大一第一学期期末高数试卷复习及答案(常见与经典)
大一上学期(第一学期)高数期末考试题(有答案)

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1330()xf x dx xe dx ---=+⎰⎰⎰03()xxd e --=-+⎰⎰00232cos (1sin )x xxe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一上学期高等数学期末试题及解答

Q( x) sin x , x
y
e
1 x
dx
s
in x
x
e
1 x
dx
dx
C
eln x sin x eln x dx C
x
1 x
sin x x
x dx
C
1 cos x C .
x
把y( ) 1代入通解,得 C 1.
故特解为
y 1 ( cos x 1).
x
四、计算题(每小题9分,共36分)
则f (ln x)定义域是 [1, e] .
知识点:复合函数的定义域
分析 0 ln x 1, 1 x e
一、 填空题(每小题3分,共15分) 2. 已知y x x ,则y _______ .
知识点:对数求导法
解 ln y x ln x , y =lnx 1, y
y xx (ln x 1).
( A) p 1,q 2; (B) p 2,q 3;
(C) p 2,q 1; (D) p 3,q 2 .
解: 特征方程为:r2 pr q 0 , 把特征根 r1 1 , r2 2 1 p q 0 分别代入特征方程,得 4 2 p q 0
解得
p 3,q 2 .
4. 求曲线y e x ( x 0)与y 0, x 0围成的
右边无限伸展的图形绕轴旋转一周所得立体的体积.
知识点: 反常积分,定积分的应用,旋转体的体积,
解 V + πy2dx + πe2xdx
0
0
π e2x 2
|0+
π. 2
五、解答题(每小题10分,共20分)
1. 在抛物线y x2 (0 x 1)上找一点P,使经过P的
(完整word版)大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1012330()2x f x dx xe dx x x dx---=+-⎰⎰⎰0123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnn n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:112330()2xf x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
高数(大一上)期末试题及答案

高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
高数(大一上)期末试题及答案

第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。
大一上学期(第一学期)高数期末考试题(有答案)

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A)(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导。
2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。
(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小。
3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。
(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B)222x+(C )1x - (D )2x +。
二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。
7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。
8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。
大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 本大题有 小题 每小题 分 共 分 )(0),sin (cos )( 处有则在设=+=x x x x x f( )(0)2f '= ( )(0)1f '=( )(0)0f '= ( )()f x 不可导 )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα( )()()x x αβ与是同阶无穷小,但不是等价无穷小; ( )()()x x αβ与是等价无穷小;( )()x α是比()x β高阶的无穷小; ( )()x β是比()x α高阶的无穷小 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )( )函数()F x 必在0x =处取得极大值; ( )函数()F x 必在0x =处取得极小值;( )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; ( )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设( )22x ( )222x+( )1x - ( )2x +二、填空题(本大题有 小题,每小题 分,共 分)=+→xx x sin 2)31(lim,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则lim (cos cos cos )→∞-+++=22221n n n n n n ππππ=-+⎰21212211arcsin -dx xx x三、解答题(本大题有 小题,每小题 分,共 分)设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .d )1(177x x x x ⎰+-求. 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x A x ,A 为常数 求'()g x 并讨论'()g x 在=0x 处的连续性求微分方程2ln xy y x x '+=满足=-1(1)9y 的解四、 解答题(本大题 分)已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的 倍与该点纵坐标之和,求此曲线方程 五、解答题(本大题 分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及 轴围成平面图形求 的面积 ; 求 绕直线 旋转一周所得旋转体的体积六、证明题(本大题有 小题,每小题 分,共 分)设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f 证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题 本大题有 小题 每小题 分 共 分 、 、 、 、二、填空题(本大题有 小题,每小题 分,共 分)6e c x x +2)cos (21 2π3π三、解答题(本大题有 小题,每小题 分,共 分)解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-解:767u x x dx du == 1(1)112()7(1)71u du du u u u u -==-++⎰⎰原式1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++解:1033()x f x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x xxe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--解:由(0)0f =,知(0)0g =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东技术师范学院期末考试试卷A 卷
参考答案及评分标准
高等数学(上)
一、填空题(每小题3分,共30分)
1. 如果函数)(x f y =的定义域为]1,0[,则)(ln x f 的定义域为],1[e .(3分)
2.已知2)0('=f ,而且0)0(=f ,则=→x x f x )2(lim 0 4 .(3分) 3.已知22lim e x x kx x =⎪⎭⎫ ⎝⎛+∞→,则=k 1 .(3分)
4.曲线x x y ln =在点)0,1(处的切线方程是 1-=x y .(3分)
5.函数653
)(2+--=x x x x f 的间断点个数为 2 .(3分)
6.如果⎪⎪⎩⎪⎪⎨⎧>+=<=0,)1ln(0
,0,
sin )(x x x x k x x x x f 在0=x 处连续,则=k 1 .(3分)
7.函数x e x f 2)(=的带有拉格朗日型余项的n 阶麦克劳林展式为:(3分)
)10()!1(2!2221)(112
<<++++++=++θθn x
n n n
x n e x n x x x f . 8.函数)0,,()(2≠++=p r q p r qx px x f 是常数,且
,则)(x f 在区间],[b a 上满
足拉格朗日中值公式的ξ=2b
a +.(3分)
9.定积分()dx x x x 1011sin ⎰-+的值为61.(3分)
10.设⎰
+=C x F dx x f )()(,则⎰--dx e f e x x )(=C e F x +--)(.(3分)
二.计算题(要求有计算过程,每小题5分,共40分) 11.求极限113lim 21-+--→x x x x .(5分) 解:)13)(1()13)(13(lim 113lim 2121++--++-+--=-+--→→x x x x x x x x x x x x ---------(3分)
42)13)(1(2lim 1-=++-+-=→x x x x ----------------------------------(5分)
12.求极限 n n n 2sin 2lim π∞→.(5分) 解:
π
ππππ=⋅=∞→∞→n
n n n n n 22sin lim 2sin 2lim ----------------------------(5分)
13.求极限4020sin 1lim 2
x tdt t x x ⎰+→(5分)
解:21s i n 21lim 42sin 1lim sin 1lim 224032404020
2=+=⋅+=+→→→⎰x
x x x x x x x tdt t x x x x -------(5分)
14.设x e
y arctan =,求dy .(5分) 解:)(arctan arctan arctan x d e de dy x x ==-----------------------------------(2分)
dx x x e x d x e
x x )1(211arctan arctan +=+=----------------------------------(5分)
15.求由方程y x e xy +=所确定的隐函数的导数dx dy
.(5分)
解:方程两边求关于x 的导数
)()(dx dy x y xy dx
d +=; )1(dx dy
e e x d y x y x +=++-------------(3分) 所以有 )(dx dy x y +=)1(dx dy e y x ++
解得 )1()1(y x x y xy x y xy e
x y e dx dy y x y x --=--=--=++------------------------(5分) 16.求由参数方程 ⎩⎨⎧==-t t e y e x 23 所确定的函数的二阶导数22dx y d .(5分)
解:t t t t t dx
dt dy e e e e e dx dy 2''3232)3()2(-=-===-------------------------------(2分)
t t t t t e e e e e dt dx dx dy dt d dx dy dx d dx y d 32''22294334)3()32(=--=-=⎪⎭⎫ ⎝⎛=⎪⎭
⎫ ⎝⎛=----------(5分)
17.求不定积分⎰++dx x x x 23
21)(arctan .(5分)
解:⎰⎰⎰+++=++dx x x dx x x dx x x x 23
222321)(arctan 11)(arctan ----------------(1分) =x d x dx x arctan )(arctan )111(32⎰⎰++----------------------------------(3分) =C x x x ++-4)(arctan 41arctan -----------------------------------------------(5分)
18.求定积分dx e x ⎰+1
01.(5分)
解:令2,1;1,0,2,1,12=====-==+t x t x tdt dx t x t x -----(1分)
⎰⎰⎰==+21
2110122dt te tdt e dx e t t x --------------------------------------(2分)
22122121)12(2)|2(2)|(2e e e e dt e te t t t -=--=-=⎰--------(5
分)
20.求函数x x y 1
2+=的单调区间、凹凸区间、极值点和拐点.(10分) 解:函数的定义域为),0()0,(+∞⋃-∞ 令01212232'
=-=-=x x x x y ,得驻点3121=x -------------------------(1分) 当321>x 时,0'>y ,函数单调增加,当321<x 时,0'<y ,函数单调减
少,
所以函数的单调增加区间为),21[3+∞,单调减少区间为)0,(-∞和]21,0(3-----
(4分)
3121=x 为函数的极小值点------------------------------------------------------(5分)
令0)1(222333'
'=+=+=x x x y ,得12-=x -------------------------------------(6分) 当0>x 或1-<x 时,0''>y ,曲线
x x y 12+=为凹的,当01<<-x 时,0''<y
曲线x x y 1
2+=为凸的, 所以曲线x x y 1
2+=的凹区间为 ]1,(--∞和),0(+∞,凸区间为)0,1[-------(8分)
曲线的拐点为(-1,0)--------------------------------------------------------------(10分)
四、证明题(6分)
21.证明当0>>b a 时,b b a b a a
b a -<<-ln . 证明:令x x f ln )(=,则)(x f 在区间],[a b 上连续,在区间),(a b 内可导,
由拉格朗日中值定理有:)())(()()('a b b a f b f a f <<-=-ξξ----------(2分) 因为x x f 1)('
=,所以有:)()(1ln ln a b b a b a <<-=-ξξ-----------(3分) 因为a b <<<ξ0,所以
b a 111<<ξ, -------------------------------------------(4分) 又0>-b a ,所以b b a b a a
b a )()(1-<-<-ξ 即:b b a b a a
b a -<<-ln -------------------------------------------------------(6分) 五.应用题(8分)
22.求由曲线x x e y e y -==,与直线1=x 所围成的平面图形面积及这个平面图
形绕x 轴旋转所成旋转体体积.
解:曲线x e y =与x e y -=的交点为(0,1),曲线x e y =与x e y -=和直线1=x 的交点分别为(1,e )和(1,1-e ),所围平面图形如图阴影部分,
取x 为积分变量,其变化范围为[0,1],所求面积为
dx e e S x x )(10--=⎰--------------------------------------------------------(2
分)
2(|)(110-+=+=--e e e e x x )-------------------------------------------------(4分)
所求旋转体体积为
))210102dx e dx e V x x -⎰⎰-=ππ-----------------------------------------------(6
分) 2(2|)2121(221022-+=+=--e e e e x x ππ)-------------------------------------(8
分)。