方程组解的性质

合集下载

5.2 自治微分方程组解的性质课件ppt课件

5.2  自治微分方程组解的性质课件ppt课件
即:
这就说明了解 是重合的.

在相平面上的轨线
性质2被称为自治系统相空间轨线的惟一性。
它的含义是自治系统的不同轨线在相平面上是不 相交的。由性质1,性质2知我们在(5.2.6)的解
中,只需要讨讨论初始时刻
的解并简记为
从而有下边的性质3。
性质3
对于任意的

其中
证明


是系统 (5.2.6) 的解。且与解 在 t=0 时有相同的初值 ,因此由解的存在 惟一性定理知它们对于任意t都是恒等的,取 即得性质的结论。
性质1也称为自治系统的积分曲线的平移不变性它的含义是系统526的积分曲线在的三维空间中沿轴任意平移后仍是dxdxtxdtdtdydydtdt满足条件的解分别为可以验证平移不变性对自治系统成立对非自治系统不成
§5.2
自治微分方程组解的性质
当微分方程组右端的函数不显含时间变量 t时我们称它为自治微分方程组。从运动学 的角度看,当点的位置确定时速度就随之 确定,即速度场是与时间无关的恒定场; 从几何的角度看,当点的位置确定时各点 的切线方向就随之确定,即切向量场是与 时间无关的恒定场。自治系统线的这些特 点特点可以简化我们的问题。
轨线不可能在有限时间到达某奇点

对于平面定常系统,已经证明了其轨线只能是三种
情况: (1)奇点,(2)闭轨线,(3)有限时间自身不相 交轨线。 例5.2.4 描出下列单摆方程的轨线。 (5.2.7)

(5.2.7)是一个自治系统,且可以消去 其化为:
后将
(5.2.8) 容易求(5.2.8)的解为 。

出发的解在相空间的轨线均相同。而非 自治系统就不一定具有这样的性质.

求非自治系统

5 经管 齐次线性方程组(2)

5 经管  齐次线性方程组(2)

移项:
k1 b11kr 1 b12 kr 2 k b k b k 21 r 1 22 r 2 2 kr br 1kr 1 br 2 kr 2 k r 1 k r 1 kr 2 kr 2 kn
3 x1 x3 5 可得原方程组的同解方程组: x 1 x x 2 3 4 5
3 x1 x3 在此方程组中,分别取自由未知量 5 1 x 2 x 3 x4 1 0 x3 5 x 为 0 , 1 3 4 5 0 1 1 可得基础解系: 1 , 2 5 0 1 1 0 方程组的通解为X c11 c22 ,其中c1 , c2 为任意常数.
, s 线性无关; , s 线性表示.
②AX=0 的任意解都可以由1 ,2 , 则称 1 ,2 ,
, s 为齐次线性方程组的一个基础解系.
2、线性方程组基础解系的求法 设齐次线性方程组的系数矩阵A的秩为r, 对系数矩阵A进行初等行变换,将其化为最简形: 轾 1 0 0 b11 b1,n- r 犏 犏 0 1 0 b21 b2,n- r 犏 犏 犏 犏 0 0 1 br 1 br ,n- r 犏 犏 0 0 0 0 0 犏 犏 犏 犏 0 0 0 0 0 犏 臌 x1 x 2 x r x r 1 xn
,n r
(其中 k1 , k2 ,
, kn r 为任意实数).
三、应用举例 例1 求齐次线性方程组 x1 2 x2 x3 2 x4 0 2 x1 x2 x3 x4 0 3 x x 2 x x 0 2 3 4 1 的通解,并用基础解系表示.
k11 k22

4_2 线性方程组解的性质

4_2 线性方程组解的性质
a11 a21 L am 1 a12 a22 L am 2 L a1n x1 b1 L a2 n x2 b2 = M M L L L amn xn bm

为方程组 Ax = b 的解, 为方程组
基 础 解 系
方程组的通解
齐次线性方程组解空间的一个基
x = k1η1 + k2η2 + L+ ktηt
其中 k1 , k 2 , L , k t 是任意常数 .
广西大学数学与信息科学学院
例1 求下齐次线性方程组 的基础解系与通解. 的基础解系与通解
x1 + x 2 − x 3 − x 4 = 0, 2 x1 − 5 x 2 + 3 x 3 + 2 x 4 = 0, 7x − 7x + 3x + x = 0 1 2 3 4
为任意常数) C 为任意常数
−1 3 4 0 2 2 ξ 3 = ( −1) + = 3 1 −2 −1 1 0
广西大学数学与信息科学学院
2.齐次线性方程组解的性质
(1 )η 1 , η 2 , L , η t 是 Ax = 0的一组线性无关 的解 ;
( 2 ) Ax = 0 的任一解都可由 η 1 , η 2 , L , η t 线性表 出. Ax = 0 的通解可表示为
t = n − R( A)
x = k1η1 + k2η2 + L+ ktηt
其中 k1 , k 2 , L , k t 是任意常数 .
的解, 为实数, (2)若 x = ξ1 为 Ax = 0 的解,k 为实数,则 的解. 也是 Ax = 0 的解. 证明

齐次线性方程组

齐次线性方程组
返回
定理:齐次线性方程组 ① ,如果它的系数矩阵的秩 R(A)=n,那么它只有零解,没有基础解系,如果 R(A)<n,那么它有无穷多解,存在基础解系,且它的 基础解系所含的解向量的个数为n-r个(其中=R(A)). 定理: a11 x1 a12 x2 a1n xn 0 a x a x a x 0 21 1 22 2 2n n 有非零解 A 0 an1 x1 an 2 x2 ann xn 0 证明:
b12 2 b1,n r n r br 2 br ,n r 无关 0 , , 0 . 1 0 无关 0 1
1 1 1 1 r2 r1 0 0 2 4 r3 r1 0 0 1 2
20
返回
1 r3 r2 ( ) 2
1 1 1 1 0 0 2 4 0 0 0 0
1 r2 ( ) 2
1 1 1 1 0 0 . 1 2 0 0 0 0
§2 齐次线性方程组
一、齐次线性方程组解的性质 二、齐次线性方程组的非零解
1
返回
一、齐次线性方程组解的性质
齐次线性方程组
a11 x1 a1n xn 0 am1 x1 amn xn 0 AX = 0 ②

x1 c1 记 [註]: 1. 若 X ξ, 则 x n cn
x2 x2
x4 2 x4 x4

x2 1 令 , x4 0

《线性代数》考研辅导讲义4

《线性代数》考研辅导讲义4

《线性代数》考研辅导讲义4 第四部分 线性方程组一.线性方程组的四种表示形式1.非齐次线性方程组(1)一般形式:11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(2)矩阵形式:令1112111212222212,,n n m m mn n m a a a x b a a a x b A x b a a a x b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则11m n n m A x b ⨯⨯⨯=,而11121121222212(|)_n nm m mnm a a a b a a a b B A b a a a b ⎛⎫⎪ ⎪== ⎪⎪⎝⎭增广矩阵(3)向量形式:令12(,,,)n A ααα= ,得向量形式1122n n x x x bααα+++= .其中()12,,,,1,2,,Tj j j mj a a a j n α== 为A 的列向量组.(4)内积形式:令12T T T m A ααα⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭ ,则内积形式1122T T T mm x b x b x b ααα⎧=⎪=⎪⎨⎪⎪=⎩ .其中12(,,,),1,2,,T i i i in a a a i m α== 为A 的行向量组.2.齐次线性方程组(1)一般形式:111122121122221122000n n n nm m mn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(2)矩阵形式:110m n n m A x ⨯⨯⨯=(3)向量形式:11220n n x x x ααα+++=(4)内积形式:12000T TT mx x x ααα⎧=⎪=⎪⎨⎪⎪=⎩ 二.线性方程组解的性质 1.110m n n m A x ⨯⨯⨯=解的性质(1)若12,ξξ为0Ax =的解,则12ξξ+也为0Ax =的解.(2)若ξ为0Ax =的解,则k ξ也为0Ax =的解.故{|0}S x Ax ==是n R 的一个子空间,其基础解系构成子空间的一个基.2.11m n n m A x b ⨯⨯⨯=解的性质(1)设12,ηη为Ax b =的解,则12ηη-为其导出组0Ax =的解.(2)设η为Ax b =的解,ξ为0Ax =的解,则ξη+为Ax b =的解.【注意】若12,ηη为Ax b =的解,则121,(1)k k ηηη+≠都不是Ax b =的解,故{|}S x Ax b ==不是nR 的一个子空间. 三.线性方程组解的理论及解的结构 1.110m n n m A x ⨯⨯⨯=解的理论及解的结构定理1110m n n m A x ⨯⨯⨯=至少有一个零解.(1)110m n n m A x ⨯⨯⨯=只有零解()R A n ⇔=(未知量的个数).不存在基础解系;(2)110m n n m A x ⨯⨯⨯=有非零解()R A r n ⇔=<.其基础解系含n r -个线性无关的解向量,设为12,,,n r ξξξ- ,则110m n n m A x ⨯⨯⨯=的通解为1122n r n r x k k k ξξξ--=+++其中12,,,n r k k k - 为任意常数; (3)(Crammer 定理)110n n n n A x ⨯⨯⨯= 只有零解0A ⇔≠.2.11m n n m A x b ⨯⨯⨯=解的理论及解的结构定理2 11m n n m A x b ⨯⨯⨯=可能有解.(1)11m n n m A x b ⨯⨯⨯=有解()()R A R B ⇔=;(2)有唯一解()()R A R B n ⇔==;(3)有无穷多解()()R A R B r n⇔==<.设其导出组的基础解系为12,,,n r ξξξ- ,η为11m n n m A x b ⨯⨯⨯=的一个特解,则11m n n m A x b ⨯⨯⨯=的通解为1122n r n r x k k k ξξξη--=++++其中12,,,n r k k k - 为任意常数; (4) (Crammer 定理)11n n n n A x b ⨯⨯⨯=有唯一解0A ⇔≠.四.两个线性方程组解之间的关系设方程组(1)的解集合为M ,方程组(2)的解集合为N ,则 1. M N =⇔方程组(1)与方程组(2)同解; 2. M N ⇔ 方程组(1)与方程组(2)的公共解; 3.M N ⊂⇔方程组(1)的解是方程组(2)的解.五.一个非常有用的结论 1. ()()m s s n m n A B O R A R B s ⨯⨯⨯=⇒+≤;2.m s s n m n A B O B ⨯⨯⨯=⇔的列向量是110m s s m A x ⨯⨯⨯=的解向量.典型例题一.解的概念、性质、理论、结构的基本题例1 设1231233,2,223A p b Ax b t ⎛⎫⎛⎫⎪ ⎪=+==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭无解,则t 与p 满足 .解 由12311231(|)233201302230021B A b p p t t p ⎛⎫⎛⎫⎪ ⎪==+→--⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ,得202t p t p -=⇒=.例2 设三平面0(1,2,3)i i i i a x b y c z d i +++==重合,则齐次线性方程组0(1,2,3)i i i a x b y c z i ++==的解空间的维数等于 2 .解111222333a b c a b c a b c ⎛⎫ ⎪⎪ ⎪⎝⎭的秩等于1. 例3 设A 为n 阶实矩阵,则以下命题成立的是( C ).(A)若0Ax =有解时0T A Ax =也有解,则A 必可逆;(B)若0T A Ax =有解时0Ax =也有解, 则A 必可逆;(C) 0T A Ax =的解必是0Ax =的解; (D)0T A Ax =的解与0Ax =的解无任何关系.解0Ax =与0T A Ax =同解.例4 设541234(,,,)A αααα⨯=,已知12(1,1,1,1),(0,1,0,1)T T ηη==是0Ax =的基础解系,则( D ). (A) 13,αα线性无关; (B) 24,αα线性无关; (C)1α不能被34,αα线性表示;(D)4α能被23,αα线性表示.解 由1η知: 12340αααα+++=;由2η知: 240αα+=,则4α能被2α线性表示,所以4α能被23,αα线性表示.例5 设12,ββ是0Ax b =≠的两个不同的解, 12,αα是0Ax =的基础解系, 12,k k R ∈,则Ax b =的通解必是( B )(A) 1211212()2k k ββααα-+++; (B) 1211212()2k k ββααα++-+; (C) 1211212()2k k ββαββ-+++;(D)1211212()2k k ββαββ++++.例6 设123,,ααα是四元非齐次线性方程组Ax b=的三个解向量,且()3R A =,123(1,2,3,4),(0,1,2,3)T T ααα=+=,则Ax b =的通解是( C ).(A)11213141c ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (B) 10213243c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (C) 12233445c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (D) 13243546c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭二.含参数的线性方程组解的讨论例7 当λ为何值时,方程组12312312321,2,4551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩无解,有唯一解,无穷多解?并在有无穷多解时求方程组的通解.解 方法一:一般情形.13211121(|)11211245515541c c B A b λλλλ↔--⎛⎫⎛⎫⎪ ⎪==-−−−→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭121012300549rλλλλ-⎛⎫ ⎪−−→-+ ⎪ ⎪+⎝⎭(1)方程组有唯一解104()()3,15405R A R B λλλλ-≠⎧⇔==⇔⇒≠-≠⎨+≠⎩;(2)当45λ=-时,()2()3R A R B =≠=,方程组无解;(3)当1λ=时,1121(|)00110000rB A b ---⎛⎫⎪=−−→ ⎪ ⎪⎝⎭,方程组的解13211x x x =⎧⎨=+⎩,令2x k =,则方程组的通解(0,1,1)(1,0,1),TT x k k =+为任意常数.方法二:特殊情形. (54)(1)A λλ=+-.(1)当4,15λλ≠-≠时,方程组有唯一解;(2)当45λ=-时,()2()3R A R B =≠=,方程组无解;(3)当1λ=时,1001(|)01110000rB A b ⎛⎫ ⎪=→-- ⎪ ⎪⎝⎭,()()23R A R B ==<,方程组有无穷多解,且通解为(0,1,1)(1,1,0),TT x k k =+-为任意常数.三.与解的结构相关问题 例8 若n 阶矩阵11(,,,)n n A ααα-= 的前1n -个列向量线性相关,后1n -个列向量线性无关,12n βααα=+++ .证明:(1)Ax β=必有无穷多解;(2)若12(,,,)Tn k k k 是Ax β=的任一解,则1nk =.证 (1)2,,n αα 线性无关,则21,,n αα- 线性无关,又121,,,n ααα- 线性相关,所以1α可由21,,n αα- 线性表示,则()1R A n =-.因为12n βααα=+++ ,则()()1R B R A n n ==-<,所以Ax β=必有无穷多解.(2)121,,,n ααα- 线性相关,存在一组不全为零的数121,,,n λλλ- ,使得1122110n n λαλαλα--+++= ,即11221100n n n λαλαλαα--++++⋅= ,又()1R A n =-,则121(,,,,0)Tn λλλ- 为0Ax =的基础解系.因为12n βααα=+++ ,则(1,1,,1)T 是Ax β=的一个特解,故Ax β=的通解为111,101n x c c R λλ-⎛⎫⎛⎫⎪ ⎪⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 若12(,,,)Tn k k k 是Ax β=的解,则1nk =.例9 设A 为(1)m m -⨯矩阵, j D 是去掉A 的第j 列所得1m -阶矩阵的行列式,证明:(1)向量112(,,,(1))m T m D D D +-- 是0Ax =的解向量;(2)当12,,,m D D D 不全为零时,112(,,,(1))m T m D D D +-- 是0Ax =的一个基础解系.证 令1211121(1)1(1)2(1)mT m m m m m m b b b a a a b B A a a a ---⎛⎫ ⎪⎛⎫ ⎪== ⎪ ⎪⎝⎭⎪⎪⎝⎭,则(1,2,,)j D j m = 分别为B中第一行元素的余子式,而112,,,(1)m m D D D +-- 分别为B中第一行元素的代数余子式,由行列式按行(或列)展开定理,有11122()(1)0,1,2,,m i i im m a D a D a D i m ++-++-== ,则112(,,,(1))m T m D D D +-- 是0Ax =的解向量.(2) 当12,,,m D D D 不全为零时,则A 至少有一个1m -子式不为零,所以()1R A m =-,从而Ax =的基础解系含一个解向量,又112(,,,(1))0m T m D D D +--≠ ,故112(,,,(1))m T m D D D +-- 是0Ax =的一个基础解系.例10 设非齐次线性方程组Ax b =,其中A 为m n ⨯矩阵, ()(|)R A R A b r ==,求由Ax b=的所有解向量组成的向量组的一个极大无关组及该向量组的秩.解 要点:设0Ax=的一个基础解系为12,,,n r ξξξ- ,Ax b =的一个特解为η,则Ax b =的所有解向量组成的向量组的一个极大无关组为12,,,,,n r ηηξηξηξ-+++ 该向量组的秩为1n r -+. 例11 设A 为m n ⨯矩阵,证明:Ax B =有解的充分必要条件是对0T A y =的任一解0y 都有00T B y =.证 必要性:设0Ax B =,则000000()()00T T T T TB y Ax y x A y x ====;充分性: 对T A y =的任一解y 都有00T B y =,则0T A y =与0,0TT A y B y ⎧=⎪⎨=⎪⎩同解,所以()()(|)T TT A R A R R A R A B B ⎛⎫=⇒= ⎪⎝⎭,即Ax B =有解.四.两个线性方程组的公共解的问题例11 (1.求公共解的方法之一:已知线性方程组,Ax Bx αβ==,则它们的全部公共解即为线性方程组,Ax Bx αβ=⎧⎨=⎩的解.)设两个四元齐次线性方程组:12240,()0x x x x +=⎧I ⎨-=⎩与1232340,()0x x x x x x -+=⎧II ⎨-+=⎩问方程组()I 与()II 是否有非零的公共解?若有,求出所有公共的非零解;若没有,说明理由.解 讨论方程组12241232340,0,0,0x x x x x x x x x x +=⎧⎪-=⎪⎨-+=⎪⎪-+=⎩是否有非零解.1100100101010101111000120111000r A ⎛⎫⎛⎫⎪ ⎪--⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭,因为()34R A =<,所以方程组有非零解,即方程组()I 与()II 有公共的非零解,且11,021x k k -⎛⎫ ⎪ ⎪=≠ ⎪ ⎪⎝⎭为所有公共的非零解.(2. 求公共解的方法之二:已知线性方程组Ax α=的通解1122x k k ξξη=++和线性方程组Bx β=,则它们的全部公共解即为线性方程组1122,x k k Bx ξξηβ=++⎧⎨=⎩的解.其求法是:解含12,k k 是未知变量的线性方程组1122()B k k ξξηβ++=,得12,k k ,则所求的全部公共解为1122x k k ξξη=++.3. 求公共解的方法之三: 已知线性方程组Ax α=的通解11221x k k ξξη=++和线性方程组Bx β=的通解11222x l l γγη=++,则它们的全部公共解即为线性方程组1122111222,x k k x l l ξξηγγη=++⎧⎨=++⎩的解. 其求法是:解含12,k k 及12,l l 是未知变量的线性方程组1122111222k k l l ξξηγγη++=++得12,k k (或12,l l ),则所求的全部公共解为11221x k k ξξη=++(或11222x l l γγη=++).)五.线性方程组解的应用 例12 已知三平面123:,:,:x y z y z x z x y πγβπαγπβα=+=+=+,证明:它们至少相交于一直线22221αβγαβγ⇔+++=.证 显然123,,πππ过坐标原点, 它们至少相交于一直线⇔齐次线性方程组0,0,0x y z x y z x y z γβγαβα-++=⎧⎪-+=⎨⎪+-=⎩有非零解,则1101γβγαβα--=-,即22221αβγαβγ+++=. 例13 证明:如果非齐次线性方程组11112211211222221122,,n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 有解,则向量12(,,,)T n b b b β= 与齐次线性方程组1112121121222211220,0,0m m m mn n nm m a y a y a y a y a y a y a y a y a y +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的解空间正交. 证 令12(,,,),(1,2,,)T j j j mj a a a j n α== ,非齐次线性方程组1122n n x x x αααβ+++=有解,则β可由12,,,n ααα 线性表示.令12(,,,)T m y y y y = ,则齐次线性方程组可表示为120,0,0,T TT ny y y ααα⎧=⎪=⎪⎨⎪⎪=⎩ 即12,,,n ααα 与齐次线性方程组的解正交,从而11221[,]()()0nTT n n i i i y x x x y x y βαααα==+++==∑ ,即β与齐次线性方程组的任一解正交,则β与齐次线性方程组的解空间正交.。

方程组解的结构

方程组解的结构

x5
0 0
1 0
0 1
所以原方程组的一个基础解系为
2
1
1
1
,
0
0
13
2
0
,
1
0
2
1
3
0
.
0 1
故原方程组的通解为 x k11 k22 k33 .
其中k1 ,k2 ,k3为任意常数.
定理1 n元齐次线性方程组Amn x 0的全体解所 构成的集合S是一个向量空间,当系数矩阵的秩 R( Amn) r时, 解空间S的维数为n r.
2x 73
5 7
x3
x 3
x4
3 7 4 7
x4 x4
2
7
5
7
1
0
x 3
3
7
4
7
0
1
x, 4
2 7
3 7
即得基础解系1
57 1
,
2
47 0
,
0 1
并由此得到通解
x1 2 7 3 7
x2
x x
3 4
c1
57 1 0
c2
47 0 1
A
2
1
1 1
3 3
5 2
5 1
3 1 5 6 7
1
~
0 0
0
1 1 2 2
1 1 2 2
4 3 6 6
3
1
2
2
~
1 0 0 0
0 1 0 0
2 1 0 0
1 3 0 0
2
1
0
0
RA r 2, n 5, n r 3,即方程组有无穷多解,

第5章-线性方程组

第5章-线性方程组
b c1a1 cr ar ,
从而向量b能由A的列向量组线性表示为 b c1a1 cr a r 0a r 1 0a n ,
那么向量c c1,, cr ,0,,0 满足Ac b,因此方程组 Ax b有解。
T
(2). 设Ax b有唯一解c。由(1)结论,有 r ([ A, b]) r ( A) n. 假设r ( A) n, 那么由定理 1,齐次方程组 Ax 0有非零解u, 那么 A(u c) Au Ac Ac b,
1 0 3 1 1 1 1 1 5 1 1 1 5 1 1 5 2 1 1 5 1 0 2 7 4 0 2 7 4 0 1 7 1 1 2 3 0 1 7 2 2 . 2 2 0 0 A 0 0 0 0 0 0 0 2 7 4 0 0 0 0 3 1 8 1 0 0 0 0 0 0 0 0 0 0 0 4 14 8 0 0 1 3 9 7
可知
n-r(A)=n-r(ATA) 这就证明了结论。
定理 2
非齐次线性方程组 Ax = b 的通解为 Ax = b 的一个 特解与相应齐次线性方程组 Ax = 0 的通解之和.
即: Ax = b 的通解= Ax = b 的特解+ Ax = 0 的通解.
证 设 是 Ax = b 的一个解, r(A) = r, v1, v2, …, vnr 是 Ax = 0 的一个基础解系, 则有 A = b, Av i = 0, i =1, 2, …, nr,
x1 + k x2 + x3 = 1 ,
x1 + x2 - kx3 = k ,

线性方程组的解的性质

线性方程组的解的性质

线性方程组的解的性质线性方程组是数学中的一个重要概念,它描述了一组关于未知数的线性关系。

线性方程组的解是指满足所有方程的未知数值组合。

在本文中,我们将讨论线性方程组解的性质。

一、解的存在性和唯一性解的存在性是指线性方程组是否有解。

对于一个线性方程组而言,解的存在性可以通过矩阵的行列式来判断。

若行列式的值为非零,则线性方程组有解;若行列式的值为零,则线性方程组无解。

解的唯一性是指线性方程组解的个数。

对于一个线性方程组,解的个数取决于方程的个数和未知数的个数。

如果线性方程组含有n个方程和n个未知数,并且行列式的值不为零,那么线性方程组存在唯一解。

如果线性方程组含有n个方程和n个未知数,并且行列式的值为零,那么线性方程组可能存在无穷多个解,也可能无解。

二、解的线性相关性在解的性质中,我们还需要讨论解的线性相关性。

解的线性相关性是指线性方程组的解之间是否存在线性关系。

如果线性方程组有解且解之间存在线性关系,那么解是线性相关的;如果线性方程组有解且解之间不存在线性关系,那么解是线性无关的。

线性相关性的判断可以通过矩阵的秩来进行。

对于一个n阶矩阵A,如果它的秩r等于未知数的个数n,那么线性方程组的解是线性无关的;如果秩r小于n,那么线性方程组的解是线性相关的。

三、解空间和基础解系解空间是指线性方程组所有解构成的集合。

解空间的维数等于未知数的个数n减去矩阵A的秩r。

解空间的维数也可以理解为线性方程组解的自由变量的个数。

基础解系是指线性方程组解空间中的一组向量,它们可以通过线性组合得到解空间中所有解。

基础解系的个数等于未知数的个数n减去矩阵A的秩r。

四、解的特殊情况除了一般情况下的解的性质,线性方程组还存在一些特殊情况。

1. 无解情况:当线性方程组中出现矛盾的方程时,线性方程组无解。

2. 无穷多解情况:当线性方程组的方程个数小于未知数个数时,线性方程组可能存在无穷多个解。

此时解空间的维数大于0,存在自由变量。

通过以上讨论,我们可以看出,线性方程组的解的性质有:存在性和唯一性、线性相关性、解空间和基础解系以及特殊情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程组解的性质
一元二次方程组,即ax²+bx+c=0以及dx+e=0,是学生们在高中数学课上经常会遇到的一种涉及两个未知数的方程形式。

求解一元二次方程组,可以使用标准算法或其他数学工具,得到两个未知数的精确解。

一元二次方程组的解的性质可以归结为以下几点:
首先是解的数量。

这里限定的是两个未知数,解的数量只有一种情况,即有两条不同的解;
其次是解的定性性质。

从一元二次方程组的特征方程式求出的解,可以根据判别式的符号,分离出实数解和虚数解;
紧接着是解的结构性质。

由于这是一元二次方程组,其解可以表示为常数系数和数量乘积形式;
最后是解的稳定性,针对一元二次方程组,无论式子计算数值常量如何变动,其解的稳定性极低,变动偏小时变化可忽略不计。

总之,一元二次方程组解的性质是极为复杂和多样的。

只要求得正确解,就可以从数据分析的角度分析出解的定性、结构和稳定性的综合优势,增强对问题的理解。

相关文档
最新文档