初中数学第一章有理数知识点归纳总结

合集下载

七年级上册数学知识点总结

七年级上册数学知识点总结

初中资料吧人教版七年级数学知识点总结第一章有理数1.1正数和负数知识点一正数和负数的概念像3,1.8%,3.5这样大于0的数叫做正数。

像-3,-2.7%,-4.5,-1.2这样在正数前加上符号“-”(负)的数叫做负数。

有时,为了明确表达意义,在正数前面也加上“+”(正)号。

例如,+3,+2,+0.5,...就是3,2,0.5,...知识点二0的意义0即不是正数,也不是负数。

温馨提示:(1)一个数前面的“+”“_”叫做它的符号,其中,正数前的“+”号有时可以省略,省略了“+”号后仍表示正数,而“-”号是绝对不能省略的。

(2)正数和0称为非负数,负数和0称为非正数。

知识点三具有相反意义的量在实际生活习惯中,常把零上的温度、上升的高度、收人的钱、买人物品等规定为正的,而把与它们意义相反的量规定为负的,用负数表示,而且引入负数之后,“0”不再仅仅表示没有了,而是正、负数的分界“基准”,它既不是正数,也不是负数,有初始位置的意义。

温馨提示:对于相反意义的量可以从以下几方面去理解:(1)相反意义的量既要意义相反,又要有数量;(2)相反意义的量是成对出现的,单独一个量不是相反意义的量;(3)互为相反意义的两个量在数量上可以不同;(4)具有相反意义的量必是同类量,在表示相反意义的量时要写明单位有理数。

初中资料吧1.2整数包括正整数、零、负整数。

分数包括正分数、负分数。

整数和分数统称为有理数。

引入负数后,数扩充到了有理数,有理数可以用以下两种方法来分类:(1)按有理数的定义进行分类:(2)按有理数的性质符号进行分类:正整数正整数整数0正有理数负整数正分数有理数有理数0正分数负整数分数负有理数负分数负分数数轴包含三层含义:○1数轴是一条可以向两端无限延伸的直线:○2数轴有三要素:原点、正方向、单位长度;○3注意“规定”二字,是说原点的位置、正方向的选取、单位长度大小的确定,都是根据实际需要规定的.2.画数轴的步骤:一画:画一条直线(通常画成水平直线);二取:在这一条直线上任取一点作为原点,并用这个点表示数0;初中资料吧三定:确定正方向(一般规定从原点向右为正方向).画上箭头,从原点向左为负方向;四标数:选取适当的长度作为单位长度,直线上从原点向右,每隔一个单位长度取一点,依次标上1,2,3,...从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,...,如图所示一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右侧,与原点的距离是a 个单位长度;表示数-a 的点在原点的左侧,与原点的距离也是a 个单位长度.提示:数轴的引入使数与直线上的点联系起来,是数与形的初步结合1.2.3相反数1.相反数的定义:像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。

人教版初中数学知识点总结(精华)

人教版初中数学知识点总结(精华)

初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

七年级上册数学知识点总结大全

七年级上册数学知识点总结大全

七年级上册数学知识点总结大全七年级上册数学知识点总结篇1第一章有理数1.1正数和负数①把0以外的数分为正数和负数。

0是正数与负数的分界。

②负数:比0小的数正数:比0大的数 0既不是正数,也不是负数1.2有理数1.2.1有理数①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

②所有正整数组成正整数集合,所有负整数组成负整数集合。

正整数,0,负整数统称整数。

1.2.2数轴①具有原点,正方向,单位长度的直线叫数轴。

1.2.3相反数①只有符号不同的数叫相反数。

②0的相反数是0 正数的相反数是负数负数的相反数是正数1.2.4绝对值①绝对值|a|②性质:正数的绝对值是它的本身负数的绝对值的它的相反数0的绝对值的01.2.5数的大小比较①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

②正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

1.3有理数的加减法1.3.1有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

④加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b)+c=(a+c)+b1.3.2有理数的减法①减去一个数,等于加这个数的相反数。

a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法①两数相乘,同号得正,异号的负,并把绝对值相乘。

②任何数同0相乘,都得0。

③乘积是1的两个数互为倒数。

④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

⑤乘法交换律:两个数相乘,交换因数的位置,积相等。

ab=ba⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

人教版初中数学知识点总结【完整版】

人教版初中数学知识点总结【完整版】

人教版初中数学知识点全总结第一章有理数1、有理数:无限不循环小数和开根开不尽的数叫无理数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;有理数: 零、负整数、负分数、正分数、正整数2、数轴是规定了原点、正方向、单位长度的一条直线.3、相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2)相反数的和为 0 a+b=0 a、b 互为相反数.4、绝对值:绝对值和我们学过的加、减、乘、除一样,是一种运算,运算符号通常用||表示。

这种运算的意义是:一个正数和0的绝对值是它本身,一个负数的绝对值是它的相反数。

总之,一个数的绝对值是非负数。

用代数式表示为:|a|=a(a>0) |a|=-a(a<0) |a|=0(a=0)在数轴上,一个数的绝对值表示为代表这个数的点到原点的距离。

如:|-5|表示在数轴上代表-5 的点与原点的距离,即|-5|=5。

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a≠0,那么 a 的倒数是1 ;若 ab=1 a、 ab 互为倒数;若ab=-1 a、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义 .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:这是一种记数的方法。

七年级数学知识点总结人教版

七年级数学知识点总结人教版

七年级数学知识点总结人教版人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。

第一章有理数一、知识框架二、知识概念1.有理数1) 凡能写成 q/p (p,q为整数且p≠0) 形式的数,都是有理数。

正整数、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0既不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;无理数不是有理数。

2) 有理数的分类:①有理数>0;②有理数=0;③有理数<0.2.数轴数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数1) 只有符号不同的两个数,我们说其中一个是另一个的相反数;2) 相反数的和为 a+b=0,a、b互为相反数。

4.绝对值1) 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。

注意:绝对值的意义是数轴上表示某数的点离开原点的距离。

2) 绝对值可表示为:|a|=a(a≥0),|a|=-a(a<0)。

绝对值的问题经常分类讨论。

5.有理数比大小1)正数的绝对值越大,这个数越大;2)正数永远比负数大,负数永远比正数小;3)正数大于一切负数;4)两个负数比大小,绝对值大的反而小;5)数轴上的两个数,右边的数总比左边的数大;6)大数-小数>0,小数-大数<0.6.互为倒数乘积为1的两个数互为倒数。

注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=-1,a、b互为负倒数。

7.有理数加法法则1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数与0相加,仍得这个数。

8.有理数加法的运算律1)加法的交换律:a+b=b+a;2)加法的结合律:(a+b)+c=a+(b+c)。

9.有理数减法法则减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

10.有理数乘法法则1)两数相乘,同号为正,异号为负,并把绝对值相乘;2)任何数同0相乘都得0.3.几个数相乘,其中一个因子为零,积为零;如果所有因子都不为零,则积的符号由负因子的个数决定。

七年级上册数学知识点总结

七年级上册数学知识点总结

七年级上册数学知识点总结七年级上册数学知识点总结在年少学习的日子里,相信大家一定都接触过知识点吧!知识点就是掌握某个问题/知识的学习要点。

掌握知识点是我们提高成绩的关键!下面是小编收集整理的七年级上册数学知识点总结,欢迎大家分享。

七年级上册数学知识点总结篇1第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整数之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,取相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5. ab = a +(b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学上第一章有理数1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则:14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则第二章整式的加减1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数第三章一元一次方程1.一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”(2)画图分析法: …………多用于“行程问题”4.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.七年级数学下第五章相交线与平行线1.邻补角2.对顶角3.垂线4.平行线5.同位角、内错角、同旁内角:6.命题7.平移8.对应点9.定理与性质10垂线的性质:11.平行公理12.平行线的性质:13.平行线的判定:第六章平面直角坐标系1.有序数对2.平面直角坐标系3.横轴、纵轴、原点4.坐标5.象限第七章三角形1.三角形2.三边关系3.高4.中线5.角平分线6.三角形的稳定性6.多边形7.多边形的内角8.多边形的外角9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质,多边形内角和公式,多边形的外角和多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学第一章有理数知识点归纳总结初中数学第一章主要涉及有理数的概念、运算规则、绝对值和相反数
等知识点。

下面将对这些知识点进行归纳总结。

1.有理数的概念:
有理数是整数和分数的统称,包括正整数、负整数、零,以及正分数
和负分数。

有理数可以用分数形式表示,也可以用小数形式表示。

2.整数的概念:
整数包括正整数、负整数和零。

正整数表示数量时为正,负整数表示
数量时为负,零表示没有数量。

3.分数的概念:
分数由分子和分母组成,分子表示被分成的份数,分母表示总的份数。

分数可以表示一个数在单位等分之中的一部分。

4.有理数的比较:
有理数可以通过大小进行比较。

对于两个有理数a和b,如果a-b>0,则a>b;如果a-b<0,则a<b;如果a-b=0,则a=b。

5.有理数的加法与减法:
有理数的加法和减法满足以下性质:
-相同符号的两个数相加或相减,绝对值较大的数保留符号,结果的
符号与原来的符号相同。

-不同符号的两个数相加或相减,绝对值较大的数保留符号,结果的符号与绝对值较大的数的符号相同。

6.有理数的乘法与除法:
有理数的乘法和除法满足以下性质:
-两个正数相乘或相除的结果为正数。

-两个负数相乘或相除的结果为正数。

-一个正数与一个负数相乘或相除的结果为负数。

-任何数除以零的结果为零。

7.绝对值:
一个数的绝对值表示这个数离零的距离。

如果一个数是正数,那么它的绝对值就等于它本身;如果一个数是负数,那么它的绝对值等于它的相反数。

8.相反数:
一个数与它的相反数的和为零。

一个数的相反数可以通过改变符号获得,正数变为负数,负数变为正数。

9.有理数的绝对值与相反数的关系:
一个有理数的绝对值等于它的相反数的绝对值。

10.混合运算:
混合运算指在一个表达式中同时包含加减乘除等不同的运算符号。

在混合运算中,先进行括号内的计算,然后进行乘除法运算,最后进行加减法运算。

11.近似数与精确数:
在实际计算中,有时候需要使用近似数来代替精确数。

近似数是最接近真实值的一个数,通常保留有效数字或保留一定小数位数来表示。

以上是初中数学第一章有理数的主要知识点的归纳总结。

掌握这些知识点可以帮助我们正确理解和运用有理数,进行加减乘除等运算,并且在实际问题中灵活运用数学知识进行解决。

相关文档
最新文档