七年级数学试卷有理数解答题练习题(附答案)50

合集下载

七年级数学上册第一单元《有理数》-解答题专项经典题(含答案解析)

七年级数学上册第一单元《有理数》-解答题专项经典题(含答案解析)

一、解答题1.计算:-32+2×(-1)3-(-9)÷2 1 3⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.2.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷3 74(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900.【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=74 60(3)3 ---=6074 -+=14;(3)原式=115(8)(9)3-+-÷--=2815(8)()3-+-÷-=315(8)()28-+-- =6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.3.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2) =﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷-=17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 4.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.5.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.6.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.7.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.9.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.10.计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ (2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.11.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】 (1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.12.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案; (2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+---=1118-- =18-;(2)()41151123618⎛⎫---+÷⎪⎝⎭ =115118236⎛⎫--+⨯⎪⎝⎭ =115118+1818236-⨯⨯-⨯ =1-9+6-15=-17.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.13.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.15.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭,=1312744+-+, =1217+-,=13-7,=6; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算:(1)157(36)2612⎛⎫--⨯- ⎪⎝⎭ (2)2138(2)3⎛⎫⨯-+÷- ⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1.【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭1174848483612=-⨯+⨯-⨯16828=-+- 36=-;(2)20213281(2)(3)3---÷⨯-31(89)8=---⨯⨯127=-+ 26=. 【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.19.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算; 1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0. 【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可; (3)根据“运算平衡”数组的定义可以得到n 个数的规律. 【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0; (2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况, 经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0. 【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键. 20.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1. 【分析】(1)根据有理数的乘除混合运算法则计算即可; (2)根据有理数的混合运算法则计算即可. 【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭ ×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4 =1. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 21.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 22.计算:(1)()()34287⨯-+-÷;(2)()223232-+---. 解析:(1)16-;(2)6. 【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值. 【详解】(1)原式12416=--=- (2)原式34926=-+-= 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 23.计算: (1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10 解析:(1)17;(2)1. 【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.25.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.解析:(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C 站人数为:36+7-10=33(人)D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键. 26.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭.解析:(1)-2;(2)-19 【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可; (2)利用乘法的分配率进行计算. 【详解】(1)4222(37)2(1)-+--⨯-=16162-+- =-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21 =-19 【点睛】考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.27.探索代数式222a ab b -+与代数式2()a b -的关系 (1)当5a =,2b =-时,分别计算两个代数式的值. (2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+ 解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1. 【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得; (2)根据(1)中的两式的计算结果即可归纳总结出关系式; (3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49, (a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2; (3)20182−2×2018×2019+20192 =(2018−2019)2 =(−1)2 =1. 【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.28.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++;②0,0a b <<,==11=2a b a ba b a b+-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键. 29.计算 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; 【详解】 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷-- ()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭255104=-⨯+5=-.4【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.30.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.。

(必考题)七年级数学上册第一单元《有理数》-解答题专项基础练习(含答案解析)

(必考题)七年级数学上册第一单元《有理数》-解答题专项基础练习(含答案解析)

一、解答题1.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg).)根据记录的数据可知前三天共卖出(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.2.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭;(3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦;(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】(1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案;(4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案. 【详解】解:(1)28()5(0.4)5+----2850.45=--+3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯-123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯()233662557=-⨯+-⨯-⨯2366557⎛⎫=-⨯+- ⎪⎝⎭667=--667=-(4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦()313212⎛⎫=---+⨯-+ ⎪⎝⎭()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=---1164=-+315.4=【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.3.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册.答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.4.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元).. 【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 5.计算下列各式的值: (1)1243 3.55-+- (2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12 【分析】(1)先将减法化为加法,再计算加法即可; (2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法. 【详解】解:(1)原式=24 3.2( 3.5)-++- =-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++- =-76;(3)原式=950251--÷- =921--- =9(2)(1)-+-+- =-12. 【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 6.计算题:(1)()()121876---+-+; (2)()231513221428⎫⎛---⨯-+⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4 【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题. 【详解】解:(1)|-12|-(-18)+(-7)+6 =12+18+(-7)+6 =30+(-7)+6 =23+6 =29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52 =-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 7.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21. 【分析】(1)根据有理数的混合运算法则即可求解; (2)根据有理数的混合运算法则即可求解. 【详解】 解:(1)113623⎛⎫-⨯-⎪⎝⎭=1136623-⨯+⨯ =332-+ =2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+ =1244--+ =-21. 【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则. 8.某超市对2020年下半年每月的利润用下表作了记录:(2)计算该商场下半年6个月的总利润额. 解析:(1)填表见解析;(2)40万元. 【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可; (2)把该商场下半年6个月的利润相加即可. 【详解】解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14 =40(万元)∴该商场下半年6个月的总利润额为40万元. 【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时 还考查了有理数的加法运算.9.321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可. 【详解】解:321032(2)(3)5-÷---⨯ =10-32÷(﹣8)-9×5 =10-(﹣4)-45 =10+4-45 =14-45 =﹣31. 【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则. 10.计算:()22216232⎫⎛-⨯-- ⎪⎝⎭解析:2 【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可. 【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯--=213636432⨯-⨯-=24-18-4 =2. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.11.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ; (2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁. 【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长; (2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可. 【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22; (3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a 【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果; (2)利用点B 表示的数3减去9.5即可得到答案; (3)利用中点表示的数向左移动0.5a 个单位计算即可. 【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数, ∴点A 表示的数是-3,点B 表示的数是3; (2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a . 【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-.【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可; (4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可; 【详解】(1)∵()()22141268+++=----a b c d , ∴()()221412+6+80+++--=a b c d ,∴14a =-,12b =-,6c =,8d =; (2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.14.计算: (1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 15.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 18.计算:(1)157(36)2612⎛⎫--⨯- ⎪⎝⎭ (2)2138(2)3⎛⎫⨯-+÷- ⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1.【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.21.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.计算:2202013(1)(2)4(1)2-÷-⨯---+-. 解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.计算:|﹣2|﹣32+(﹣4)×(12-)3 解析:162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 24.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.26.计算(1)21145()5 -÷⨯-(2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.27.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯, =97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.28.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒. -1.2 +0.7 0 -1 -0.3 +0.2 0.3 +0.5解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.29.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键. 30.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

宁波市七年级数学试卷有理数解答题专题练习(附答案)

宁波市七年级数学试卷有理数解答题专题练习(附答案)

宁波市七年级数学试卷有理数解答题专题练习(附答案)一、解答题1.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.2.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.3.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值4.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。

(1)PA=________,PC=________(用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇.5.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.6.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.7.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.8.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.9.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.(1)求时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?10.已知:是最大的负整数,且、b、c满足(c﹣5)2+| +b|=0,请回答问题.(1)请直接写出、b、c的值: =________,b=________,c=________.(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1时),请化简式子:|x+1|﹣|x﹣1|+2|x-5|(请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.11.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.(1)请写出线段AB的中点C对应的数.(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?12.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x所对应的点与-1所对应的点之间的距离.⑴发现问题:代数式的最小值是多少?⑵探究问题:如图,点分别表示的是,.∵的几何意义是线段与的长度之和∴当点在线段上时, ;当点点在点的左侧或点的右侧时∴的最小值是3.⑶解决问题:①. 的最小值是 ________ ;②.利用上述思想方法解不等式:________③.当为何值时,代数式的最小值是2________.13.如图所示(1)A在数轴上所对应的数为﹣2.点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在A、B两点位于第(1)题所在的位置开始,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)当A、B两点位于第(2)题结束所在的位置,如果A点静止不动,B点以每秒2个单位长度沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.14.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;②若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

七年级数学试卷有理数解答题试题(附答案)

七年级数学试卷有理数解答题试题(附答案)

七年级数学试卷有理数解答题试题(附答案)一、解答题1.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?2.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.3.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.4.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.5.如图,在数轴上点A表示数a,点B表示数b,a、b满足|a﹣20|+(b+10)2=0,O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)t为何值时,BQ=2AQ.(3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=6?若存在,求出所有符合条件的t值,若不存在,请说明理由.6.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.7.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.例如:对于数列因为所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.(1)数列的“关联数值”为________;(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________(3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.8.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

湖北七年级数学试卷有理数解答题练习题(含答案)

湖北七年级数学试卷有理数解答题练习题(含答案)

湖北七年级数学试卷有理数解答题练习题(含答案)一、解答题1.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.2.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.3.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.4.(阅读理解):A,B,C为数轴上三点,若点C到A的距离CA是点C到B的距离CB 的2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离CA是2,到点B的距离CB是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离DA是1,到点B的距离DB是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.(知识运用):(1)如图1,表示数______和_______的点是(A,B)的好点;5.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A 点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.6.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.(1)数轴上点C表示的数是________;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)7.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)8.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________9.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是部分①面积的一半,部分③是部分②面积的一半,以此类推(1)阴影部分的面积是多少?(2)受此启发,你能求出1+ 的值吗?10.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)11.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .12.如图,点A、B、C在数轴上表示的数分别是-3、1、5。

初中数学专项练习《有理数》50道解答题包含答案

初中数学专项练习《有理数》50道解答题包含答案

初中数学专项练习《有理数》50道解答题包含答案一、解答题(共50题)1、在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来:﹣,0,2,﹣(+3),|﹣5|,﹣1.5.2、省实验中学初一年级某班体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录(其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒)﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6这个小组女生的达标率为多少?平均成绩为多少秒?3、在数轴上表示下列各数,并把它们按照从小到大的顺序排列.1, -2, -2.5, 0,|-3|,4、小红和小明根据下图做游戏,在游戏中规定:长方形表示加,圆形表示减,结果小的获胜.列式计算,小明和小红谁为胜者?5、在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来﹣(﹣3); |﹣2|; 0; (﹣1)3; -3.5;;;.6、结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对的,说明理由,认为错的,举出反例.(1)任何一个数与它的相反数的和都为0;(2)任何一个数a(a≠0)与它的倒数的积可能是1也可能是﹣1;(3)如果a大于b(a<0,b<0).那么a的倒数大于b的倒数.7、8、已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++ 的值.9、把下列各数填到相应的括号内:+203、0、+6.4、-9、、3.14、-0.1整数: { … }正有理数:{ … }负分数: { … }非负整数:{ … }10、在数轴上表示下列各数,并用“ ”号把它们连接起来.,,,1 , 0 ,11、若a, b互为相反数,c,d互为倒数,|m|=2,求a+b+m2﹣3cd的值.12、若a>0,b>0,且,则a>b;若a<0,b<0,且,则a<b.以上这种比较大小的方法,叫做作商比较法.试利用作商比较法,比较与的大小.13、用四舍五入法按下列要求取各数的近似数.(1)某次地震中,约伤亡10000人;(保留两个有效数字)(2)生物学家发现一种毒的长度约为0.0000430mm.(保留两个有效数字)14、在数轴上表示出下列各数,并把这些数用“>”号连接起来:﹣3.5,2 ,﹣1,415、已知a、b互为倒数,c、d互为相反数,且m是最大的负整数,求2ab﹣m2的值.16、已知:有理数m到原点的距离为4个单位,a,b互为相反数,且都不为零,c,d 互为倒数.求:2a+2b+(-3cd)+|m|的值.17、在数轴上画出表示下列各数的点,并把它们按从小到大的顺序用“<”连接起来:﹣3,3.5,0,﹣,﹣4,1.5.18、经过30多年的观测,人们发现冥王星的直径只有2.3×106米,比月球还要小,因此2006年8月24日在在捷克首都布拉格举行的国际天文学联合会第26届大会上,根据新定义,冥王星被排在行星行列之外,而将其列入“矮行星”.若银河系密集部分的直径是十万光年,用科学记数法表示冥王星与银河系密集部分直径的比值.(结果保留两位有效数字)19、已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数.求的值.20、将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.21、某公园的成人票价是15元,儿童买半票,甲旅行团有x(名)成年人和y (名)儿童,乙旅行团的成人数是甲旅行团的2倍,儿童数比甲旅行团的2倍少8人.这两个旅行团的门票费用总和各是多少?22、写出下列各数的相反数,并将这些数连同他们的相反数在数轴上表示出来.+3,-1.5,0,23、把下列各数在数轴上表示出来,并用“ ”号把这些数连接起来.24、在数轴上画出表示下列各数的点,并把它们用“ ”连接起来. ,0,,|-3|,-(-3.5).25、一架直升飞机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以 12米/秒的速度下降120秒,这时的直升飞机所在的高度是多少?26、某中学老师为减轻学生们的负担,让同学们做了一个游戏,他说:“如果张华和李明分别代表不大于5的正整数m、n,且是最简真分数,那么形如的数一共有多少个不同的有理数?”27、已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.28、有一个水库某天8:00的水位为(以警戒线为基准,记高于警戒线的水位为正),在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:):.经这6次水位升降后,水库的水位超过警戒线了吗?29、已知实数a,b,c在数轴上的位置如图,且,化简30、小希准备在6年后考上大学时,用15000元给父母买一份礼物表示感谢,决定现在把零花钱存入银行下面有两种储蓄方案:①直接存一个6年期.(6年期年利率为)②先存一个3年期,3年后本金与利息的和再自动转存一个3年期.(3年期年利率为)你认为按哪种储蓄方案开始存入的本金比较少?请通过计算说明理由.31、若a、b互为相反数,c、d互为倒数,m的绝对值等于2,计算m﹣(a+b)2﹣(cd)3的值.32、如图所示,某公司员工分别住在A,B,C三个住宅区,A区有30人,B区有15人,C区有10人.三个区在同一条直线上,该公司的接送车打算在此间设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在哪个区?33、把下列各数在数轴上表示出来,并用“>”号把它们连接起来。

2020-2021七年级数学试卷有理数解答题练习题(附答案)

2020-2021七年级数学试卷有理数解答题练习题(附答案)

2020-2021七年级数学试卷有理数解答题练习题(附答案)一、解答题1.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且 .(1)a=________,b=________;(2)在数轴上是否存在一点P,使,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿的路径运动,在路径的速度是每秒2个单位,在路径上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?2.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值3.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.6.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.7.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.8.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。

(必考题)七年级数学上册第一单元《有理数》-解答题专项经典习题(含答案解析)

(必考题)七年级数学上册第一单元《有理数》-解答题专项经典习题(含答案解析)

一、解答题1.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.解析:(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”,∴m 的取值范围为:43m -≤≤-,故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -,∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -,∵点B 在线段CD 上,当点B 与点C 相遇时,2t =,当点B 与点D 相遇时,6t =,∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”.【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.2.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦=2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30=﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦=341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.3.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.4.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.5.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.6.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.7.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯- ⎪⎝⎭=1136623-⨯+⨯ =332-+=2; (2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.8.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.9.321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.10.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.11.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】 (1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.12.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.13.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.14.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 15.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦,111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.19.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出 kg (2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 kg ;(3)若脐橙按4.5元/kg 出售,且小明需为买家支付运费(平均0.5元/kg ),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg ),故答案为:296;(2)(+21)-(-8)=29(kg ),故答案为:29;(3)4-3-5+14-8+21-6=17(kg ),17+100×7=717(kg ),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.20.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=;在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x>3和x<−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x和3的两点之间的距离为:|x−3|;数轴上表示数x和−2的两点之间的距离表示为:|x+2|;故答案为:3,|x−3|,x,-2;(2)①当x在-2和3之间移动时,|x+2|+|x−3|=x+2+3−x=5;②当x>3时,x−3+x+2=7,解得:x=4,当x<−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.21.将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.22.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷4解析:(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.24.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.26.计算:|﹣2|﹣32+(﹣4)×(12-)3 解析:162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.27.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯=﹣1+24÷(﹣8)﹣9×1 9=﹣1+(﹣3)﹣1=﹣5.【点睛】此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.28.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=,(2)数轴上a,b,c所对应的点分别为A,B,C,则B,C两点间的距离为;(3)在(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t秒,①此时A表示的数为;此时B表示的数为;此时C表示的数为;②若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC-AB的值不随着时间t的变化而改变,其值是2,理由如下:∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=5+5t–(1+2t)=3t+4,AB=1+2t–(-1-t)=3t+2,∴BC -AB =(3t +4)-(3t +2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.29.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.30.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<.【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学试卷有理数解答题练习题(附答案)50一、解答题1.已知点在数轴上对应的数为,点对应的数为,且 G为线段上一点,两点分别从点沿方向同时运动,设点的运动速度为点的运动速度为,运动时间为 .(1)点对应的数为________,点对应的数为________;(2)若,试求为多少时,两点的距离为;(3)若,点为数轴上任意一点,且,请直接写出的值. 2.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=________,b=________.A,B两点之间的距离=________;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:6.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.7.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.8.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒(1)数轴上点B表示的数是________;点P表示的数是________(用含t的代数式表示) (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长。

9.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.10.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且 .(1)a=________,b=________;(2)在数轴上是否存在一点P,使,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿的路径运动,在路径的速度是每秒2个单位,在路径上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?11.阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= ×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+ n×( n+1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.12.第1个等式:1- = ×第2个等式:(1- )(1- )= ×第3个等式:(1- )(1- )(1- )= ×第4个等式:(1- )(1- )(1- )(1- )= ×第5个等式:(1- )(1- )(1- )(1- )(1- )= ×······(1)写出第6个等式;(2)写出第n个等式(用含n的等式表示),并予以证明.13.如图,在数轴上,点为原点,点表示的数为,点表示的数为,且满足(1)A、B两点对应的数分别为 ________, ________;(2)若将数轴折叠,使得点与点重合,则原点与数________表示的点重合.(3)若点A、B分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A、B两点相距2个单位长度?(4)若点A、B以(3)中的速度同时向右运动,点从原点以7个单位/秒的速度向右运动,设运动时间为秒,请问:在运动过程中,的值是否会发生变化?若变化,请用表示这个值;若不变,请求出这个定值.14.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.15.如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.(1)A,B两点之间的距离为________.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?16.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。

一只电子小蜗牛从A点向正方向移动,速度为2个单位/秒。

(1)请求出A、B、C三点分别表示的数;(2)运动多少秒时,小蜗牛到点B的距离为1个单位长度;(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是________。

17.如图A在数轴上对应的数为-2.(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.18.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).19.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.20.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)-4;11(2)解:∵,且 AB=2AG ,∴ AG=BG=7.5 ,①即 2.5=(t+7.5)-2t解得: t=5②即解得: t=10 x ,解析:(1)-4;11(2)解:∵,且 ,∴,①即解得:②即解得: ,(3)解:①当点H在点B的左侧时,如图:设,∵,,∴,,∵,∴,∴,∴,②当点H在点B的右侧时,如图:∵,而∴∴,故答案为:或【解析】【解答】(1)∵,∴,,∴,,故答案为:;;【分析】(1)根据平方与绝对值的和为0,可得平方、绝对值同时为0,可得答案;(2)分两种情况讨论:① ,② 分别列式计算即可;(3)也分两种情况讨论:①当点H在点B的左侧时,设,列式计算即可;②当点H在点B的右侧时,直接列式计算即可;2.(1)-5;7;12(2)依题意得:−5−1+2−3+4−5+6−7+…+2014−2015+2016-2017+2018-2019,=−5+1009−2019,=−1015.答:点P所对解析:(1)-5;7;12(2)依题意得:−5−1+2−3+4−5+6−7+…+2014−2015+2016-2017+2018-2019,=−5+1009−2019,=−1015.答:点P所对应的有理数的值为−1013;(3)解:设点P对应的有理数的值为p,①当点P在点A的左侧时:PA=−5−p,PB=7−p,依题意得:7−p=3(−5−p),解得:p=−11;②当点P在点A和点B之间时:PA=p−(−5)=p+5,PB=7−p,依题意得:7−p=3(p+5),解得:p=−2;③当点P在点B的右侧时:PA=p−(−5)=p+5,PB=p−7,依题意得:p−7=3(p+5),解得:x=−11,这与点P在点B的右侧(即x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是−11和−2.【解析】【解析】解:(1)∵式子M=(a+5)x3+7x2−2x+5是关于x的二次多项式,且二次项系数为b,∴a+5=0,b=7,则a=−5,∴A、B两点之间的距离=|−5-7|=12.故答案是:−5;7;12.【分析】(1)根据多项式的项及次数的定义得到a+5=0,由此求得a、b的值,然后根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值即可求线段AB的值;(2)根据题意得到点P每一次运动后所在的位置,然后由有理数的加法进行计算即可;(3)设点P对应的有理数的值为p,分情况进行解答:点P在点A的左侧,点P在点A、B之间、点P在点B的右侧三种情况,根据根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值表示出PA,PB的长度,进而根据点P到点B的距离是点P到点A的距离的3倍分别列出方程,求解即可.3.(1)解:根据数轴上点的位置得: a<c<|b| ;(2)解:根据题意得:a+b<0,b-1<0,a-c<0,则;(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,解析:(1)解:根据数轴上点的位置得:;(2)解:根据题意得:a+b<0,b-1<0,a-c<0,则;(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,∴原式 .【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.4.(1)2;-10(2)解:①根据题意得,点 P 表示的数为,点 Q 表示的数为 .②当点 P 、 Q 相距 6 个单位长度时,若P在Q的左侧,则,解得 t=53 ;若P在Q解析:(1)2;-10(2)解:①根据题意得,点表示的数为,点表示的数为 .②当点、相距个单位长度时,若P在Q的左侧,则,解得;若P在Q的右侧,则,解得,所以的值为或【解析】【解答】()因为,所以表示的数为,因为,所以表示的数为 .【分析】(1)根据BC,AB的长和点B,A在数轴上的位置,可得到点B,A表示的数;(2)①点P表示的数比-10大4t,点Q表示的数比C小2t;②需要分两种情况讨论:若P在Q的左侧,PQ=6;若P在Q的右侧,PQ=6.5.(1)(2)20062007(3)原式=.【解析】【解答】(1)故答案为:.(2)故答案为:20162017.【分析】(1)分子为1,分母为相邻2个数的积,结果等解析:(1)(2)(3)原式=.【解析】【解答】(1)故答案为:.(2)故答案为:.【分析】(1)分子为1,分母为相邻2个数的积,结果等于分子为1,分母分别为2个因数的分数的差;(2)利用(1)规律进行拆项,化简后只剩首位两个数的差,求出结果即可;(3)根据(1)规律进行变形后然后乘以,求出结果即可.6.(1)1(2)解:设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴解析:(1)1(2)解:设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R(3)解:线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.【解析】【解答】解:(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,【分析】(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.7.(1)3;3;4;|x+1|;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则 x 在1和2015之间即可,要使最小,则 x 在2和2014之间即可…… 以此类推,要使最小,解析:(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;8.(1)﹣14;8﹣5t(2)解:分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点解析:(1)﹣14;8﹣5t(2)解:分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2(3)解:线段MN的长度不发生变化,其值为11,理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=11∴线段MN的长度不发生变化,其值为11.【解析】【解答】解:(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8−22=−14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8−5t.故答案为:-14、8-5t;【分析】(1)根据已知可得B点表示的数为8−22;点P表示的数为8−5t;(2)分①点P、Q相遇之前,②点P、Q相遇之后两种情况,根据P、Q之间的距离恰好等于2列出方程求解即可;(3)线段MN的长度不发生变化,其值为11,理由如下:分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.9.(1)解:由题意得: |b-3|=5 ,解得:(2)解:当B在A左侧时,由(1)可知: b=-2 ,设点D运动的时间为t秒,则D表示的数为-2t,当D到A、B两点的距离之和为8时,可得D在B左解析:(1)解:由题意得:,解得:(2)解:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D表示的数为-2t,当D到A、B两点的距离之和为8时,可得D在B左侧,且DB+DA=DB+DB+AB=2DB+5=8,故 DB=1.5,即-2-(-2t)=1.5,解得t=1.75(3)解:在运动过程中,MN-2PQ=4恒成立,理由如下:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D表示的数为-2t,M表示的数为-2-t,N表示的数为3+4t;故MN的中点P表示的数为0.5+1.5t,OD的中点Q表示的数为-t;则MN-2PQ=[(3+4t)-(-2-t)]-2[(0.5+1.5t)-(-t)]=5+5t-2(0.5+2.5t)=5+5t-1-5t=4【解析】【分析】(1)根据数轴上两点之间的距离公式即可求解.(2)根据运动速度可表达出D点坐标,根据D到A、B两点的距离之和为8,可知D点在B的左侧,根据两点之间的距离公式即可求解(3)根据运动速度可表达出M、D、N点的坐标,根据中点公式求出P、Q坐标进而求出MN、PQ线段长即可求解.10.(1)-8;4(2)解:根据题意,若要满足PA-PB=2OP ,则点P在线段AB中点右侧,线段AB的中点表示的数为-2,设点P表示的数为x,分三种情况讨论:①当-2≤x<0时,则x+解析:(1)-8;4(2)解:根据题意,若要满足,则点P在线段AB中点右侧,线段AB的中点表示的数为-2,设点P表示的数为x,分三种情况讨论:①当-2≤x<0时,则x+8-(4-x)=2(-x),解得:x=-1;②当0≤x<4时,则x+8-(4-x)=2x,方程无解③当x≥4时,则x+8-(x-4)=2x,解得:x=6.综上:存在点P,表示的数为-1或6(3)解:设运动时间为t,根据运动情况,可知MN=1的情况有三种:①M在A→O上,且M在N左侧,则2t+3t+1=12,解得t= .②M在A→O上,且M在N右侧,则2t+3t-1=12,解得t= .③M在O→A上,且N到达点A,此时,M在A→O上所用时间为8÷2=4(s),M在O→A上速度为4个单位每秒,∵MN=1,∴(8-1)÷4= ,∴此时时间t=4+ = ,综上:当MN=1时,时间为秒,秒或秒【解析】【解答】(1)解:∵,∴ab=-32,b-4=0,∴a=-8,b=4.【分析】(1)根据,利用绝对值及偶次方的非负性即可求出;(2)若要满足,则点P在线段AB中点右侧,分三种情况讨论;(3)当MN=1时,根据运动情况,可分三种情形讨论,列出方程解答.11.(1)解:1×2+2×3+3×4+…+10×11,= 13 ×(1×2×3-0×1×2)+ 13 ×(2×3×4-1×2×3)+ 13 ×(3×4×5-2×3×4)+…+ 13 ×(10×解析:(1)解:1×2+2×3+3×4+…+10×11,= ×(1×2×3-0×1×2)+ ×(2×3×4-1×2×3)+ ×(3×4×5-2×3×4)+…+ ×(10×11×12-9×10×11),= ×(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+…+10×11×12-9×10×11),= ×10×11×12,=440;(2) n(n+1)(n+2)(3)1260【解析】【解答】解:(2)∵1×2+2×3+3×4= ×3×4×5,∴1×2+2×3+3×4+…+n×(n+1)= n(n+1)(n+2);(3)1×2×3+2×3×4+3×4×5+…+7×8×9=×7×8×9×10=1260.故答案为:n(n+1)(n+2);1260.【分析】(1)根据题目信息列出算式,然后提取,进行计算即可得解;(2)观察不难发现,两个连续的自然数的积等于这两个数与后面的数的积减去与前面的数的积的,然后列出算式进行计算即可得解;(3)根据(2)的规律类比列式进行计算即可得解.12.(1)第6个等式:(1- 14 )(1- 19 )(1- 116 )(1- 125 )(1- 136 )(1- 149 )= 12 × 87 (2)第n个等式:(1- 14 )(1- 19 )(1解析:(1)第6个等式:(1- )(1- )(1- )(1- )(1- )(1- )= ×(2)第n个等式:(1- )(1- )(1- )……(1- )[1- ]= ×证明:(1- )(1- )(1- )……(1- )[1- ]=== ×【解析】【分析】根据已知条件得到每个括号内第二个分数分母的变化规律,进而得出答案.13.(1)-8;6(2)-2(3)解:①相遇前相距2个单位长度:t=[6-(-8)-2]÷(4+2)=1.5(秒)②相遇后相距2个单位长度:t=[6-(-8)+2]÷(4+2)=2(秒)解析:(1)-8;6(2)-2(3)解:①相遇前相距2个单位长度:t=[6-(-8)-2]÷(4+2)=1.5(秒)②相遇后相距2个单位长度:t=[6-(-8)+2]÷(4+2)=2(秒)综上所述:1.5秒或2秒后A、B两点相距2个单位长度.(4)解:AP+2OB-OP的值不会发生变化.∵OP=7t,OA=-8+4t,∴AP=7t-(-8+4t)=3t+8,∵OB=6+2t,∴AP+2OB-OP=3t+8+2(6+2t)-7t=3t+8+12+4t-7t=20,∴AP+2OB-OP的值不会发生变化,定值为20.【解析】【解答】(1)∵,∴a+8=0,b-6=0,解得:a=-8,b=6,故答案为:-8,6(2)∵a=-8,b=6,将数轴折叠,使得A点与B点重合,∴对折点表示的数是[6+(-8)]÷2=-1,∵-1与原点的距离是1,∴原点关于-1的对称点表示的数是-2,即原点O与数-2表示的点重合,故答案为:-2【分析】根据绝对值及平方的非负数性质即可求出a、b的值;(2)根据a、b的值可得AB对折点表示的数,根据两点间的距离即可得答案;(3)分两种情况:①相遇前相距2个单位长度;②相遇后相距2个单位长度;利用距离=时间×速度即可得答案;(4)根据两点间距离公式,利用距离=时间×速度用t分别表示出AP、OB、OP的长,计算的值即可得答案.14.(1)解:∵b是最小的正整数∴b=1∵ (c-5)2 + |a+b| =0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上解析:(1)解:∵b是最小的正整数∴b=1∵+=0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,①当m<0时,|2m|=-2m;②当m≥0时,|2m|=2m;(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,∴BC=3t+4,AB=3t+2∴BC-AB=3t+4-(3t+2)=2【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.15.(1)13(2)-2(3)解:设运动t秒后,点A与点B相距4个单位,由题意可知点A表示的数为-9+3t,点B表示的数为4+2t,∴,∴或解得t=17或9.答:运动9解析:(1)13(2)-2(3)解:设运动t秒后,点A与点B相距4个单位,由题意可知点A表示的数为-9+3t,点B表示的数为4+2t,∴,∴或解得t=17或9.答:运动9秒或17秒后,点A与点B 相距4个单位.【解析】【解答】解:(1)AB=4-(-9)=13(2)设点C表示的数是x,则AC=x-(-9)=x+9,BC=4-x,∵A落在点B的右边1个单位,∴AC-BC=1,即AC-BC=x+9-(4-x)=2x+5=1,解得:x=-2,∴点C表示的数是-2.故答案为:-2.【分析】(1)根据数轴上两点的距离公式即可求解;(2)设点C表示的数是x,分别表示出AC、BC,再根据AC-BC=1列出方程解答即可;(3)运动t秒后,可知点A表示的数为-9+3t,点B表示的数为4+2t,再根据AB的距离为4,可得方程,解方程即可.16.(1)解:由题意得:a+12=0, b+5=0,则a=-12, b=-5,c=-b=5,∴A、B、C分别表示的数为-12,-5和5.(2)解:设小蜗牛到点B的距离为1个单位长度时表示的数解析:(1)解:由题意得:a+12=0, b+5=0,则a=-12, b=-5,c=-b=5,∴A、B、C分别表示的数为-12,-5和5.(2)解:设小蜗牛到点B的距离为1个单位长度时表示的数为x,则 ,解得:x=-4或-6,∴小蜗牛运动的距离为:-4-(-12)=8, 或-6-(-12)=6.∴小蜗牛运动6秒或8秒时,小蜗牛到点B的距离为1个单位长度.(3)8或2【解析】【解答】解:(3)设P点表示的数为x, 则1)当P在AB之间时,即-12≤x<-5时,PA+PB+PC=x-(-12)+(-5)-x+5-x=20,解得x=-8.2)当P在BC之间时,即-5≤x<5时,PA+PB+PC=x-(-12)+x-(-5)+5-x=20,解得x=-2.3)当P在C的右边时,即x≥5时,PA+PB+PC=x-(-12)+x-(-5)+x-5=20,解得x=(舍去).【分析】(1)根据非负数之和等于0,列式求得a、b值,再根据互为相反数的定义求得c;(2)设小蜗牛到点B的距离为1个单位长度时表示的数为x, 根据数轴上两点间距离公式列式去绝对值求得x即可;(3)设P点表示的数为x, 分三种情况,1)当P在AB之间时,即-12≤x<-5时; 2)当P在BC 之间时,即-5≤x<5时; 3)当P在C的右边时,即x≥5时,根据数轴上两点间距离公式分别列式求出x, 再检验即可.17.(1)2(2)解:,∴B点到达的位置所表示的数字是2+3×2=88-(-6)=14(个单位长度).故A,B两点间距离是14个单位长度.(3)解:运动后的B点在A点右边4个单位解析:(1)2(2)解:,∴B点到达的位置所表示的数字是2+3×2=88-(-6)=14(个单位长度).故A,B两点间距离是14个单位长度.(3)解:运动后的B点在A点右边4个单位长度,设经过t秒长时间A,B两点相距4个单位长度,依题意有3t=14-4,解得x= ;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有3t=14+4,解得x=6.∴经过秒或6秒长时间A,B两点相距4个单位长度.【解析】【解答】解:(1)-2+4=2,故点B所对应的数是2;【分析】(1)根据左减右加可求得点B所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B在点A右边4个单位长度;运动后的点B在点A左边4个单位长度,列出方程求解. 18.(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,解析:(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.19.(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的解析:(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.20.(1)解:∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5(2)解:①∵点A到原点的距离为3且a<0,∴a解析:(1)解:∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5(2)解:①∵点A到原点的距离为3且a<0,∴a=﹣3,∵点B到点A,C的距离相等,∴c-b=b-a,∵c﹣b=b﹣a,a=﹣3,∴c=2b+3,答:b、c之间的数量关系为c=2b+3.②依题意,得x﹣c<0,x-a>0,∴|x﹣c|=c﹣x,|x-a|=x-a,∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,∵c=2b+3,∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,∴3b﹣3=0,∴b=1.答:b的值为1【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值.。

相关文档
最新文档