标注。
不能将两个输出孔或输入孔连接在一起。
(3)实验步骤中,标号一般以“4P01(G)”形式给出,其中标号代表实际操作中对应的连线或测量标号,而后面括号中的“G”是指:按照要求安放模块后,4P01标号会在G号位安放的板子上找到,这样便于操作时查找。
通信原理实验指导书

通信原理实验指导书实验一hdb3码型变换实验一、实验目的1、介绍几种常用的数字基带信号的特征和促进作用。
2、掌控hdb3码点的编程规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、hdb3编译码实验原理框图hdb3输入信号源pn15数据hdb3编码hdb3-a1电平转换clk时钟hdb3-b1数据移位输入挑绝对值内存4bithdb3-a2极性反转换hdb3输出时钟hdb3-b2信号检测译码时钟输出单极性码8#基带传输编程码模块数字锁相环法位同步bs2数字锁相环输出13#载波同步及十一位同步模块hdb3编程码实验原理框图2、实验框图说明我们晓得ami编码规则就是碰到0输入0,碰到1则交错输入+1和-1。
而hdb3编码由于须要填入毁坏十一位b,因此,在编码时须要内存3bit的数据。
当没已连续4个连0时与ami编码规则相同。
当4个连0时最后一个0变成传号a,其极性与前一个a的极性相反。
若该传号与前一个1的极性相同,则还要将这4个连0的第一个0变成b,b的极性与a相同。
实验框图中编码过程就是将信号源经程序处理后,获得hdb3-a1和hdb3-b1两路信号,再通过电平切换电路展开转换,从而获得hdb3编码波形。
同样ami译码只需将所有的±1变为1,0变为0即可。
而hdb3译码只需找到传号a,将传号和传号前3个数都清0即可。
传号a的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验框图中译码过程就是将hdb3码信号送进至电平连分数电路,再通过译码处置,获得完整码元。
四、实验步骤实验项目一hdb3编程码(256khz失效码实验)详述:本项目通过挑选相同的数字信源,分别观测编码输出及时钟,译码输入及时钟,观测编程码延时以及检验hdb3编程码规则。
1、关电,按表格所示进行连线。
源端口信号源:pn据)信号源:clk钟)模块8:th1(hdb3输出)模块8:th5(单极性码)模块13:th5(bs2)模块8:th7(hdb3输入)块模块13:th7(数字锁相环输入)模块8:th9(译码时钟输入)数字锁相环位同步提取提供译码位时钟将数据送入译码模模块8:th4(编码输入-时提供编码位时钟目的端口模块8:th3(编码输入-数连线说明基带信号输入2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【hdb3编译码】→【256k归零码实验】。
通信原理实验指导书

通信原理实验指导书信息工程系目录实验一数字信号源实验 (3)实验二数字调制实验 (7)实验三2ASK、2FSK数字解调实验..............................................1 7 实验四PCM编译码及TDM时分复用实验 (23)实验一数字信号源实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握集中插入帧同步码时分复用信号的帧结构特点。
3、掌握数字信号源电路组成原理。
二、实验内容1、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。
2、用示波器观察NRZ、FS、BS三信号的对应关系。
3、学习电路原理图。
三、基本原理本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号。
发光二极管亮状态表示‘1’码,熄状态表示‘0’码。
本模块有以下测试点及输入输出点:∙ CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz ∙ BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz ∙ FS 信源帧同步信号输出点/测试点,频率为7.1KHz∙ NRZ-OUT NRZ信号输出点/测试点图1-3为数字信源模块的电原理图。
图1-1中各单元与图1-3中的元器件对应关系如下:∙晶振CRY:晶体;U1:反相器7404∙分频器US2:计数器74161;US3:计数器74193;US4:计数器40160∙并行码产生器KS1、KS2、KS3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应∙八选一US5、US6、US7:8位数据选择器4512∙三选一US8:8位数据选择器4512∙倒相器US10:非门74HC04∙抽样US9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。
通信原理实验指导书
目录实验一信号发生器系统实验 (2)实验二中央集中控制器系统单元实验 (10)实验三脉冲幅度调制(PAM)及系统实验 (18)实验四脉冲编码调制(PCM)及系统实验 (25)实验五增量调制编码系统实验 (38)实验六增量调制系统译码实验 (46)实验七基本锁相环、锁相式数字频率合成器系统实验 (57)实验八二相PSK(DPSK)调制实验 (78)实验九二相(PSK、DPSK)解调器 (88)实验十 FSK调制解调系统实验 (104)实验十一通信系统综合实验 (110)实验一信号发生器系统实验一、实验目的1.了解多种时钟信号的产生方法。
2.掌握用数字电路产生伪随机序列码的实现方法。
3.了解PCM编码中的收、发帧同步信号的产生过程。
二、预习要求阅读本实验原理部分内容,理解信号发生器系统的原理,熟悉各芯片的功能。
三、实验仪器仪表1.THKTXZ-1型通信系统原理综合实验箱;2.双踪示波器;3.繁用表。
四、实验电路工作原理时钟信号乃是其它各其它各级电路的重要组成部分,在通信电路及其它电路中,若没有时钟信号,则电路基本工作条件得不到满足而无法工作。
因此,我们在做电子与通信原理各项实验时,必须先对所有的时钟信号加以了解、熟悉,以便能顺利地进行后面的各项实验。
(一)电路组成信号发生器电路是供给实验箱各实验系统的各种时钟信号和其它有用信号与测试信号,实验电原理框图见图1-1所示:图1-1信号发生器原理框图图1-2是信号发生器电原理图,由以下电路组成: 1.内时钟信号源;2.多级分频及脉冲编码调制(PCM CODEC )系统收、发帧同步信号产生电路;3.伪随机序列码产生电路; 4.简易正弦信号发生器电路。
(二)电路工作原理 1.内时钟信号源内时钟信号源电路由晶振J 101(4.096MHz )、电阻R 101和R 102、电容C 101、非门U 101:A 和U 101:B 、U 106:B 组成,若电路加电工作后,在U 101:A 的输出端输出一个比较理想的方波信号,输出振荡频率为4.096MHz ,经过D 触发器进行二分频,输出为2.048MHz 方波信号,输出送到信号转接开关K 101的1脚。
通信原理课程实验指导书
在该模块中,各跳线的功能如下:
1、KE01:跳线开关KE01用于选择UE01的鉴相输出。当KE01设置于1_2时(左端),选择异或门鉴相输出;当KE01设置于2_3时(右端),选择三态门鉴相输出,详情请参见4046器件性能资料。
2、KE02:跳线开关KE02是用于选择输入锁相信号:当KE02置于2_3时(右端),输入信号来自FSK调制端;当KE02置于1_2时(左端)选择外部的测试信号。
图3.2BPSK判决反馈环结构
判决反馈环具有00、1800两个相位平衡点,因而存在相位模糊点。对于接收的BPSK信号,在什么时刻对信号进行抽样、判决,这主要由位定时来决定。位定时的好坏决定误码率的大小。在刚接收到BPSK信号之后,位定时一般不处于正确的抽样位置,必须采用一定的算法对抽样点进行调整,这个过程称为位定时恢复。常用的位定时恢复有:滤波法、数字锁相环等。以2倍码元速率抽样为例:信号取样如图3.3所示。S(n-1)、S(n+1)为调整后的最佳样点,S(n)为码元中间点。首先位定时的提取时刻为其基带信号存在过零点,即如图3.3中的情况所示。位定时误差的大小按下式进行计算:
3.掌握眼图信号的观察方法
4.学习评价眼图信号的基本方法
二、实验仪器
1.ZH7001(II)通信原理基础实验箱一台
2.20MHz双踪示波器一台
3函数信号发生器一台
三、实验原理
在寻找对信号基带传输的设计过程中,Nyquist设计准则为基带传输系统信号设计提供了一个方法。利用该准则一方面可以对信号的频谱进行限制,另一方面又不会产生码间串扰。升余弦信号设计是其中的一个例子。升余弦滤波器的传递函数为:
3.锁相环特性观察
(1)准备:与步骤1不同之处是将KE02置于1-2端,这样接收的信号来源于外部测试信号。
通信原理实验指导书(测控)
实验1 抽样定理及其应用实验一、实验目的1.通过对模拟信号抽样的实验,加深对抽样定理的理解。
2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点。
3.学习PAM调制硬件实现电路,掌握调整测试方法。
二、实验仪器1.PAM脉冲调幅模块,位号:H2.时钟与基带数据发生模块,位号:G3.20M双踪示波器1台4.频率计1台5.小平口螺丝刀1只6.信号连接线3根三、实验原理抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
通常,按照基带信号改变脉冲参量(幅度、宽度和位置)的不同,把脉冲调制分为脉幅调制(PAM)、脉宽调制(PDM)和脉位调制(PPM)。
虽然这三种信号在时间上都是离散的,但受调参量是连续的,因此也都属于模拟调制。
关于PDM和PPM,国外在上世纪70年代研究结果表明其实用性不强,而国内根本就没研究和使用过,所以这里我们就不做介绍。
本实验平台仅介绍脉冲幅度调制,因为它是脉冲编码调制的基础。
抽样定理实验电路框图,如图1-1所示。
本实验中需要用到以下5个功能模块。
1.非同步函数信号或同步正弦波发生器模块:它提供各种有限带宽的时间连续的模拟信号,并经过连线送到“PAM 脉冲调幅模块”,作为脉冲幅度调制器的调制信号。
P03/P04测试点可用于调制信号的连接和测量;另外,如果实验室配备了电话单机,也可以使用用户电话模块,这样验证实验效果更直接、更形象,P05/P07测试点可用于语音信号的连接和测量。
2.抽样脉冲形成电路模块:它提供有限高度,不同宽度和频率的的抽样脉冲序列,并经过连线送到“PAM 脉冲调幅模块”, 作为脉冲幅度调制器的抽样脉冲。
P09测试点可用于抽样脉冲的连接和测量。
该模块提供的抽样脉冲有同步和非同步两种,同步的抽样脉冲是频率为8KHz ,占空比为50%或近似50%的矩形脉冲;非同步的抽样脉冲由555定时器产生,其频率通过W05连续可调。
(完整版)通信原理实验指导书SystemView
实验一图符库的使用一、实验目的1、了解SystemVue图符库的分类2、掌握SystemVue各个功能库常用图符的功能及其使用方法二、实验内容按照实例使用图符构建简单的通信系统,并了解每个图符的功能。
三、基本原理SystemVue的图符库功能十分丰富,一共分为以下几个大类1.基本库SystemView的基本库包括信源库、算子库、函数库、信号接收器库等,它为该系统仿真提供了最基本的工具。
(信源库):SystemView为我们提供了16种信号源,可以用它来产生任意信号(算子库)功能强大的算子库多达31种算子,可以满足您所有运算的要求(函数库)32种函数尽显函数库的强大库容!(信号接收器库)12种信号接收方式任你挑选,要做任何分析都难不倒它2.扩展功能库扩展功能库提供可选择的能够增加核心库功能的用于特殊应用的库。
它允许通信、DSP、射频/模拟和逻辑应用。
(通信库):包含有大量的通信系统模块的通信库,是快速设计和仿真现代通信系统的有力工具。
这些模块从纠错编码、调制解调、到各种信道模型一应俱全。
(DSP库):DSP库能够在你将要运行DSP芯片上仿真DSP系统。
该库支持大多DSP芯片的算法模式。
例如乘法器、加法器、除法器和反相器的图标代表真正的DSP算法操作符。
还包括高级处理工具:混合的Radix FFT、FIR和IIR滤波器以及块传输等。
(逻辑运算库):逻辑运算自然离不开逻辑库了,它包括象与非门这样的通用器件的图标、74系列器件功能图标及用户自己的图标等。
(射频/模拟库):射频/模拟库支持用于射频设计的关键的电子组件,例如:混合器、放大器和功率分配器等。
3.扩展用户库扩展的用户库包括有扩展通信库2、IS95/CDMA、数字视频广播DVB等。
通信库2: 扩展的通信库2主要对原来的通信库加了时分复用、OFDM调制解调、QAM编码与调制解调、卷积码收缩编解码、GOLD码以及各种衰落信道等功能。
4.5版中,通信库2已被合并到基本通信库中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录实验一抽样定理和脉冲调幅(PAM)实验 (1)实验二脉冲编码调制(PCM)实验 (9)实验三增量调制(ΔM)编译码实验 (18)实验四移相键控(PSK)实验 (28)实验五 HDB3码型变换实验 (40)实验六 FSK电力线载波通信实验 (48)实验七数字基带信号处理实验 (60)实验八通信系统原理课程设计数字信号的基带传输 (88)实验一抽样定理和脉冲调幅(PAM)实验一、实验目的1、验证抽样定理;2、观察了解PAM信号形成过程,平顶展宽解调过程;3、了解时分多路系统中的路际串话现象。
二、实验原理和电路说明1、概述在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
抽样量化编码信道解码滤波收定时发定时PAM语音信号语音信号PAM图1-1 单路PCM系统示意图作为例子,图1-1示意地画出了传输一路语音信号的PCM 系统。
从图中可以看出要实现对语音的PCM 编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
除此,本实验还模拟了两路PAM 通信系统,从而帮助实验者初步了解时分多路的通信方式。
2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H (即m(t)的频谱中没有f H 以上的分量),可以唯一地由频率等于或大于2f H 的样值序列所决定。
因此,对于一个最高频率为3400Hz 的语音信号m(t),可以用频率大于或等于6800Hz 的样值序列来表示。
抽样频率fs 和语音信号m(t)的频谱如图1-2和图1-3所示。
由频谱可知,用截止频率为f H 的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。
实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz 的语音信号,通常采用8KHz 抽样频率,这样可以留出1200Hz 的防卫带,见图1-4。
如果fs <2f H ,就会出现频谱混迭的现象,如图1-5所示。
fHMf图1-2 语音信号的频谱fHMff s 2f sf Hf s +f Hf s +2理想低通滤波器图1-3 语言信号的抽样频谱和抽样信号的频谱在验证抽样定理的实验中,我们用单一频率f H 的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H ,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。
fHMff s 2f sf H f s +f Hf s +2一般低通滤波器图1-4 留出防卫带的语音信号的抽样频谱fHMff s 2f sfHf s +f Hf s +2图1-5 fs <2f H 时语音信号的抽样频谱验证抽样定理的实验方框如图1-6所示。
在图1-8中,连接(TP8)和(TP14),就构成了抽样定理实验电路。
抽样电路采用场效应晶体管开关电路。
抽样门在抽样脉冲的控制下以每秒八千次的速度开关。
T1为结型场效应晶体管,T2为驱动三极管。
当抽样脉冲没来时,驱动三极管处于截止状态,-5V电压加在场效应晶体管栅极G,只要G极电位负于源极S的电位,并且|UGS|>|UP|,则场效应晶体管处于夹断状态,输出信号为“0”。
抽样脉冲来时,驱动三极管导通,发射极+5V电压加到驱动二极管,使之反向偏置。
从截止到导通的跳变电压经跨接在二极管两端的电容加到场效应晶体管的G极。
使栅极、源极之间的电压迅速达到场效应晶体管导通的数值,并一直达到使源极电压等于漏极上的模拟电压。
这样,抽样脉冲期间模拟电压经场效应晶体管开关加到负载上。
由于抽样电路的负载是一个电阻,因此抽样的输出端能得到一串脉冲信号。
此脉冲信号的幅度与抽样时输入信号的瞬时值成正比例,脉冲的宽度与抽样脉冲的宽度相同。
这样,脉冲信号就是脉冲调幅信号。
当抽样脉冲宽度远小于抽样周期时,电路输出的结果接近于理想抽样序列。
由图1-6可知,用一低通滤波器即可实现模拟信号的恢复。
为便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400Hz。
音频信号抽样门低通滤波抽样脉冲图1-6 抽样定理实验方框图3、多路脉冲调幅(PAM信号的形成和解调)多路脉冲调幅的实验框图如图1-7所示。
在图1-8电原理图中,连接(TP8)和(TP11)、(TP13)和(TP14)就构成了多路脉冲调幅实验电路。
分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。
n路抽样脉冲在时间上是互不交叉、顺序排列的。
各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。
本实验设置了两路分路抽样电路。
音频信号1音频信号2分路抽样1分路抽样2分路3分路2相加信道分路选通1展宽低通分路2'图1-7 多路脉冲调幅实验框图多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM 信号。
发送端分路抽样与接收端分路选通是一一对应的,这是依靠它们所使用的定时脉冲的对应关系决定的。
为简化实验系统,本实验的分路选通脉冲直接利用该路的分路抽样脉冲经适当延迟获得。
接收端的选通电路也采用结型场效应晶体管作为开关元件,但输出负载不是电阻而是电容。
采用这种类似于平顶抽样的电路是为了解决PAM解调信号的幅度问题。
由于时分多路的需要,分路脉冲的宽度τS是很窄的。
当占空比为τS/T S的脉冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。
这样大的衰减带来的后果是严重的。
但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减过大的问题。
但我们知道平顶抽样将引起固有的频率失真。
PAM信号在时间上是离散的,但在幅度上却是连续的。
而在PCM系统里,PAM信号只有在被量化和编码后才有传输的可能。
本实验仅提供一个PAM系统的简单模式。
4、多路脉冲调幅系统中的路际串话路际串话是衡量多路系统的重要指标之一。
路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中的各路通话之间的串话。
串话分可懂串话和不可懂串话,前者造成失密或影响正常通话;后者等于噪声干扰。
对路际串话必须设法防止。
一个实用的通话系统必须满足对路际串话规定的指标。
在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。
但如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象,当“拖尾”严重,以至侵入邻路隙时,就产生了路际串话。
在考虑通道频带高频端时,可将整个通道简化为图1—9所示的低通网络,它的上截止频率为: f1=1/(2πR1C1)R11C V12g t(a)(b)U图1-9 通道的低通等效网络为了分析方便,设第一路有幅度为V的PAM脉冲,而其它路没有。
当矩形脉冲通过图1-9(a)所示的低通网络,输出波形如图1-9(b)所示。
脉冲终了时,波形按R1C1时间常数指数下降。
这样,就有了第一路脉冲在第二路时隙上的残存电压——串话电压ΔU,这种由于信道的高频响应不够引起的路际串话就叫做高频串话。
当考虑通道频带的低频端时,可将通道简化为图1—10所示的高通网络。
它的下截止频率为:f2=1/(2πR2C2)由于R2C2>>τ,所以,当脉冲通过图1-10(a)所示的高通网络后,输出波形如图1-10(b)所示。
长长的“拖尾”影响到相隔很远的时隙。
若计算某一话路上的串话电压,则需要计算前n路对这一路分别产生的串话电压,积累起来才是总的串话电压。
这种由于信道的低频响应不够而引起的路际串话就叫做低频串话。
解决低频串话是一项很困难的工作。
R 22C V12gt(a)(b)图1-10 通道的高频等效网络限于实验条件,本实验只模拟了高频串话的信道。
以上几部分电路所需要的定时脉冲均由图1-8中的定时电路提供。
三、实验仪器双踪同步示波器 SR8四、实验内容与步骤(一) 抽样和分路脉冲的形成用示波器和频率计观察并核对各脉冲信号的频率、波形及脉冲宽度,并记录相应的波形。
1、在(TP1)观察主振脉冲信号。
2、在(TP2)观察分路抽样脉冲;在(TP3)观察分路抽样脉冲。
3、在(TP2′)观察分路抽样脉冲;在(TP3′)观察分路抽样脉冲。
4、用双踪示波器比较(TP2)—(TP2′),(TP3)—(TP3′)的时序。
(二) 验证抽样定理1、正弦信号从(TP4)输入,f H =1KHz ,幅度2V P-P 。
2、连接(TP2)—(TP6)。
3、以(TP4)作双踪同步示波器的比较信号,观察(TP8)抽样后形成的PAM 信号。
调整示波器触发同步,使PAM 信号在示波器上现示稳定,计算在一个信号周期内的抽样次数。
核对信号频率与抽样频率的关系。
4、连接(TP8)—(TP14),在(TP15)观察经低通滤波器和放大器的解调信号。
测量其频率,确定和输入信号的关系,验证抽样定理。
5、改变f H,令f H=6KHz,重复2、3、4项内容,验证抽样定理。
(三) PAM信号的形成和解调连接(TP8)—(TP11)、(TP13)—(TP14)、(TP3)—(TP12),观察并画出以下各点的波形。
1、在(TP4)输入正弦信号,f H=1KHz,幅度2V p-p。
2、以(TP4)作为双踪同步示波器的比较信号,在(TP8)观察单路PAM信号。
3、在(TP13)观察选通后的单路解调展宽信号,用示波器读出τ的宽度(用μS作单位)。
4、在(TP15)观察经低通滤波器放大后的音频信号。
5、改变输入正弦信号的频率(fmax≤3.4KHz可取500、1K、2K、3K),在(TP15)测量整个系统的频率特性,测试数据填入下表。
(四) 多路PAM系统中的路际串话现象连接(TP2′)—(TP12),接入分路选通脉冲。