FLAC3D

合集下载

2024flac3d入门指南

2024flac3d入门指南

flac3d入门指南•软件介绍与安装•界面操作与基本功能•初级实例分析:简单模型模拟•中级实例分析:复杂模型模拟目•高级功能应用与技巧•工程案例分析与实战演练录01软件介绍与安装FLAC3D概述FLAC3D(Fast Lagrangian Analysis ofContinua in3Dimensions)是一款用于模拟三维连续介质力学行为的有限差分软件。

它基于显式拉格朗日算法和混合离散化技术,适用于分析复杂地质和岩土工程问题。

FLAC3D广泛应用于边坡稳定、地下工程、隧道开挖、地震工程等领域。

A BC D软件特点与优势显式算法采用显式有限差分法,无需迭代求解,计算效率高。

强大的后处理提供丰富的后处理功能,如等值线、矢量图、动画等,方便用户分析和展示模拟结果。

真实模拟能够模拟复杂的材料本构关系、节理、断层等地质结构,实现真实世界的准确模拟。

开放性支持用户自定义本构模型、边界条件等,方便用户进行二次开发和扩展。

1 2 3安装步骤1. 下载FLAC3D安装包,并解压到指定目录。

2. 运行安装程序,按照提示完成安装过程。

3. 配置环境变量,将FLAC3D的安装路径添加到系统环境变量中。

4. 启动FLAC3D软件,进行初步设置和配置。

01注意事项02确保计算机满足FLAC3D的系统要求,如操作系统、内存、硬盘空间等。

03在安装过程中,选择合适的安装选项和配置,以满足个人或团队的需求。

04在使用FLAC3D前,建议仔细阅读用户手册和相关教程,以充分了解软件的功能和操作方法。

02界面操作与基本功能启动界面及工具栏介绍启动界面展示软件LOGO、版本信息以及最近打开的文件列表。

工具栏包含文件操作、模型操作、视图操作、分析设置等常用工具按钮。

菜单栏提供详细的软件功能选项,包括模型、网格、材料、边界条件、分析等。

通过绘制点、线、面等基本元素构建三维模型。

模型建立网格划分几何体素导入对模型进行离散化,生成有限元网格,可设置网格密度和类型。

FLAC3D知识介绍

FLAC3D知识介绍

FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。

FLAC3D 采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。

三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

FLAC3D教程

FLAC3D教程
FLAC3D教程
目录
• FLAC3D软件介绍 • FLAC3D基本操作 • 建模与网格划分 • 材料属性与边界条件设置 • 计算过程控制与结果输出 • FLAC3D在岩土工程中的应用实例
01 FLAC3D软件介 绍
软件背景及发展历程
FLAC3D的起源
FLAC3D是Fast Lagrangian Analysis of Continua in 3 Dimensions的简称, 起源于20世纪80年代,由Itasca Consulting Group, Inc.公司开发。
材料参数设置
针对所选材料类型,设置相应的 材料参数,如弹性模量、泊松比 、密度等。
材料本构模型
根据材料特性,选择合适的本构 模型,如摩尔-库伦模型、德鲁克 -普拉格模型等。
边界条件类型及设置方法
边界条件类型
FLAC3D支持多种边界条件类型,如位移边界、速度边界、应力 边界等。
边界条件设置方法
用户可以通过指定节点或面的位移、速度或应力值来设置边界条 件。
周期性边界条件
对于具有周期性的模型,可以设置周期性边界条件以模拟无限域 问题。
初始条件设置
初始应力场设置
根据地质资料或工程经验,设置模型的初始应力 场。
初始位移场设置
对于存在初始变形的模型,可以设置初始位移场 。
初始孔隙压力设置
对于涉及流体流动的模型,可以设置初始孔隙压 力。
05 计算过程控制与 结果输出
如果发现模型存在问题,需要及时进行修复。FLAC3D提供了多种修复 工具,如删除、修补、平滑等,可以帮助用户快速修复模型中的错误。
03
实例分析
通过具体案例展示模型检查和修复的过程和效果,帮助用户掌握相关技

flac3d实用教程

flac3d实用教程

高效的求解器
FLAC3D采用显式有限差分法,计算效率高, 能够处理大规模的计算问题。
安装步骤及注意事项
2. 解压安装包到指定目录。
1. 从官方网站下载 FLAC3D安装包。
安装步骤
01
03 02
安装步骤及注意事项
3. 运行安装程序,按照提示完成安装过程。
4. 安装完成后,启动FLAC3D软件。
安装步骤及注意事项
FLAC3D支持导入多种格式的外部几何模型,如STL、IGES等。通过导入功能,可以快速将复 杂几何体导入FLAC3D中进行后续分析。
利用内置工具创建简单几何体
对于简单的几何形状,如立方体、圆柱体等,可以直接使用FLAC3D内置的创建工具进行建 模。
布尔运算构建复杂模型
FLAC3D提供布尔运算功能,支持对多个几何体进行并集、交集、差集等操作,以构建更为 复杂的几何模型。
水文地质领域应用案例剖析
地下水渗流模拟
FLAC3D可以模拟地下水在复杂地 质条件下的渗流过程,为地下水 资源的开发和保护提供决策支持。
水库大坝渗流分析
利用FLAC3D对水库大坝进行渗流 分析,可以评估大坝的安全性和 稳定性,为水库运行管理提供科 学依据。
岩溶地区水文地质
模拟
FLAC3D可以模拟岩溶地区的水文 地质过程,包括岩溶发育、地下 水流动等,为岩溶地区的水资源 管理和工程建设提供参考。
它广泛应用于岩土工程、地质工程、水利工程 等领域,用于分析土壤、岩石和其他地质材料 的力学行为。
FLAC3D基于显式有限差分法,能够高效处理 大变形和非线性问题,特别适用于模拟地震、 滑坡、隧道开挖等复杂地质工程问题。
软件特点与优势
强大的后处理功能
软件提供了丰富的后处理工具,如等值线 图、矢量图、动画演示等,方便用户直观 地查看和分析计算结果。

FLAC3D基础知识介绍

FLAC3D基础知识介绍

FLAC3D根底知识介绍一、概述FLAC〔Fast Lagrangian Analysis of Continua〕由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的根本内存64K〕,所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已开展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令〔集〕文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进展计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进展土质、岩石和其它材料的三维构造受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的构造。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动〔大变形模式〕。

FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为假设干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。

三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

FLAC3D简述与使用步骤

FLAC3D简述与使用步骤

FLAC3D简述与使用步骤FLAC3D是一款基于离散元素法的三维地质和岩土力学建模软件。

它被广泛应用于地下工程、坡体稳定性分析、隧道开挖、地震工程等领域。

FLAC3D提供了多种功能和分析工具,能够模拟各种复杂的地质和岩土力学现象,并通过模拟结果来评估工程结构的安全性。

使用FLAC3D进行建模和分析过程主要分为以下几个步骤:1.定义模型几何结构:使用FLAC3D的几何建模工具,如创建网格、设置边界条件、定义材料属性等,确定模型的几何结构。

2.定义边界条件:根据实际情况,设置模型边界的约束条件,如固定边界、地震荷载、水力条件等。

FLAC3D提供了一系列的边界条件选项,可以根据需要进行设置。

3.定义材料属性:为模型中的不同材料定义物理和力学属性,如密度、弹性模量、黏聚力、内摩擦角等。

FLAC3D支持多种材料模型,可以根据材料的力学性质选择适当的模型。

4.定义初始状态:设置模型的初始应力和应变状态。

可以通过设置固定边界、施加初始地下水压力等方式来定义模型的初始状态。

5.施加荷载:根据需求,在模型内施加相应的荷载条件。

可以通过施加外部荷载、施加内部应力改变形状等方式来模拟不同的荷载情况。

6.运行模拟:完成前面的步骤后,可以运行模拟来获取模型的响应。

FLAC3D使用显式数值方法进行计算,根据模型中定义的边界条件、材料属性和施加的荷载进行模拟计算。

计算结果将包括应力、应变、变形等信息。

7.分析结果:对模拟结果进行分析和评估。

FLAC3D提供了各种可视化工具,如三维模型图、应力云图、应变云图等,可以直观地了解模型的响应状况,并进行进一步的分析。

8.优化模型:根据分析结果,可以对模型进行调整和优化,来改善工程结构的安全性和稳定性。

可以调整材料属性、边界条件以及荷载条件等,重新运行模拟,直到满足设计和安全要求为止。

总结:FLAC3D作为一款强大的三维地质和岩土力学建模软件,可以模拟各种复杂的地质和岩土力学现象,并通过模拟结果来评估工程结构的安全性。

Flac3D教学


本构模型选择
02
阐述Flac3D提供的多种本构模型,如弹性模型、弹塑性模型、
粘弹性模型等,并给出选择本构模型的一般原则和建议。
材料参数确定
03
探讨如何通过实验或经验确定材料参数,以及如何在Flac3D中
进行参数输入和调整。
10
03 建模与计算过程详解
2024/1/24
11
建立初始模型及参数设置
创建模型
B
C
对比实验数据与模拟结果
将实验数据与Flac3D模拟结果进行对比分 析,以验证模型的准确性和可靠性。
对比不同时间步的结果
对比同一模型在不同时间步的结果,以观察 模型的动态演化过程。
D
2024/1/24
18
05 工程案例实践与讨论
2024/1/24
19
岩土工程案例介绍
2024/1/24
案例一
深基坑开挖与支护
在Flac3D中,首先需定义模型的空间维度、尺寸及网格划分。
材料属性赋值
为模型各部分赋予相应的材料属性,如弹性模量、泊松比、密度 等。
初始条件设置
设定模型的初始应力、位移等条件。
2024/1/24
12
施加荷载与边界条件调整
01
02
03
荷载施加
根据实际问题,在模型上 施加相应的力、压力或位 移荷载。
通过实例分析,学习如何利用Flac3D解决岩土工程中的实际问题,如 边坡稳定性分析、基坑开挖模拟等。
5
学习方法与建议
1 2
理论学习与实践操作相结合
在学习过程中,既要注重理论知识的学习,也要 加强实践操作的训练,通过不断练习加深对软件 功能的理解和掌握。
多参考官方文档和教程

FLAC3D学习

FLAC3D学习1.FLAC3D的基本知识介绍岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。

由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。

差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。

FLAC3D (FatLagrangianAnalyiofContinua)由美国Itaca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V2。

1版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。

FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

FLAC3D采用ANSIC++语言编写的。

1对模拟塑性破坏和塑性流动采用的是“混合离散法”。

FLAC3D基础知识介绍

FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca 公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。

FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。

三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

FLAC3D基础知识介绍

FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。

FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。

三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综述
2 2015年58期
FLAC3D 在高填路堤沉降中的仿真应用
熊振国
武汉市市政建设集团有限公司,湖北 武汉 430023
摘要:以武汉某高速公路路基段施工为工程背景,运用有限差分软件FLAC3D 模拟高填路堤分层填筑施工过程,选取路基中线与路堤路基边桩处沉降值与现场实际沉降监测结果进行对比分析。

结果表明,选择弹塑性摩尔-库伦本构模型以及适当的计算参数进行数值模拟,运算得到的路基沉降与实际比较贴合,为该类工程的设计与施工提供了依据和参考。

关键词:路堤;FLAC3D ;沉降 中图分类号:U416.1 文献标识码:A 文章编号:1671-5810(2015)58-0002-01
1 引言
随着我国基础设施建设的脚步不断加快,高速公路作为交通枢纽为国家经济发展提供最为有利的保障。

现在,我国公路的设计标准不断提高,不管是从技术角度,还是从生态保护考虑,从过去的全线路基发展到大部分选用高架的形式,对公路的行驶速度、行驶舒适性提出了更高要求,修建高等级公路成为社会前进的必然趋势[1]。

那么必然存在桥梁与路基连接部分,由于整体路线高程加高,台背处必然形成高填段。

那么,高填路堤的特点集中体现在一个“高”上,也就是填筑高度很大[2]。

该高速公路全长16.007km ,路线沿途地形起伏不大,较为平缓,地势较开阔,多为农田、湖汊、鱼塘等。

如何控制高填路基稳定及变形,是车辆能否实现高速、安全、平稳、舒适运行的关键环节。

本文选用某标段填土施工情况,运用FLAC3D 有限差分法软件进行数值仿真模拟,深入探讨高填路基的竖向位移,进行数值模拟和力学分析。

2 数值模型的建立以及参数选取
目前岩土材料常采用摩尔—库仑准则(M-C),它不仅较好地反映了岩土材料拉压不等的特性,而且模型简单易用,所以在工程中运用更为广泛[3,4]。

考虑到FLAC3D 建立的模型的单元划分比较单一,在计算的过程中很难收敛,要建立复杂的3D 模型比较困难,建立如图所示的3D 模型,模拟20m ³20m ³5m 的平板载荷试验地基,计算时取一半建立 20m ³10m ³5m 的地基模型,上层2m 为第一土层,下面3m 为第二土层,模型深度为5m 。

到下一一对应。

采用的参数都是通过室内试验得出的普遍适用的参数,故所有模型参数均从表1选取,各模型地层情况模拟钻孔取样得出的实际地层分布情况。

3 高填路堤数值模拟结果分析
现场施工过程中要求有对高填路堤进行沉降观测,在路堤断面布设3个监测点,图1是现场监测点处的累计沉降量随时间的变化曲线图。

图1 监测点处的累计沉降量随时间变化曲线图
该断面位于主线路基,填土路堤最终填高为8.6m ,顶面宽度和底面宽度分别为33.5m 和60m ,分层填土高度为每层填筑30cm 左右,边坡坡率为1:1.5。

路基施工顺序为,首先对地表进行清理,对软基路段进行相应处理,使其承载力满足要求;再开始填筑施工,路基填筑段分93区、94区、96区,直到精铺层,在施工过程中沉降观测主要针对周期较长的93区填筑以及路基顶面后期沉降观测。

通过FLAC3D 数值模拟,可知在路堤填高分别达到1.8m 、3.6m 、5.4m 和8.6m 时所对应的z 方向位移,即竖向沉降。

与该断面路基填土实际的观测沉降值相比较,如表2中可以看出:
拟路堤加载高度也为8.6m ,由上述对比可以看出:(1)数值模拟初期沉降值要大于实际监测量,这是由于数值模拟在快速计算中将后期路基填土固结沉降提前完成,而实际施工中,填筑填料的排水固结需要一个较长的时间;(2)数值模拟结果与实际监控沉降值比较接近,最后路基中线以及路基边桩相对误差分别为 5.37%和 5.13%,拟合结果较好;(3)实际监测与仿真模拟同时反映出路基中线处沉降量要大于路基边桩处沉降,这是由于路基施工过程中荷载大小不一样导致的。

4 结语
(1)通过运用FLAC3D 有限差分软件对高填路堤沉降进行数值仿真模拟,可以很好的反映出在高填土在施工过程中的沉降变化规律。

(2)摩尔库伦模型假设地基全为饱和土,忽略了填土中孔隙水压力和地下水位影响,在模拟前期只考虑填土自身重力,得到的实时沉降值普遍大于实测值。

(3)路基的实际施工过程并非连续的,出现因天气、施工质量等等方面的原因而停工,而数值模拟不考虑时间的因素,模拟过程为连续施工。

因此本标段的填土时间达到300天,虽然最终模拟沉降值与实测值相差不大,但结合填筑过程与模拟结果对比可以看出时间对填土沉降的影响不容忽视。

参考文献
[1]刘世川.高填路基变形与稳定的非线性有限元研究[D].福州大学,2004.12
[2]中华人民共和国行业标准.公路桥涵地基及基础设计规范(JTG D63.2007),北京:人民交通出版社,2007.
[3]王国体高填土公路路堤的稳定性分析[J]岩土工程学报,Vo1.16,No.1,Jan.1994
[4]李洁,万中兵.高速公路高填方路堤不均匀沉降预估[J].中国科技信息,2007,(10):71,73.。

相关文档
最新文档